locks.

The authors jest.
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Example 4: A convoluted recurrence.

Our next example is especially important. In fact, it’s the “classic exam-
ple” of why generating functions are useful in the solution of recurrences.

Suppose we have n + 1 variables xo, x1, ..., x,, whose product is to be
computed by doing n multiplications. How many ways C,, are there to insert
parentheses into the product xo-x;-...-x,, so that the order of multiplication is
completely specified? For example, when n = 2 there are two ways, Xo-(x7-x2)
and (xo-x1)-x2. And when n = 3 there are five ways,

Xo-(x1-(x2-%3)), xo-((x1:%2)x3), (x0-%1)-(x2-X3),

(xo-(x1-%2)) %3, ((xp-%1)-%2)"x3.

Thus C; =2, C3 =5; we also have Cy =1 and Cp = 1.

Let’s use the four-step procedure of Section 7.3. What is a recurrence
for the C's? The key observation is that there’s exactly one ‘-’ operation
outside all of the parentheses, when n > 0; this is the final multiplication
that ties everything together. If this ‘-’ occurs between x; and x;.i, there
are Cy ways to fully parenthesize xy-...-x;, and there are C,,__; ways to
fully parenthesize x;.,1-...-Xx,; hence

Ch = C(\C]1_]+C|Cn 3+-<'+CT1_1CQ‘ if n > 0.

By now we recognize this expression as a convolution, and we know how to
patch the formula so that it holds for all integers n:

Cn = ) CChr—x + [n=0]. (7.66)
k

Step 1 is now complete. Step 2 tells us to multiply by z" and sum:

C(z)

I

1]

Lo and behold, the convolution has become a product, in the generating-
function world. Life is full of surprises.

Z ann
Z CrChoi—kz™ + Z il
k,n

n=0

Z Ckzk Z C,-l_]_k.!“_k + 1
k n

C(z)-zC(z)+1.
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Step 3 is also easy. We solve for C(z) by the quadratic formula:

T++/1—4z
C[z]—-—%q—,

v

But should we choose the + sign or the — sign? Both choices yield a function
that satisfies C(z) = zC(z)? + 1, but only one of the choices is suitable for our
problem. We might choose the + sign on the grounds that positive thinking
is best; but we soon discover that this choice gives C(0) = oo, contrary to
the facts. (The correct function C(z) is supposed to have C(0) = Co=1)
Therefore we conclude that

1— \/’(]—-‘TE

Y~
A

Clz) =
Finally, Step 4. What is [z"] C(z)? The binomial theorem tells us that
[T—4z = ) V/2) (azy* = I---Zl —/2) (Laz)¥,
FHl=aa= fo, LR e TR I
k=0 k=1
hence, using (5.37),

8 — 4z 1/=1/2
-y = - s _4__.:]1\ 1
AR R1ME|

k=1

B -1/2\ (—4z)" Zn) A
a Z( n )T!I . Z—\(n_ n+1’

nz=0 n=0

The number of ways to parenthesize, Cr, is (3") -
We anticipated this result in Chapter 5, when we introduced the sequence  So the convo-
of Catalan numbers (1,1,2,5,14,...) = (Cy,). This sequence arises in dozens ;“tef ‘;*’C“ftrf”“’-
1 0 an
of problems‘ that seem at first to be unrelated to each other [46], because r;?irgcu?:mg e
many situations have a recursive structure that corresponds to the convolution  volution.
recurrence (7.66).
For example, let’s consider the following problem: How many sequences
(ay,az...,az2n) of +1's and —1's have the property that
aj+az;+---—axyy =0

and have all their partial sums
a;, ay+az, ..., Q+az-T---TA2n

nonnegative? There must be n occurrences of +1 and n occurrences of —1.
We can represent this problem graphically by plotting the sequence of partial




10 1 Introduction: Two Examples

Figure 1.5 Markov chain representation of the state of the 2 x 2 input queued switch
at the beginning of every slot. The numbers next to the arrows are the transition
probabilities. The state of the Markov chain is [d!1), d(2)], where d!! is the destination
port of the packet at input /.

the Markov chain. The saturation throughputs for eight values of N are shown
in Table 1.1 after obtaining them using this technique. As shown in the table, the
throughput decreases as N increases. The question then is, does the saturation
throughput converge to some value sufficiently greater than zero, or would it
continue to decrease to zero with increasing N, thereby negating the technological
advantages of the input-queued switch through a significant performance penalty
for large N? The answer to this question is in the asymptotic analysis, discussed

N  Saturation throughput

1 1.0000
2 0.7500
3 0.6825
4 0.6553
5 0.6399
6 0.6302
7 0.6234
8 0.6184

Table 1.1 Saturation throughput of an N x N input-queued switch for N=1,2,--., 8.
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in the cases not covered here, the input queues will be stable if the arrival rate
is less than the saturation throughput of the switch, although this has not been
formally proved for any other case. Specifically, the case of FIFO service of the
HOL queues has not been considered, nor has the case when more than one cell can
be switched from each input or to an output. This leads us to make the following

definition.

Definition 10.2
For a specified distribution of the cell destinations, we say that the arrival process
satisfies the saturation stability property if the input queues are stable whenever
the expectation of the number of arrivals in each slot to each input is less than
the saturation throughput from that in put. [

We use this property in discussing the delays in the switches.

10.1.2 Saturation Throughput of an 1Q Switch

In Chapter 1 we consider a Markov chain model of an input saturated N x N
IQ switch for arbitrary finite N. Recall that the saturation throughput per port
decreases as N increases (see Table 1.1). The numerical values suggest that there
is probably a limiting value of the saturation throughput as N — oo.

Consider what happens in the saturated 1Q switch in each slot. From each
nonempty HOL queue, one cell is transmitted to the output, and a total of D(¢)
cells are transmitted in slot 2. We assume that the cells depart at the end of a slot,
that fresh packets arrive at the beginning of a slot, and that the arrivals in a slot
are available for departure in that slot. Let O(#) denote the total num ber of HOL
packets in the input queues at the end of the slot, after the switching of the packets.
This is shown in Figure 10.4. Because the input queues are saturated, these D(f)
cells are replaced by fresh cells in slot (¢ + 1). Thus into the HOL queues of the
outputs, D(¢) cells arrive in slot (t+1), each independently choosing any of outputs
l,...,N with probability 1/N (i.c., they are uniformly routed). Let A;(z + 1) be
the number of new cells arriving into HOL; inslot #+ 1. A;(t + 1) has a binomial
distribution with mean D(#)/N.

. k D(t) -k
Pr(Ai(t+1) = k) = (D:']) (Ni) (I - Tl)

e e ———




10.1 FIFO Queueing at Output and Input 557

possible departure instants
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Figure 10.4 The arrival instants, the departure instants, and the instants at which the
queue state is observed in each slot. Solid lines show possible departure instants, and
dashed lines show arrival instants. A(t) is the number of new arrivals in slot t. Slots
t—2,...,t+2 are shown.

Z;—] Q;(t) is the number of cells remaining in the inputs at the end of slot ¢, and
we can write

D(t) =N — Zg,(n = Z{ (t+1) (10.3)

i=1

As before, let ¥ (N) denote the saturation throughput from each output port. Note
that y(N) can also be interpreted as the probability of a cell departing from an
output—say, output j. Under stationary conditions, y(N) = E(D) /N, where E(D)
is the stationary average of the number of cells departing from the switch in a
slot. Taking expectations in the first equality of Equation 10.3, dividing by N,
and using the fact that all outputs are statistically identical, we get

Under input saturation, the average number of fresh cell arrivals to an HOL queue
in a slot is equal to the saturation throughput from an input port and thus is y(N).
To obtain y(N) as N — oo, we use the following lemma.
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Lemma 10.2
Let y(00) = limn_ oo ¥ (N). In the steady state, if exactly one cell is switched
from each nonempty HOL queue, then as N - oo, A;(#) has a Poisson
distribution with mean y(co) and is independent of the number in the
queue. B

Let us now consider the evolution equation for Qj(#). From Figure 10.4, we
can write the following.

Q/'(t + 1) = max (0, Q,‘(t) -1 +A,'(t =+ 1))

= Qi(®) + Aj(t +1) — Ag,p)+A;¢+1) (10.5)

where

]t Egee
Y L E o0

Taking expectations on both sides of Equation 10.5 we get
E(Qit + 1) = E(Q;(®) — E(AQ,@HA,.(HD) +EA@E+1)
In steady state, the statistics of Qj(t + 1) and Q;(#) will be identical, and

E(Q;(t+ 1)) = E(Qj(®), leaving us E(Agl-(t)+A,-(t+1)) = E(A(t +1)). Define po
to be the steady state probability that (Qj(z) + Aj(t + 1)) = 0.

Exercise 10.2
Show that in steady state, E(AQ,-(t)+A,-(t+1)) =1—poand pp =1 — y(c0).

Denote the moment-generating function of Q;(t) and A;() by Q;(t,z) and
Aj(z, 1), respectively. They are defined by

Qi(t,2) := E(zQ"(t)) Ai(t,2) = E<zA"(t)>
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To obtain Q;(t,2), we proceed as follows.

Qi(t+1,2) := E(er“’*”)
— E(ZQ’”’_QQ;"”"*NH'I'+"“f“+]})
oo
=po+ 2 Pr(Qj) +Ajt+1) = k) 2!

k=1

1
= po + - (Qi(t,2)A4;(t +1,2) — po)

i We obtain the third equality by separating the term for the case of Qj(t) =
o Ai(t + 1) = 0. The last equality follows from the assumption that the number
of new packets into an HOL queue is independent of the current occupancy. In
steady state, Q;(t,2) = Q;(t+1,2), and we can drop the dependence on £ to write the
moment-generating function as Q;(z). Similarly for A;(t + 1,2). The last equation
then simplifies to

po(l —2)

S 10.6
Aj(z) —z (10.6)

Qj(2) =

Substituting po = 1 — y(oc) and noting that because the number of new arrivals to
an HOL queue in a slot is from a Poisson distribution with mean y(00), A;(z) =
e}'lw)lz—l)., we get

2, (1—=y(0))(1 -2)
5 Qi(z) = ey ©)z-1) — 7

Differentiating with respect to z, putting z = 1, and using Equation 10.4 as
N — oo, we get

y(00)?

= (10.7)
2(1 — y(00))

E(QJ’)

Solving for y(c0) from Equations 10.4 and 10.7, y(o0) =2 — J2 ~ 0.586.
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For an N x N IQ switch under independent, uniform routing and FIFO
buffering at each input, as N — oo, the saturation throughput is 2 — v/2 2 0. 586.

10.1.3 Discussion

From the foregoing results, we see that queue placement in a cell switch must
trade off the simple implementation and lower throughput of the IQ switch and
the complex, possibly infeasible implementation and higher throughput of the OQ
switch. We can say that an N x N OQ switch needs O(N) times more resources
than an N x N 1Q switch and provides approximately twice the capacity. Many
proposals have been made to design a switch whose complexity is a constant
times that of the IQ switch. These designs essentially take one of two approaches.
The maximum number of cells that can be transmitted from an input or to an
output port in a slot is increased. This method necessarily requires that queues
be maintained at both the input and the output (CIOQ switches). The second
approach is to change the FIFO scheduling at the input buffers. In the next section
we consider these design choices for CIOQ switches.

10.2 Combined Input-Output Queueing
10.2.1 The Knockout Principle

A simple way of achieving the throughput characteristics of an OQ switch but
with an implementation complexity that does not grow with N as compared with
that of an IQ switch is to have the capacity to resolve a smaller number of output
conflicts rather than N. Consider a switch that can handle up to L conflicts to an
output port; that is, if, in a slot, # cells arrive for an output port, then if n < L, all
n cells are switched to the respective outputs, whereas if #» > L, then an arbitrary
L of these are switched to the output. The knockout switch takes this approach
and drops the cells that are not switched.

Consider an N x N knockout switch. Assume that the cell arrival to each
input is a Bernoulli process with mean i. Also assume uniform routing. In a slor,
the number of arrivals for a tagged output will be a binomially distributed random
variable with mean & x N = A:

N\ (2 \* 2 Nk
Pr(k cells with destination j) = (L) (~N—) (l - ﬁ)
\ 4 f

For large N we can approximate a binomial random variable by a Poisson random
variable. With this approximation, the average number of dropped packets per

-
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Step 3 is also easy. We solve for C(z) by the quadratic formula:

T++/1—4z
C[z]—-—%q—,

v

But should we choose the + sign or the — sign? Both choices yield a function
that satisfies C(z) = zC(z)? + 1, but only one of the choices is suitable for our
problem. We might choose the + sign on the grounds that positive thinking
is best; but we soon discover that this choice gives C(0) = oo, contrary to
the facts. (The correct function C(z) is supposed to have C(0) = Co=1)
Therefore we conclude that

1— \/’(]—-‘TE

Y~
A

Clz) =
Finally, Step 4. What is [z"] C(z)? The binomial theorem tells us that
[T—4z = ) V/2) (azy* = I---Zl —/2) (Laz)¥,
FHl=aa= fo, LR e TR I
k=0 k=1
hence, using (5.37),

8 — 4z 1/=1/2
-y = - s _4__.:]1\ 1
AR R1ME|

k=1

B -1/2\ (—4z)" Zn) A
a Z( n )T!I . Z—\(n_ n+1’

nz=0 n=0

The number of ways to parenthesize, Cr, is (3") -
We anticipated this result in Chapter 5, when we introduced the sequence  So the convo-
of Catalan numbers (1,1,2,5,14,...) = (Cy,). This sequence arises in dozens ;“tef ‘;*’C“ftrf”“’-
1 0 an
of problems‘ that seem at first to be unrelated to each other [46], because r;?irgcu?:mg e
many situations have a recursive structure that corresponds to the convolution  volution.
recurrence (7.66).
For example, let’s consider the following problem: How many sequences
(ay,az...,az2n) of +1's and —1's have the property that
aj+az;+---—axyy =0

and have all their partial sums
a;, ay+az, ..., Q+az-T---TA2n

nonnegative? There must be n occurrences of +1 and n occurrences of —1.
We can represent this problem graphically by plotting the sequence of partial






10 1 Introduction: Two Examples

Figure 1.5 Markov chain representation of the state of the 2 x 2 input queued switch
at the beginning of every slot. The numbers next to the arrows are the transition
probabilities. The state of the Markov chain is [d!1), d(2)], where d!! is the destination
port of the packet at input /.

the Markov chain. The saturation throughputs for eight values of N are shown
in Table 1.1 after obtaining them using this technique. As shown in the table, the
throughput decreases as N increases. The question then is, does the saturation
throughput converge to some value sufficiently greater than zero, or would it
continue to decrease to zero with increasing N, thereby negating the technological
advantages of the input-queued switch through a significant performance penalty
for large N? The answer to this question is in the asymptotic analysis, discussed

N  Saturation throughput

1 1.0000
2 0.7500
3 0.6825
4 0.6553
5 0.6399
6 0.6302
7 0.6234
8 0.6184

Table 1.1 Saturation throughput of an N x N input-queued switch for N=1,2,--., 8.
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in the cases not covered here, the input queues will be stable if the arrival rate
is less than the saturation throughput of the switch, although this has not been
formally proved for any other case. Specifically, the case of FIFO service of the
HOL queues has not been considered, nor has the case when more than one cell can
be switched from each input or to an output. This leads us to make the following

definition.

Definition 10.2
For a specified distribution of the cell destinations, we say that the arrival process
satisfies the saturation stability property if the input queues are stable whenever
the expectation of the number of arrivals in each slot to each input is less than
the saturation throughput from that in put. [

We use this property in discussing the delays in the switches.

10.1.2 Saturation Throughput of an 1Q Switch

In Chapter 1 we consider a Markov chain model of an input saturated N x N
IQ switch for arbitrary finite N. Recall that the saturation throughput per port
decreases as N increases (see Table 1.1). The numerical values suggest that there
is probably a limiting value of the saturation throughput as N — oo.

Consider what happens in the saturated 1Q switch in each slot. From each
nonempty HOL queue, one cell is transmitted to the output, and a total of D(¢)
cells are transmitted in slot 2. We assume that the cells depart at the end of a slot,
that fresh packets arrive at the beginning of a slot, and that the arrivals in a slot
are available for departure in that slot. Let O(#) denote the total num ber of HOL
packets in the input queues at the end of the slot, after the switching of the packets.
This is shown in Figure 10.4. Because the input queues are saturated, these D(f)
cells are replaced by fresh cells in slot (¢ + 1). Thus into the HOL queues of the
outputs, D(¢) cells arrive in slot (t+1), each independently choosing any of outputs
l,...,N with probability 1/N (i.c., they are uniformly routed). Let A;(z + 1) be
the number of new cells arriving into HOL; inslot #+ 1. A;(t + 1) has a binomial
distribution with mean D(#)/N.

. k D(t) -k
Pr(Ai(t+1) = k) = (D:']) (Ni) (I - Tl)

e e ———
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possible departure instants
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Figure 10.4 The arrival instants, the departure instants, and the instants at which the
queue state is observed in each slot. Solid lines show possible departure instants, and
dashed lines show arrival instants. A(t) is the number of new arrivals in slot t. Slots
t—2,...,t+2 are shown.

Z;—] Q;(t) is the number of cells remaining in the inputs at the end of slot ¢, and
we can write

D(t) =N — Zg,(n = Z{ (t+1) (10.3)

i=1

As before, let ¥ (N) denote the saturation throughput from each output port. Note
that y(N) can also be interpreted as the probability of a cell departing from an
output—say, output j. Under stationary conditions, y(N) = E(D) /N, where E(D)
is the stationary average of the number of cells departing from the switch in a
slot. Taking expectations in the first equality of Equation 10.3, dividing by N,
and using the fact that all outputs are statistically identical, we get

Under input saturation, the average number of fresh cell arrivals to an HOL queue
in a slot is equal to the saturation throughput from an input port and thus is y(N).
To obtain y(N) as N — oo, we use the following lemma.
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Lemma 10.2
Let y(00) = limn_ oo ¥ (N). In the steady state, if exactly one cell is switched
from each nonempty HOL queue, then as N - oo, A;(#) has a Poisson
distribution with mean y(co) and is independent of the number in the
queue. B

Let us now consider the evolution equation for Qj(#). From Figure 10.4, we
can write the following.

Q/'(t + 1) = max (0, Q,‘(t) -1 +A,'(t =+ 1))

= Qi(®) + Aj(t +1) — Ag,p)+A;¢+1) (10.5)

where

]t Egee
Y L E o0

Taking expectations on both sides of Equation 10.5 we get
E(Qit + 1) = E(Q;(®) — E(AQ,@HA,.(HD) +EA@E+1)
In steady state, the statistics of Qj(t + 1) and Q;(#) will be identical, and

E(Q;(t+ 1)) = E(Qj(®), leaving us E(Agl-(t)+A,-(t+1)) = E(A(t +1)). Define po
to be the steady state probability that (Qj(z) + Aj(t + 1)) = 0.

Exercise 10.2
Show that in steady state, E(AQ,-(t)+A,-(t+1)) =1—poand pp =1 — y(c0).

Denote the moment-generating function of Q;(t) and A;() by Q;(t,z) and
Aj(z, 1), respectively. They are defined by

Qi(t,2) := E(zQ"(t)) Ai(t,2) = E<zA"(t)>
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To obtain Q;(t,2), we proceed as follows.

Qi(t+1,2) := E(er“’*”)
— E(ZQ’”’_QQ;"”"*NH'I'+"“f“+]})
oo
=po+ 2 Pr(Qj) +Ajt+1) = k) 2!

k=1

1
= po + - (Qi(t,2)A4;(t +1,2) — po)

i We obtain the third equality by separating the term for the case of Qj(t) =
o Ai(t + 1) = 0. The last equality follows from the assumption that the number
of new packets into an HOL queue is independent of the current occupancy. In
steady state, Q;(t,2) = Q;(t+1,2), and we can drop the dependence on £ to write the
moment-generating function as Q;(z). Similarly for A;(t + 1,2). The last equation
then simplifies to

po(l —2)

S 10.6
Aj(z) —z (10.6)

Qj(2) =

Substituting po = 1 — y(oc) and noting that because the number of new arrivals to
an HOL queue in a slot is from a Poisson distribution with mean y(00), A;(z) =
e}'lw)lz—l)., we get

2, (1—=y(0))(1 -2)
5 Qi(z) = ey ©)z-1) — 7

Differentiating with respect to z, putting z = 1, and using Equation 10.4 as
N — oo, we get

y(00)?

= (10.7)
2(1 — y(00))

E(QJ’)

Solving for y(c0) from Equations 10.4 and 10.7, y(o0) =2 — J2 ~ 0.586.
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For an N x N IQ switch under independent, uniform routing and FIFO
buffering at each input, as N — oo, the saturation throughput is 2 — v/2 2 0. 586.

10.1.3 Discussion

From the foregoing results, we see that queue placement in a cell switch must
trade off the simple implementation and lower throughput of the IQ switch and
the complex, possibly infeasible implementation and higher throughput of the OQ
switch. We can say that an N x N OQ switch needs O(N) times more resources
than an N x N 1Q switch and provides approximately twice the capacity. Many
proposals have been made to design a switch whose complexity is a constant
times that of the IQ switch. These designs essentially take one of two approaches.
The maximum number of cells that can be transmitted from an input or to an
output port in a slot is increased. This method necessarily requires that queues
be maintained at both the input and the output (CIOQ switches). The second
approach is to change the FIFO scheduling at the input buffers. In the next section
we consider these design choices for CIOQ switches.

10.2 Combined Input-Output Queueing
10.2.1 The Knockout Principle

A simple way of achieving the throughput characteristics of an OQ switch but
with an implementation complexity that does not grow with N as compared with
that of an IQ switch is to have the capacity to resolve a smaller number of output
conflicts rather than N. Consider a switch that can handle up to L conflicts to an
output port; that is, if, in a slot, # cells arrive for an output port, then if n < L, all
n cells are switched to the respective outputs, whereas if #» > L, then an arbitrary
L of these are switched to the output. The knockout switch takes this approach
and drops the cells that are not switched.

Consider an N x N knockout switch. Assume that the cell arrival to each
input is a Bernoulli process with mean i. Also assume uniform routing. In a slor,
the number of arrivals for a tagged output will be a binomially distributed random
variable with mean & x N = A:

N\ (2 \* 2 Nk
Pr(k cells with destination j) = (L) (~N—) (l - ﬁ)
\ 4 f

For large N we can approximate a binomial random variable by a Poisson random
variable. With this approximation, the average number of dropped packets per

-
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Step 3 is also easy. We solve for C(z) by the quadratic formula:

T++/1—4z
C[z]—-—%q—,

v

But should we choose the + sign or the — sign? Both choices yield a function
that satisfies C(z) = zC(z)? + 1, but only one of the choices is suitable for our
problem. We might choose the + sign on the grounds that positive thinking
is best; but we soon discover that this choice gives C(0) = oo, contrary to
the facts. (The correct function C(z) is supposed to have C(0) = Co=1)
Therefore we conclude that

1— \/’(]—-‘TE

Y~
A

Clz) =
Finally, Step 4. What is [z"] C(z)? The binomial theorem tells us that
[T—4z = ) V/2) (azy* = I---Zl —/2) (Laz)¥,
FHl=aa= fo, LR e TR I
k=0 k=1
hence, using (5.37),

8 — 4z 1/=1/2
-y = - s _4__.:]1\ 1
AR R1ME|

k=1

B -1/2\ (—4z)" Zn) A
a Z( n )T!I . Z—\(n_ n+1’

nz=0 n=0

The number of ways to parenthesize, Cr, is (3") -
We anticipated this result in Chapter 5, when we introduced the sequence  So the convo-
of Catalan numbers (1,1,2,5,14,...) = (Cy,). This sequence arises in dozens ;“tef ‘;*’C“ftrf”“’-
1 0 an
of problems‘ that seem at first to be unrelated to each other [46], because r;?irgcu?:mg e
many situations have a recursive structure that corresponds to the convolution  volution.
recurrence (7.66).
For example, let’s consider the following problem: How many sequences
(ay,az...,az2n) of +1's and —1's have the property that
aj+az;+---—axyy =0

and have all their partial sums
a;, ay+az, ..., Q+az-T---TA2n

nonnegative? There must be n occurrences of +1 and n occurrences of —1.
We can represent this problem graphically by plotting the sequence of partial
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Figure 1.5 Markov chain representation of the state of the 2 x 2 input queued switch
at the beginning of every slot. The numbers next to the arrows are the transition
probabilities. The state of the Markov chain is [d!1), d(2)], where d!! is the destination
port of the packet at input /.

the Markov chain. The saturation throughputs for eight values of N are shown
in Table 1.1 after obtaining them using this technique. As shown in the table, the
throughput decreases as N increases. The question then is, does the saturation
throughput converge to some value sufficiently greater than zero, or would it
continue to decrease to zero with increasing N, thereby negating the technological
advantages of the input-queued switch through a significant performance penalty
for large N? The answer to this question is in the asymptotic analysis, discussed

N  Saturation throughput

1 1.0000
2 0.7500
3 0.6825
4 0.6553
5 0.6399
6 0.6302
7 0.6234
8 0.6184

Table 1.1 Saturation throughput of an N x N input-queued switch for N=1,2,--., 8.
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in the cases not covered here, the input queues will be stable if the arrival rate
is less than the saturation throughput of the switch, although this has not been
formally proved for any other case. Specifically, the case of FIFO service of the
HOL queues has not been considered, nor has the case when more than one cell can
be switched from each input or to an output. This leads us to make the following

definition.

Definition 10.2
For a specified distribution of the cell destinations, we say that the arrival process
satisfies the saturation stability property if the input queues are stable whenever
the expectation of the number of arrivals in each slot to each input is less than
the saturation throughput from that in put. [

We use this property in discussing the delays in the switches.

10.1.2 Saturation Throughput of an 1Q Switch

In Chapter 1 we consider a Markov chain model of an input saturated N x N
IQ switch for arbitrary finite N. Recall that the saturation throughput per port
decreases as N increases (see Table 1.1). The numerical values suggest that there
is probably a limiting value of the saturation throughput as N — oo.

Consider what happens in the saturated 1Q switch in each slot. From each
nonempty HOL queue, one cell is transmitted to the output, and a total of D(¢)
cells are transmitted in slot 2. We assume that the cells depart at the end of a slot,
that fresh packets arrive at the beginning of a slot, and that the arrivals in a slot
are available for departure in that slot. Let O(#) denote the total num ber of HOL
packets in the input queues at the end of the slot, after the switching of the packets.
This is shown in Figure 10.4. Because the input queues are saturated, these D(f)
cells are replaced by fresh cells in slot (¢ + 1). Thus into the HOL queues of the
outputs, D(¢) cells arrive in slot (t+1), each independently choosing any of outputs
l,...,N with probability 1/N (i.c., they are uniformly routed). Let A;(z + 1) be
the number of new cells arriving into HOL; inslot #+ 1. A;(t + 1) has a binomial
distribution with mean D(#)/N.

. k D(t) -k
Pr(Ai(t+1) = k) = (D:']) (Ni) (I - Tl)

e e ———
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possible departure instants

-\-\- \

B NN

Q(t-1) Q(t+1)

o — — —
/
—y— — —

Figure 10.4 The arrival instants, the departure instants, and the instants at which the
queue state is observed in each slot. Solid lines show possible departure instants, and
dashed lines show arrival instants. A(t) is the number of new arrivals in slot t. Slots
t—2,...,t+2 are shown.

Z;—] Q;(t) is the number of cells remaining in the inputs at the end of slot ¢, and
we can write

D(t) =N — Zg,(n = Z{ (t+1) (10.3)

i=1

As before, let ¥ (N) denote the saturation throughput from each output port. Note
that y(N) can also be interpreted as the probability of a cell departing from an
output—say, output j. Under stationary conditions, y(N) = E(D) /N, where E(D)
is the stationary average of the number of cells departing from the switch in a
slot. Taking expectations in the first equality of Equation 10.3, dividing by N,
and using the fact that all outputs are statistically identical, we get

Under input saturation, the average number of fresh cell arrivals to an HOL queue
in a slot is equal to the saturation throughput from an input port and thus is y(N).
To obtain y(N) as N — oo, we use the following lemma.
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Lemma 10.2
Let y(00) = limn_ oo ¥ (N). In the steady state, if exactly one cell is switched
from each nonempty HOL queue, then as N - oo, A;(#) has a Poisson
distribution with mean y(co) and is independent of the number in the
queue. B

Let us now consider the evolution equation for Qj(#). From Figure 10.4, we
can write the following.

Q/'(t + 1) = max (0, Q,‘(t) -1 +A,'(t =+ 1))

= Qi(®) + Aj(t +1) — Ag,p)+A;¢+1) (10.5)

where

]t Egee
Y L E o0

Taking expectations on both sides of Equation 10.5 we get
E(Qit + 1) = E(Q;(®) — E(AQ,@HA,.(HD) +EA@E+1)
In steady state, the statistics of Qj(t + 1) and Q;(#) will be identical, and

E(Q;(t+ 1)) = E(Qj(®), leaving us E(Agl-(t)+A,-(t+1)) = E(A(t +1)). Define po
to be the steady state probability that (Qj(z) + Aj(t + 1)) = 0.

Exercise 10.2
Show that in steady state, E(AQ,-(t)+A,-(t+1)) =1—poand pp =1 — y(c0).

Denote the moment-generating function of Q;(t) and A;() by Q;(t,z) and
Aj(z, 1), respectively. They are defined by

Qi(t,2) := E(zQ"(t)) Ai(t,2) = E<zA"(t)>
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To obtain Q;(t,2), we proceed as follows.

Qi(t+1,2) := E(er“’*”)
— E(ZQ’”’_QQ;"”"*NH'I'+"“f“+]})
oo
=po+ 2 Pr(Qj) +Ajt+1) = k) 2!

k=1

1
= po + - (Qi(t,2)A4;(t +1,2) — po)

i We obtain the third equality by separating the term for the case of Qj(t) =
o Ai(t + 1) = 0. The last equality follows from the assumption that the number
of new packets into an HOL queue is independent of the current occupancy. In
steady state, Q;(t,2) = Q;(t+1,2), and we can drop the dependence on £ to write the
moment-generating function as Q;(z). Similarly for A;(t + 1,2). The last equation
then simplifies to

po(l —2)

S 10.6
Aj(z) —z (10.6)

Qj(2) =

Substituting po = 1 — y(oc) and noting that because the number of new arrivals to
an HOL queue in a slot is from a Poisson distribution with mean y(00), A;(z) =
e}'lw)lz—l)., we get

2, (1—=y(0))(1 -2)
5 Qi(z) = ey ©)z-1) — 7

Differentiating with respect to z, putting z = 1, and using Equation 10.4 as
N — oo, we get

y(00)?

= (10.7)
2(1 — y(00))

E(QJ’)

Solving for y(c0) from Equations 10.4 and 10.7, y(o0) =2 — J2 ~ 0.586.
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For an N x N IQ switch under independent, uniform routing and FIFO
buffering at each input, as N — oo, the saturation throughput is 2 — v/2 2 0. 586.

10.1.3 Discussion

From the foregoing results, we see that queue placement in a cell switch must
trade off the simple implementation and lower throughput of the IQ switch and
the complex, possibly infeasible implementation and higher throughput of the OQ
switch. We can say that an N x N OQ switch needs O(N) times more resources
than an N x N 1Q switch and provides approximately twice the capacity. Many
proposals have been made to design a switch whose complexity is a constant
times that of the IQ switch. These designs essentially take one of two approaches.
The maximum number of cells that can be transmitted from an input or to an
output port in a slot is increased. This method necessarily requires that queues
be maintained at both the input and the output (CIOQ switches). The second
approach is to change the FIFO scheduling at the input buffers. In the next section
we consider these design choices for CIOQ switches.

10.2 Combined Input-Output Queueing
10.2.1 The Knockout Principle

A simple way of achieving the throughput characteristics of an OQ switch but
with an implementation complexity that does not grow with N as compared with
that of an IQ switch is to have the capacity to resolve a smaller number of output
conflicts rather than N. Consider a switch that can handle up to L conflicts to an
output port; that is, if, in a slot, # cells arrive for an output port, then if n < L, all
n cells are switched to the respective outputs, whereas if #» > L, then an arbitrary
L of these are switched to the output. The knockout switch takes this approach
and drops the cells that are not switched.

Consider an N x N knockout switch. Assume that the cell arrival to each
input is a Bernoulli process with mean i. Also assume uniform routing. In a slor,
the number of arrivals for a tagged output will be a binomially distributed random
variable with mean & x N = A:

N\ (2 \* 2 Nk
Pr(k cells with destination j) = (L) (~N—) (l - ﬁ)
\ 4 f

For large N we can approximate a binomial random variable by a Poisson random
variable. With this approximation, the average number of dropped packets per

-






