

Using MVC with Swing
Components

Jumping Ahead a Bit...
 We’re going to cover a specific architectural approach to building UI

components
 Model-View-Controller
 Classic architecture from Smalltalk 80

 Model: data structures that represent the component’s state
 View: object responsible for drawing the component
 Controller: object responsible for responding to user input

 Why talk about it now?
 Swing optionally allows a modified version of MVC as a way for

building components
 I’d like you to use this approach for Homework #2

2

Some Swing History
 Remember from earlier in class:

 To create a new component, subclass JComponent
 Implement paintComponent() to do all of the drawing for your

component

 Nice, easy way to create components
 Still works fine
 But, makes some things very hard:

 How would you implement a new look-and-feel?
 Components’ drawing code is hard coded into them.
 Even if you had a big switch statement and implemented several look

and feels, still doesn’t help you if a new look and feel comes along.

3

Some Swing History (cont’d)
 Swing has a pluggable look and feel architecture (PLAF)
 Supports Windows, Mac, GTK, plus several Java-only LAFs
 To make these easier to use, many Swing components have factored

their implementations in a slightly different way
 Separation of the underlying component data from its look and behavior

 Allows you to create just a new look-and-feel for a component and
easily plug it in to work with the core component data

4

Component Internal Architecture

5

JComponent

Model UI

Component class is what applications typically
interact with directly.

Model and UI classes are typically
“hidden” by the component, and used
internally by it.

Swing MVC Overview
 Model: custom class that contains all of the internal state of a

component
 UI: custom class that handles user input events, and painting the

component
 Subsumes both the View and Controller from the classic MVC architecture

 These two classes are loosely-coupled
 They communicate with each other through events
 E.g., when something in the model updates, it sends a ChangeEvent to

whatever UI is associated with it.
 UI then calls repaint() to tell the RepaintManager to schedule it for

redrawing.

6

Swing MVC Overview
 Application programmers typically never see the UI or the Model

classes
 Used purely as an internal implementation feature of the component

 Requires a bit of structure and boilerplate code to make things work
right.

 Resources:
 Short overview article: MVC Meets Swing, linked off class website
 Book: last chapter covers creating new Swing components using this

architecture

7

Step 1: Create Your Model Class
 Model: responsible for storing the state of your component
 Reuse an existing model if one is suitable; create your own if not
 Decide on the data structures you’ll need to track, and create getter/setter

functions
 Called Properties if they match the standard Java-style standards

 Send PropertyChangeEvents (or just ChangeEvents) when data in the model
change

 Keep a list of PropertyChangeListeners (or just ChangeListeners), and provide
methods for adding and removing listeners

 Be careful: the model should only contain core data structures, not data that’s
only about the visual presentation of that data
 Example: a Scrollbar

 Minimum, maximum, and current values are model properties (they have to do with
actual data values, not display

 Whether tick marks are shown, labels, etc., are visual properties, and don’t belong
in the model (they’re only about display, not the actual data) 8

Component Internal Architecture

9

JComponent implements ChangeListener

Model

Com
po

ne
nt

ha
s r

efe
ren

ce
 to

 m
od

el
Mod

el
se

nd
s C

ha
ng

eE
ve

nts

to
Com

po
ne

nt

In setModel() method of Component:
- Component registers itself as a ChangeListener for
 the model.

Whenever ChangeEvent is received from model:
- Component calls repaint() to cause itself to be
 redrawn.

Step 2: Create an Abstract UI
Class
 This is an abstract superclass to be shared by all LaFs for your new

component
 Always follows the same basic format:

import javax.swing.plaf.ComponentUI;

public abstract class NotepageUI extends ComponentUI {

 public static final String UI_CLASS_ID = “NotepageUI”;

}

10

Step 3: Create the Actual UI
Class
 Extend the abstract UI class
 Implement public void paint(Graphics g, JComponent c)

 Your component will automatically delegate its drawing to your UI’s
paint() method

 Implement any interfaces you need in order to respond to input
events
 Example: if your component must respond to the mouse, have your UI

class implement MouseListener

 Draw yourself correctly given your current size
 Recall that your parent component may resize you! In your painting

code, use the current size (getWidth()/getHeight()) and draw in the
space alloted to you.

 Implement a bit of boilerplate code for UI management

11

Component Internal Architecture

12

JComponent

UI implements
MouseListener,

etc.

In paint() method:
- Component is passed in to paint()
- Ask component for data that needs
 to be drawn

UI does not have a reference to the
model, but accesses it indirectly
through the Component

Component has reference to UI

MouseEvents, etc.

In installUI() method:
- UI sets itself up as mouse/keyboard/etc.
 listener for the component.
- When user events come in, UI updates
 the model by calling out to the component.

UI does not have a reference to the model,
but accesses it indirectly through the
Component.

Step 4: Create the Component
Itself
 Design the component’s external API

 These are the methods that application programmers see and use
 Many will just forward to the underlying model or the UI

 Make your component a listener for the Model’s ChangeEvents or
PropertyChangeEvents
 Generally need to call repaint() whenever the model is updated

 Send PropertyChangeEvents if the component’s internal state changes
 Other components might be listening to you--send

PropertyChangeEvents if anything component-specific changes

 Implement some boilerplate methods to register models and UIs

13

Step 4 (Example)
public class NotepageComponent extends JComponent implements ChangeListener {

 NotepageModel model;

 public NotepageComponent() {

 setModel(new NotepageModel());

 updateUI();

 }

 public setModel(NotepageModel m) {

 if (model != null)

 model.removeChangeListener(this);

 model = m;

 model.addChangeListener(this);

 }

 public NotepageModel getModel() {

 return model;

 }

 public void setUI(NotepageUI ui) { super.setUI(ui); }

 public void updateUI() {

 setUI((NotepageUI) UIManager.getUI(this));

 invalidate();

 }

 public String getUIClassID() { return NotepageUI.UI_CLASS_ID; }

}
14

Step 5: Register your UI with
Swing’s UIManager
 Need to tell the UIManager about the specific UI you want to use
 Typically do this early in the application’s main() routine:

public static void main(String[] args) {
 UIManager.put(PhotoUI.UI_CLASS_ID, “BasicNotepageUI”);

 // ... other stuff here ...

}

15

This string serves as the
unique token identifying all
different UIs that work as
NotepageUIs

This string names the class
that implements the specific
look-and-feel UI you want to use
in this application

Common Problems
 Exceptions at startup time

 Make sure the UIManager registration is done before you use the
component

 Components aren’t being repainted all the time
 Make sure you’re registered for change events, and are calling repaint()

whenever anything changes

 Components come up at weird sizes
 Your component should provide a miminumSize and preferredSize when

it is requested. If you don’t do this, your parent may set your size to 0

16

Step 3 (example)
public class BasicNotepageUI extends NotepageUI implements MouseListener {

 public static ComponentUI createUI(JComponent c) {

 return new BasicNotepageUI();

 }

 public void installUI(JComponent c) {

 ((NotepageComponent) c).addMouseListener(this); // we’ll handle mouse events for the Notepage component

 }

 public void uninstallUI(JComponent c) {

 ((NotepageComponent) c).removeMouseListener(this);

 }

 public void paint(Graphics g, JComponent c) {

 // do painting for the component here!

 }

 // implement the various MouseListener methods...

}

17

