
Evaluating Synchronization Mechanisms I

Toby Bloom
Massachusetts Institute of Technology

Laboratory for Computer Science

A b s t r a c t In recent years, many high-level
synchronization constructs have been proposed. Each
claims to satisfy criteria such as expressive power, ease of
use, and modifiability. Because these terms are so
imprecise, we have no good methods for evaluating how
well these mechanisms actually meet snch requirements.
This paper presents a methodology for performing such an
evaluation. Synchronization problems are categorized
according to some basic properties, and this categorization
is used in formulating more precise definitions of the
criteria mentioned, and in devising techniques for assessing
how well those criteria are met.

1. M o t i v a t i o n

In recent years, much attention has been given to
the development of high-level synchronization meehanislns.
The need for a mechanism that is higher level than
semaphot~es, and easier to use, is widely recognized.
However, the requirements we expect such a mechanism to
meet are not fully understood. Properties such as
expressive power, ease of use, modularity, and modifiability,
are agreed to be important, but these terms are wlgue; how
the 3 . apply to synchronization constructs in particular is
unclear. Because of this lack of clarity, and because our
experience in concurrent programming is so limited, no
standard methods have been established for evaluating
synchronization constructs.

1. This research was supported in part by the Advanced
Research Projects Agency of the Department of Defense,
monitored by the Office of Naval Research under contract
N00014-75-C-0661, and in part by the National Science
Foundation under grant MCS7,1-21892.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0024 $00.75

Currently, the power of new mechanisms is
demonstrated by showing solutions to a number of
standard synchronization problems. The problems selected
to demonstrate the use of any construct are usually those
most easily solved by the mechanism, and those that
illustrate the most significant improvements over other
constructs. Unfortunately, we currently have no way of
selecting a set of problems to be used in evaluating
mechanisms that we know will provide adequate
information for choosing between mechanisms. When
trying to objectively compare constructs, one has no way of
judging which of the standard problems to use as a basis of
comparison. Examining all of them is an impossible task;
there is no way to determine which will provide new
insights or additional information.

It is clear that some well-defined methodology for
evaluating synchronization mechanisms is needed. Because
the properties in which we are interested are so vague, we
can not expect to develop completely objective techniques.
Rather, we will make use of the examples so frequently
cited. Our goal is to determine what makes each example
important, and which properties of a mechanism can be
evaluated by looking at particular example~. In this way,
we can derive a set of examples that includes all of these
properties with a minimum of redundancy; it will then be
possible to tell when an evaluation is complete. If We have
a specific set of examples to use in testing, and a specific
set of characteristics to examine in those examples, our
methods of evaluating and comparing synchronization
constructs will be greatly improved.

In this paper, the requirements synchronization
mechanisms should satisfy have been divided into three
areas: modularity, expressive power, and ease of use. In
Section 2, we discuss the modularity criteria: how shared
resources should be structured, at)d how mechanisms can
support this structure. Section 3 presents a categorization
of synchronization problems ~hat will enable us to select a
set of examples for use in our evaluations. We also use
this categorization when developing methods for measuring
the expressive power and usability of synchronization

24

mechanisms (Section 4). The remainder of the paper
examines specific synchronization constructs and illustrates
how the evaluation techniques described in the previous
sections are applied to actual mechanisms.

2. M o d u l a r i t y R e q u i r e m e n t s

Proper modularizadon of concurrent programs is
essential if the software is to be easily ttnderstandable and
maintainable. This section discusses the modularity
requirements shared ~esources must satisfy and describes a
model for shared resources, hased on abstract data
types[16], that is assumed throughout the remainder of this
paper.

In this model, resources :ire considered to be
objects of abstract types. A resource will therefore have a
set of operations associated with it, and the only way to
access the resottrce will be to invoke one of those
operations. There are two modularity requirements that
should be satisfied by concurrent programs accessing shared
resources. The first follows from the principle that the
definition of an abstraction should be separated from its
use. As applied to shared resources, this principle implies
that the shared resource abstraction should contain the
implementation of the synchronization scheme, as well as
the definitions of the internal structure and operations of
the resource. This encapsulation of synchronization and
resource will allow users of the resource to assume it to be
properly synchronized; no synchronization code need be
located at each point of access to the resource.

The other modularity requirement governs the
structure of the shared resource definition. The module in
which the shared resource is implemented serves two
purposes. First, it defines the abstract behavior of the
resource (by defining the resource operations). This
behavior is independent, of whether the resource will be
accessed concurrently. Second, it provides the
synchronization to control shared access. These two parts
serve different functions and should be separable into two
subsidiary abstractions, the unsynchronized resource, and
the synchronization. The structure of protected resource
objects is thus:

protected resource

resource synchronizer

One of our requirements for synchronization mechanisms is
that they support this structure.

In addition to reducing complexity and aiding in
program design, the use of this structure has other
important effects. For example, in the case of monitors,
use of this structure greatly reduces the chance of deadlock
from nested monitor calls [18]. We discuss the use of this
structure in monitor solutions later.

3. C a t e g o r i z i n g S y n c h r o n i z a t i o n Problems

Synchronization mechanisms serve two main
functions with respect to shared resources. First, they
enforce exclusion of certain processes from the resource
when they will interfere with work already in progress. As
such, these "exclusion constraints" ensure that consistency
is maintained. Second, synchronization mechanisms schedule
access to the resource and allow the specification that
certain processes have priority over others in gaining entry
to the resource. "Priority constraints" are usually concerned
with efficiency rather than correctness criteria.

Synchronization schemes are thus composed of a
set of constraints, each having the form:

if condition then exclude process A
or:

if condition then process A has priori ty over
process B

where the conditions may be any boolean expressions
involving information about the shared resource and the
accessing processes.

Within the two main classes (priority and
exclusion), constraints differ mainly in the kinds of
infornmtion referred to in these conditional clauses..This
information falls into several categories:
1. the access operation requested :

The resource is a data abstraction, so it can only be
accessed through operations of the resource type. In
some synchronization schemes, the constraints depend
on the operation requested. In stating, for instance,
that readers of a data base have priority over writers,
we :ire giving a constraint in terms of the types of
operations requested. In contrast, a strict
first_come_firsLserve ordering uses no information
about the operations requested. We will often refer
to this information as the type of the request.

2. the limes at which reqt,esls were made:
Though it is rarely necessary to know exact limes of
requests, the time of a request relative to other
events is often important. Time information is most
frequently used to determine the order of requests.

3. request parameters:
In many cases, the arguments passed with a request
for resource access are needed to deternfine the order
in which processes should be adnfitted to the
resource. For example, in the disk head scheduler
presented in [13], the order in which access is granted
is determined by the the track mnnber requested.

4. the "synchronization state" of the resource:
Synchronization state includes all state information

25

needed only for synchronization purposes; it would
not be part of the resource state were the resource
not being accessed concurrently. Included in this
category is information about the processes currently
accessing the resource, and the procedures those
processes are executing. An exainple of
synchronization state information frequently used is a
count of the nulnber of processes currently accessing
the resource.

5. the local state of the resource :
Local state includes information that would be
present regardless of whether the resource were being
accessed concurrently or sequentially. It is
information meaningful to the actual unsynchronized
resource abstraction, for example, whether a buffer is
full or empty.

6. history infornmtion:
History information is information about whether a
given event has occurred, such as whether a specific
procedure has been executed. This information type
differs from synchronization state in that it refers to
resource operations that have already completed, as
opposed to those still in progress. It is often
interchangeable, with local state information, since
past events in which we fire interested will most
likely have left some noticeable change in the state of
the resource. It is convenient to treat it as a separate
category, because it may be easier for the
synchronizer to keep track of the history of
operations executed than to obtain the required state
information from the resource.

4. Evaluation Criteria

We have identified two major types of
constraints, and several classes of information that
distinguish different kinds of constraints within the two
major categories. We can now define two basic
requirements that a synchronization mechanism must meet.
First, it must provide a straightforward means of expressing
each type of constraint and using each type of information.
This reqnirement is our measurement of expressive power.
In addition, complex synchronization schemes are composed
of many constraints. Such schemes will be easy to
implement only if each constraint can be implemented
without regard to which other constraints are present in
the overall scheme. It must be easy to combine the
implementations of all the constraints to construct the
solution to the entire synchronization problem. If a
mechanism supports this constraint independence or
additivity property, and satisfies the expressive power
criteria, synchronization schemes will be easy to implement
as well as easy to modify. We lhus consider constraint
independence to be our criterion for ease of use.

4.1 Expressive Power

The first criterion in which we are interested is
whether the mechanism provides straighlforward methods
for expressing priority and exclusion constraints, and
whether one has the ability to express those constraints in
terms of any of the information types described earlier.
One way to test this ability is 1o use the mechanism to
implement solutions to a set of ex;,mples that covers all

information classes. 2 If there is no direct way to use a
certain kind of information, it should become obvious when
an attempt is made to implement a solution requiring it.
By examining how various types .of infor,nation ;ire handled
in each solution, we can draw conclusions about whether
the mechanism can easily access each type of information.

A more general way to measure expressive power
is simply to examine each mechanism and attempt to
determine what features it has that will enable it to deal
with each type of constrainl. For example, monitor queues
are a construct for handling request time information,
while serializer crowds retain synchronization state
information. The mechanisnl must provide some nleans of
manipulating each type of information. The ability to
identify the particular way in which to handle each
information type will also make a mechanism easier to use
because the structure of a solution will be indicated by the
kinds of information referred to in the specification.

4.2 Ease of Use

Given that single constraints are easy to
implement, complex synchronization schemes will be easy to
implement only if they can be decomposed into individual
constraints that can then be realized independently. We
need to be able to break down complex problems into small
parts that can be soh'ed one at a time. If the
implementation of any one constraint is dependent upon
the other constraints present, solutions quickly become
difficult to construct as the number of constraints
increases. Since the implementor niust be aware of the
entire set of constraints, and niake sure that each
constraint is consistent with every olher constraint present,
the complexity of constructing the solution (not the
complexity of the solution itself) increases with the number
of combinations of constraints present. It is therefore far
more difficult to construct a solution than if it were
possible to implement each constraint separately, regardless

2. In the evaluations we performed on several
mechanisms, we used the following set of test cases: the
bounded buffer problem to represent use of local state
infor,mtion, a first come first serve scheme for request
time, a readers_priority database[8] for request type and
synchronization state, the disk scheduler problem and
alarmclock problem[13] to make use of parameters passed,
and the one-slot buffer[7] for history information.

26

of which other constraints were present.

In addition to the difficulty of initially
constructing solutions, if this constraint independence
property is not met, the solutions will be very difficult to
modify. A change in the specificalio,l of one constraint
will necessitate reimplementalion of the entire solution.

One way to lest whether a mechanism allows
independent implementation of constraints is to examine
solutions to two similar synchronization problems. If the
problems share some constr:,ints, but differ in others, then
the common constraints shoukl be similarly implemented in
both solutions. Differences in the way a given constraint is
implemented in two different synchronization problems, or
solutions in which the implementations of each individual
constraint are not even identifiable as separate parts of the
solution, indicate that our independence criterion for
constraints is being violated.

Two readerswriters problems can be used for this
analysis. The readers_priority and writers_priority
examples have the same exclusion constraints, but differ in
priority constraints; hmvever, the constraints in each make
use of the same information types. The extent to which
the exclusion constraint implementations differ in the two
solutions, and the difficulty of modifying the priority
constraint in one to obtain a solution to the other, will
indicate how independent the constraints are.

To be sure that constraint implementations are
independent, we should also check that the implemenlation
of a constraint remains the same when the other
constraints are modified to use different types of
information. (The readers_priority and writers_priority
problems used the same information for priority
constraints.) Still another readers_writers problem could be
used for this purpose. For instance, a
first_come_firstserve scheme has the sa,ne exclusion
constraint, but uses request time information for the
priority constraint. We would expect the implementation
of the exclusion constraint to remain unchanged when a
modification from readers_priority to first come first_serve
is made, although the overall change can be expected to be
more difficult than a change from re;,ders to writers
priority.

It is also possible that usage of two partict,lar
types of information will conflict. In this case, constraint
independence will be violated only in exa,nples using both
types of information. This case is not as serious as general
inability to implement constraints independently, but it is
not as easy to check. Although indications of such
conflicts usually become apparent when analyzing how each
individual type is used, the only complete method of
evaluation seems to be to check ;ill possible pairs of the six
information types. We will see thai a situation in which
two particular constraint types conflict while all others are
independent occurs in the monitor mechanis,n.

5. E v a f u a t i o n o f Exis t ing Mechanisms

The methodology described has been used to
evaluate three existing synehroniz~,tion mechanisms [5].
While it is impossible to present complete evahmtions here,
some examples are given to illustrate the use of the
method. We will also summarize the conclusions drawn
from analyzing the three constructs.

5.1 Pa lh Express ions

In this section we present examples to show how
information about the power and usability of a mechanism
can be derived from examining solutions to a few
synchronization problems , using the methods described.
The path expression solutions given here were presented by
Campbell and Habernlann in [7].

The path expression mechanism permits
synchronization to be specified by stating the set of
allowable orderings of operations that access the resource.
If a request is made for an oper~,fion on the resource, and
that operation does not occur next in any sequence allowed
by the path expression, then the process executing the
operation is blocked until a slate is reached in which that
operation cm,ld occur next. The mechanism provides a set
of operators for specifying the allowable relationships
among operatious on the resource. The version of path
expressions used here is that presented by Campbell and
Habermann in [7]. The following relationships among
operations may be specified: concurrency (denoted by
'!l ~"), selection (" , "), sequencing (" ;"), and repetition
(denoted by the path-end p;,ir). We will m~,ke the
assu,nption that the selection operator always chooses the
process that has been waiting longest. While this
assumption is not made in [7], it is necessary for many
problems, including some that al)pear in that paper.

The path expression mecfianism is very appealing
for several reasons. First, path expressions take a
non-procedural approach to specifying synchronization. As
such, they seem to take umch of the burden of tile
implementation off the user. Second, they are designed
specifically to be t,sed as part of the definition of the
abstract type of the resource. The synchronization is thus
autonmtically associated with the resource, satisfying our
first modularity requirement.

Unfortunately, path expression soh, tions to many
standard synchronization problems are complex and
difficult to understand. The fact that so many versions of
the mechanism exist s3~ggests that the designers have found
some weaknesses and attempted to correct them. In this
section, we will analyze two examples, one to show how
expressive power is evaluated, and one to illustrate analysis
of constraint dependencies. We then summarize
conclusions drawn from a complete evaluation of the
mechanism.

2'7

5.1.1 Express ive Power

The solution to the readerspriority problem, as
given in [7], is shown in Figure 1. This problem states that
readers lm~y enter a resource concurrently, but a writer
excludes ;ill other users. In addition, if both readers and
writers are waiting to access the resource, readers have
priority over writers. (This specification allows writers to
starve.) Thus, this problem has exclusion constraints based
on request type and syn~'hronization state information, and
priority constraints based on request type. The
implementation of the exclusion constraint is
straightforward. In isolation, it would be implemented as:

path { read } , write end

(Its implementation in this solution is somewhat more
complex due to the need for coordination with other paths.
We discuss this in more detail later.)

The realization of the priority constraint in this
solution is less straightforward than that of the exclusion
constraint. Readers gain priority in two ways. First, since
requestreads Inay execute concurrently, but requestwrites
may not, a requestwrite may be blocked indefinitely while
requestreads are allowed to proceed because other
requestreads are already executing. If, in addition, we
assume that when a selection is m~lde, the longest waiting
process will be chosen, readers will also gain priority in the
following way. The first path shown (in Figure 1) allows
only one writeattempt at a time. Therefore, since
requestwrite is invoked from writcattempt, there will be at
most one requestwrite w;titing fit the second path at any
time. All other WRITEs in progress will be blocked at the
first path. However, while a requestwrite or write is in
progress, any number of requestreads may enqueue at the
second path, awaiting their turn to execute. Thus, during
execution of a requestwrite, any number of READs and
WRITEs may have started. The READs will have been
allowed to proceed as far as the second path; no other
WRITEs could have reached that point. Since the
selection operator in the second path will restart the

Figure 1. Readers Priority Solution

path writeattempt end
path { requestread } , requestwrite end
path { read } , (openwrite ; write) end

where

requestwrite = begin openwrite end
writeattempt = begin requestwrite end
requestread = begin read end
R E A D = begin requestread end
WRITE = begin writeattempt; write end

process that has been waiting longest at that path, any
number of requestreads may have priority over the next
requestwrite, regardless of the order of invocation of the
corresponding READs and WRITEs.

The interactions among the paths in this example
are complex; it is not clear from looking at the solution
how each resource operation is affected by the
synchronization. It is therefore difficult to convince oneself
that the solution handles all cases properly. In fact, it
does not produce the same behavior as the readers_priority
exan'lple presented by Courtois, Heylnans, and Parnas[8]. 3
It is obvious thai the priority scheme is implemented in a
rather indirect manner.

Thus, our evaluation of this example shows that
path expressions allow straightforward implementation of
exclusion constraints based on request type and
synchronization state, but do not provide a direct means of
specifying priority.

By examining path expression solutions to
problems that make use of the other categories of
information, we were able to draw the following
co,lclusions about the power of the mech:,nism. The paths
themselves are limited in the kinds of information they can
use. Distinctions can be made on the basis of request type.
Also, given our extra constraint on selection, request
ordering information is accessible (:although additional
"request operations" may be needed). The aotomatic
mutual exclusion among processes named in paths affords a
means of expressing exchtsion constraints, although not of
directly accessing synchronization state information. There
is obviously no way to use parameter values in paths, nor is
local resource state information available. Furthermore, no
direct means of expressing priority constraints is provided.

When paths cannot express the type of constraint
needed, it is still possible to implement the solution. This
is done by creating additional procedures in the resource
module (which we will call synchronization procedures),
and explicitly keeping track of the needed information.
Synchronization is accomplished by calling other procedures
to signal that the apl)ropriate state has been reached.
These procedures are named at crucial points in paths, and
serve as gates, to keep the actual access procedt,res from
executing until the appropriate time. The readers_priority
example used synchronization procedures (requestread,
requestwrite, openread) to maintain priorities. The

3. If a write is in progress, and another WRITE starts,
the second writer can start writeattempt and requestwrite,
and become blocked at the third path. If a reader enters
before the end of the first write, it will be blocked at entry
to the second path by the requestwrite in progress. The
second writer will therefore gain access to the resource
before the reader, though readers should have priority.

28

alarmclock example presented in [11] is another case in
which synchronization procedures are used as gates.

Thus, extra synchronization procedures are needed
to handle request order, local stale, and parameter
information. The use of these extra procedures adds a
great deal of interaction between procedures and paths, and
blurs the distinction between resource implementation and
synchronization implementation. When synchronization
procedures are needed, the implementor is forced to design
the resource and synchronization together, making the task
more complex. The implementation becomes more difficult
to understand because no clear distinction exists between
operations to access the resource and operations to
synchronize it. Our modularity requirement that resource
and synchronization should be separated stems from the
need to avoid this complexity. Thus, the mechanism does
not adequately support our second ntoduhtrity requirement.
The use of synchronization procedures also detracts from
the non-procedural approach of the nlechanism.

It is interesting to note the correspondence
between weaknesses illustrated through use of our
evaluation methodology, and those that the mechanism
designers have attempted to correct in later versions of the
mechanism. In the second version of path expressions[lit,
a priority operator was added, its was it conditional
operator that allowed use of resource stale information and
synchronization stale information in paths. The version
presented in [10] introduced a nunleric operator that
improved explicit use of synchronization state information,
as well as history information. Finally, Andler[2] has
introduced i)redicales and state variables for use in paths.
This version comes closest to satisfying our requirements,
although synchronization procedures are still needed in
some examples. We thus have evidence that the
weaknesses revealed by this method of analysis correspond
to some extent with tllose found in other evaluations. The
advantage here is that we could immediately identify
several weaknesses and avoid the many iterations th:~t take
place to correct the problems found from analysis of
examples one at a time.

5.1.2 Ease of Use

The other property that must be examined,
according to our methodology, is the additivity property of
constraints. The use of synchronization procedures has a
great impact ill this area as well. Because of the
interactions between synchronization procedures and paths,
it is difficult to differentiate the implementations of various
constraints. As stated earlier, the exclusion constraint for
the readers_writers problems, when implemented in
isolation, is:

path { read } , write end

In the readers_priority solution [Figure 1], the openread
procedure, which is part of the priority constraint

implementation, is in the path implementing tile exclusion
constraint. The openread operation is invoked from within
the requestread operation named ill the second path and
serves to coordinate the exclusion constraint with the
priority constraint. Thus, if the exclusion constraint were
already written and we wanted to add the priority
constraint, we would need to determine how the
implementation of the new constraint interacted with the
old and add the appropriate procedures to coordinate them.
The constraints are therefore not independent. This
conclusion is further supported by a comparison of the
readers_priority sohttion with a writerspriority solution
(Figure 2). The path implementing the exclusion constraint
is different in the writers_priority solution. Furthermore,
to modify a readers_priority solution to writers_priority
invoh'es changing every synchronization procedure and
every path, even though the exclusion constraints are
unchanged, and the priority constraints make use of the
same kinds of information. A modification to one
constraint invoh'es changing lhe entire solution.

5.2 Monitors and Serializers

Similar analyses of monitors [13] and serializers [3]
yielded very different results from that of path expressions.
We summarize the results of those evaluations in this
section; more detailed explanations of the application of our
evahlation techniques to these constructs can be found in
15].

Monitors allow access to ;ill of the information
types described: the condition queue construct is obviously
useful for maintaining request type and request time
information; priority queues provide a means for using most
needed iuformation from arguments. Synchronization state,
as well as any other needed information, must be explicitly
kept by the user as local data of the monitor. The ways in
which the information must be handled are, in general,
direct and easy to understand. We also found that
constraints were independent in most cases; the difficulty in
making modifications corresponded to the extent of the
change desired. One exception to the constraint

Figure 2. Writers Priority Solution

path readatten~pt end
path requestread , { requestwrite } end
path { openread ; read } , write end

where

readattempt = begin requestread end
requestread = begin openread end
requestwrite = begin write end
READ = begin readattempt ; read end
WRITE = begin requestwrite end

29

independence property is due to the explicit signal
mechanism. Because'of the use of explicit signals, a total
ordering of processes must be defined by the priority
constr;,ints; thus, an exclusion constraint cannot be
implemented without priority constraints. The
implementor must decide in advance the order in which
waiting processes will be signalled.

The other case in which constraint independence
is violated is due to a conflict between two particular
information types. The monitor mechanism uses queues to
maintain both request type and request time information.
Request type dislincrions are made by placing processes
with different types on separate queues, thus allowing them
to be handled differently. Request ordering is maintained
by placing the processes to be ordered on the same queue.
Thus, a problem using request type information as well as
request order requires that processes be placed on separate
queues as well as the same queue. These two information
types therefore conflict. The problem is solved by
maintaining two stages of queuing; processes are first
enqueued on a single queue, and, when they reach the head
of that queue, separated onto distinct queues based on
request type. Because the interference between constraints
occurs only in this limited case, and since a standard
solution is available, the problem is not serious. It is,
however, an illustration of interaction among constraints in
a synchronization scheme.

Monitors do not directly support the
modularization suggested in Section 2. While the
synchronization is located with the resource, rather than
with users of the resource, the mechanism does not
encourage separation of the resource implementation from
the synchronization. In many examples shown in [13], the
resource and the synchronizaiton data are both considered

~to be local data o f the monitor, and no distinctions are
made in the way each is accessed. Monitors do, however,
allow the proper modularization, and a standard method
for properly structuring shared resources is easily
developed. Such a structure consists-,of~hree modules: a

shared :resource ,nodule, a resource, and a monitor. Shared
resource objects contain two parts: a resource object and a
monitor object. The operations of the shared resource
invoke monitor operations before and after each resource
operation; users have access only to the shared resource.
Overall, this method of using monitors satisfies our
modularity requirements, but is totally dependent on
implementors properly using the mechanism.

This structure significantly reduces the problem of
nested monitor calls [18]. The nested monitor call problem
results when an operation in one monflor is always invoked
from an operation within another monitor. If the. second
monitor waits, a deadlock will result because the second
monitor is released by the wait, but the calling monitor is
not. Therefore, no other process can enter the higher-level
monitor to gain entry to the lower-level one and signal the
waiting process. The higher-level monitor thus waits

forever.

Such a situation is likely to arise when resources
are hierarchically structured, ;rod monitors are used at
several levels, if the resource oper;Jtions ;ire the monitor
operations. When shared resources are structured as
described above, the mo,fitor is rele;ised before the resource
operation is invoked.. Thus, even if monitors are used to
protect several different levels in a hierarchically structured
resource, each monitor is released before the lower level
operation is called. Therefore, no deadlock will result.
Deadlocks can, of course, still arise if resource operations
are invoked from within monitor operations.

The serializer mechanism was proposed by
Atkinson and Hewitt[3] to improve upon the modularity of
monitors, and to enhance verifiability and ease of use by
inclusion of an automatic signalling construct to replace
monitors' explicit signalling mechanism.

The way in which the seri;dizer mechanism
developed [4] illustrates the need for defining the
requirements synchronization condtructs shottkl meet. The
monitor example in which weaknesses in modularity were
perceived was the readers_writers problem. While the first
version of serializers successfidly improved modularity, it
had several deficiencies in expressive power. It had
essentially been created around the readerswriters
problems, and so included data strt, ctures for handling
request type, request time, ~n{I synchronization state
information, but could not easily handle resource state,
arguments passed to requests, or history information. Local
variables and priority queues had to be added later. This
situation emphasizes the need for a clear definition of the
types of problems synchronization mechanisms should be
able to handle.

With respect to our expressive power criteria,
serializers are similar to monitors. Each of the information
types is accessible. Serializers provide an additional data
structure for maintaining synchronizaticm state information

crowds. Crowds maintain information about processes
currently accessing the resource in much the salne way
monitor conditions and serializer queues maiutain
inform;ition about processes waiting to enter the resource.
This eliminates the need for explicitly keeping counts, as
required in monitors. Because counts are not very difficult
to maintain, the advantages of the additional mechanism
are unclear.

The automatic signals of serializers have an
unexpected benefit: they separate the means of using
request time and request type infor,nation. In monitor
solutions, as menlioned earlier, these two information types
interfere with each other because both require queues.
Serializers allow processes waiting for different conditions
to be enqueued on the same queve. Request order is still
maintained by enqueuing the requests to be ordered on a
single queue; different request types on a qt,eue can be

30

distinguished by differences in the conditions for which
enqueued processes are waiting. Of course, this extra
mechanism also comes at the expense of efficiency.

The other substanlial benefit of serializers is the
improved modul~,rily. Serializers provide, as part of the
mechanism, the means for slructuring resources in the
melhod st,ggesled for monitors. Conceptually, the serializer
surrounds the unsynchronized resource. The serializer and
resource modules can be implemcnled indepeodently, but
the serializer object conlains the resource. In addition,
serializers provide a way of leaving control of the serializer
while resource accesses are being perfor,ned. The
"join_.crowd" operation not only places the invoking process
in a crowd, it releases control of the serializer, making it
available to other processes. The "leave_crowd" operation
reenters the serializer. This structure thus avoids the
"nested monitor call" problem while providing a structure
for automaticldly associating the synchronization with the
resource. If lhe resource is created inside a serializer, users
can only access the resource by going through the
serializer. In monitor solutions, if lhe resource is inside the
monitor, no concurrency is possible, and deadlocks are
likely. If the resource is oulside the monitor, deadlocks are
avoided, but it is up to the implementor to guarantee
protection by properly programming the extra shared
resource module. Thus, serializers provide nmre mechanism
than do monitors, at more cost, and a decision must be
made as Io which is more appropriate for given situations.

6. C o n c l u s i o n s

This paper has presented a method for evaluating
synchronization mechanisms to determine how well they
satisfy criteria such as expressive power, ease of use and
modifiability. We have shown that by identifying the kinds
of problems for which these mechanisms will be used, and
carefully defining the properties in which we are interested,
it is possible to develop a systematic method for assessing a
construct's adherence to these requirements. Our
evaluations of existing constructs show that the techniques
described here have not only produced results that concur
with our intuitive judgements about the mechanisms
(drawn from long periods of experimenting and ad hoe
testing), but have also provided additional information
about weaknesses in mechanisms that allow us to predict
which problems will be difficult to solve using a given
mechanism. Thus, the information provided is important
both to the designers of a mechanism, and to anyone
needing to compare several mechanisms or select one for a
given application.

Our analysis thus far has been limited to
synchronization constructs for a shared resource model.
We have not looked extensively at message-passing models,
or more recent mechanisms, such as guarded commands[19]
and the mechanism proposed by Hoare in "Communicating
Sequential Processes"['20], which may be used for many of
the same synchronization problems. Since these and similar

constructs will probably be used extensively in distributed
systems, it is important to be able to evaluate and compare
them. The techniques presented in this paper may prove
useful in these evaluations.

A c k n o w l e d g e m e n t s

I would like to thank Barbara Liskov for her assistance in
developing the ideas presented in this paper. My numerous
discussions with Craig Schaffert and Russell Atkinson were
also extremely helpful. Timothy Anderson, Gene Stark,
Maurice Herlihy and Dean Brock provided many useful
comments on earlier drafts of the paper.

R e f e r e n c e s

1. Andler, S., "Synchronization Primitives and the
Verification of Concurrent Programs", Dept. of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pa., May
1977.

2. Andler, S., Private communication, May, 1978.

3. Atkinson, R., and C. Hewitt, "Synchronization and
Proof Techniques for Serializers", IEEE Transactions on
Software Engineering, (5, 1), Jan. 1979.

4. Atkinson, R., Private communication.

5. Bloom, T., "Synchronization Mechanisms for Modular
Programming Languages", TR 211, Laboratory for
Computer Science, M.I.T., Cambridge, Mass., Jan. 1979.

6. Brinch Hansen, Per, Operating Systems Principles,
Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1973.

7. Campbell, R.H., and A.N. Habermann, "The
Specification of Process Synchronization by Path
Expressions", Lecture Notes in Computer Science 16,
Springer-Verlag, 1974.

8. Courtois, P.J., F. Heymans, and D.L.Parnas, "Concurrent
Control with Readers' and Writers", Comm. ACM 14,
10 (Oct 1971), 667-668.

9. Dijkstra, E.W., "Cooperating Sequential Processes",
Programming Languages. (F. Oenuys, ed.), Academic Press,
N.Y. 1968.

10, Flon, L. and A.N. Habermann, "Toward the
Construction of Verifiable Software Systems", Proceedings
of the Conference on Data Abstraction, Definition, and
Structure, Sigplan Notices (8, 2) 1976.

11. Habermann, A.N., "Path Expressions", Dept. of
Computer Science, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, June 1975.

12. Haddon, B.K., "Nested Monitor Calls", Operating
Systems Review (11,10), Oct. 1977.

13. Hoare, C.A.R., "Monitors: An Operating System
Structuring Concept", Comm. ACM (17,10) Oct. 74,
549-557.

14. Howard, J. H., "Signalling in Monitors", Proceedings of
the Second International Conference on Software
Engineering, 1976, 47-52.

15. Laventhal, M.S., "Synthesis of Synchronization Code
for Data Abstractions", TR-203, Laboratory for Computer
Science, M.I.T., Cambridge, Mass., June 1978.

16. Liskov, B.H., Snyder,A., Atkinson, g., Schaffert, C.,
"Abstraction Mechanisms in CLU", Comm. ACM (20, 8),
August 1977, 564-576.

17. Liskov, B.H., "An Introduction to CLU", Computation
Structures Group Memo 136, Laboratory for Computer
Science,M.I.T., Cambridge, Mass., Feb. 1976.

18. Lister, A., "The Problem of Nested Monitor Calls",
Operating Systems Review (11,2), July 1977.

19. Dijkstra, E.W., "Guarded Commands, Noadeterminacy,
and Formal Derivation of Programs", Comm. ACM 18, 8
(August 1975), 453-457.

20. Hoare, C.A.R., "Communicating Sequential Processes",
Comm. ACM (21, 8) August 78, 666-677.

32

