Instructions:

- Please write clearly. What I cannot read, I will not grade.
- Show all your work in detail. I give partial credit.
- This exam has 11 pages including the title page. Please check to make sure all pages are included.
- This exam is closed book, closed notes, no calculators.
- Don’t get bogged down on any one question. You will have 50 minutes to complete this exam.

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community.

Signature: __

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vocabulary</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2. Fill in the Blanks</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3. Python Expressions</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>4. Robot Drawing</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5. Find the Error</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6. Leaky Pipes</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7. countUpBy</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8. Average a List</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9. Save Light Values</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bonus Questions</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>
Vocabulary Questions

1. For each of the following vocabulary terms, write a concise 1-2 sentence definition. Be brief, and to the point.

 (a) (3 points) block

 Solution: One or more program statements that share the same level of indentation.

 (b) (3 points) dictionary

 Solution: A mutable compound data type that associates keys with values.

 (c) (3 points) flow of execution

 Solution: The order in which statements in a program are executed. Function calls, return statements, conditionals and loops all modify the standard top to bottom flow of execution.

 (d) (3 points) function

 Solution: A named sequence (block) of statements that performs some useful operation. Functions may or may not take parameters and may or may not produce a result.

 (e) (3 points) recursion

 Solution: recursion - The process of calling the function that is currently executing.

 (f) (3 points) slice

 Solution: A subsequence copied from a sequence specified by a range of indices. The slice operator is: sequence[start:stop].

 (g) (3 points) traverse

 Solution: To move through all elements of a set, performing a similar operation on each element.

2. (4 points) Fill in the blanks:

 Python has several compound data types that we have learned about. A ____________ can be used to store a sequence of characters, while a ____________ can store a sequence of any type of data (but is immutable). A ____________ can also store any type of data, and allows you to change elements within it. A ____________ associates keys to values.

 2/11 Fall 2009
Solution: Python has several compound data types that we have learned about. A string can be used to store a sequence of characters, while a tuple can store a sequence of any type of data (but is immutable). A list can also store any type of data, and allows you to change elements within it. A dictionary associates keys to values.
Code Understanding Questions

3. Python Expressions - For this question, assume the following statements have already been entered and interpreted:

```python
a = [ 10, 32, 42, True, ["Ivy", "Oak", "Fern"], 3.14159, [ 10, 11, 12], 4]
b = a
c = a[0:4]
d = a[4]
d[2] = "Palm"
```

Act like the python interpreter and evaluate the following expressions, writing the value they evaluate to:

(a) (2 points) `a[0]`

```
Solution: 10
```

(b) (2 points) `3+2`

```
Solution: 5
```

(c) (2 points) `len(a)`

```
Solution: 8
```

(d) (2 points) `a[6][10]`

```
Solution: IndexError: list index out of range
```

(e) (2 points) `d`

```
Solution: [ 'Ivy', 'Oak', 'Palm' ]
```

(f) (2 points) `c`

```
Solution: [ 10, 32, 42, True ]
```

(g) (2 points) `a[4][2]`

```
Solution: 'Palm'
```

(h) (2 points) `b[:2]`
<table>
<thead>
<tr>
<th>Question</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $b[-2]$</td>
<td>$[10, 11, 12]$</td>
</tr>
<tr>
<td>(j) $c[-2]$</td>
<td>42</td>
</tr>
<tr>
<td>(k) $a[4] + [1,3,5]$</td>
<td>['Ivy', 'Oak', 'Palm', 1, 3, 5]</td>
</tr>
</tbody>
</table>
4. (9 points) Robot Drawing - Assume `turn90degrees()` has been defined as below so the robot turns right 90° and `nudge(x)` has been defined to move the robot forward x units.

```python
def turn90degrees():
    turnRight(1, 1)

def nudge(x):
    forward(1, x)
```

The following code makes the robot drive the trajectory drawn in the box to the right.

```python
nudge(1)
turn90degrees()
nudge(1)
nudge(2)
```

Draw the robot’s trajectory when the following code is executed. Label the length of each move (nudge) using numbers as in the example above.

```python
def turn90degrees():
    turnRight(1, 1)

def nudge(x):
    forward(1, x)

turns = [2, 6]

for idx in [2, 2, 6, 2, 1]:
    if idx in turns:
        turn90degrees()
    nudge(idx + 1)
```
Solution:

Grading: 1 point for each correct line segment and length. 1 point for each correct turn.
5. (3 points) Find the Error: The following code contains a statement that will cause a runtime error. Circle the line and explain what’s wrong.

- e = "2.718"
- pi = 3.14
- pie = str(pi) + e
- print int(e)
- print int(pi)
- print pie

Solution: Line 4 (print int(e)) contains the error. You cannot convert a string into an integer if it's a floating point number. 1 point for identifying the line, 2 points for explaining what is wrong.

6. (6 points) Leaky Pipes - What is printed by the following function if it is called with an input of 12?

```python
>>> leakyPipes(12)

def leakyPipes(n):
    if (n > 0):
        if (n % 4 == 0):
            print "drip %d" % n
            leakyPipes(n-3)
        if (n % 3 == 0):
            print "drop %d" % n
```

Solution:

drip 12
drop 9
drop 12

2 points for each line.
Code Writing Questions

7. (8 points) Write a function called `countUpBy` that accepts a single integer parameter and uses a while loop to print out a count from that number up to twenty (inclusive) by that number. You may assume that your input will be between one and 20 (inclusive).

```python
>>> countUpBy(5)
5
10
15
20
```

Examples:

```python
>>> countUpBy(7)
7
14
```

Solution:

```python
def countUpBy(n):
    x = n
    while x <= 20:
        print x
        x = x + n
```

Grading: 1 point for correct def line, 2 points for starting at the number, 2 points for the while loop test, 2 points for incrementing correctly, 1 point for correct output (print not return)
8. (8 points) Average a List - Write a function called `average` that accepts a list of numbers (they may be ints or floats). It should **return** the average (mean) value of all the numbers in the list. If the list is empty, it must return `None`.

For example:

```python
>>> result = average([10, 5, 5])
>>> print result
6.6666666
```

Solution:

```python
def average(aList):
    if (len(aList) == 0):
        return None

    count = 0
    sum = 0
    for item in aList:
        sum = sum + item
        count = count + 1
    return sum / float(count)
```

Grading:
1pt - Correct def statement
2pt - Correctly sums list items
1pt - correctly counts list items
2 pts - divides sum by count (1 pt if they don’t convert one of them to a float!)
2 pt - returns None for empty list
9. (10 points) Write a function named `saveLightValues` that accepts the name of a file to open as a string parameter. The function should open the file for writing, and save ten light values from calling the `getLight("center")` function, one per line. Between calls to the `getLight()` function to get light samples, the robot should turn left a small amount (you choose the speed and duration).

Solution:

```python
def saveLightValues( aName):
    myFile = open(aName,"w")
    for i in range(10):
        value = getLight("center")
        turnLeft(1,1)  # or any other speed/duration
        myFile.write( str(value) )
        myFile.write("\n")
    myFile.close()
```

Grading: 1 point for correct header, 1 point for opening file, 1 point for using "write" mode. 2 points for looping 10 times (or repeating the code 10 times!) 1 point for reading light value. 1 point for writing light value (as a string!). 1 point for putting in a newLine. 1 point for turningLeft every time. 1 point for closing the file handle when done.

10. (2 points (bonus)) Bonus Questions:

 (a) What did you name your robot?

 (b) What has been the most difficult topic or concept in this class for you to understand (what should we spend more time on)?