

Animation in the Interface

2

Reading assignment:
This section based on 2 papers

 Bay-Wei Chang, David Ungar, “Animation: From Cartoons to
the User Interface”, Proceedings of UIST’ 93, pp.45-55.

 http://www.acm.org/pubs/articles/proceedings/uist/168642/p45-chang/p45-chang.pdf

 Scott E. Hudson, John T. Stasko, “Animation Support in a User
Interface Toolkit: Flexible, Robust and Reusable Abstractions”,
Proceedings of UIST ‘93, pp.57-67.

 http://www.acm.org/pubs/articles/proceedings/uist/168642/p57-hudson/p57-hudson.pdf

 Good related paper: John Lasseter, “Principles of traditional
animation applied to 3D computer animation”, Proceedings of
SIGGRAPH ‘87, pp. 35 - 44

3

Animation is of increasing
interest	

 Perceptual advantages
 Just recently had enough spare horsepower (circa Win98)
 Now seeing this in the mainstream (Vista, MacOS X)

4

Why animation?

 Gives a feeling of reality and liveness
 “animation” = “bring to life”
 make inanimate object animate

5

Why animation?

 Provides visual continuity (and other effects) enhancing
perception
 particularly perception of change

 hard to follow things that just flash into & out of
existence

 real world doesn’t act this way

6

Why Animation?

 Can also be used to direct attention
 movement draws attention
 strong evolutionary reasons

 therein lies a danger
 overuse tends to demand too much attention

 e.g., the dreaded paper clip

7

Why Animation?

 Used sparingly and understandingly, animation can
enhance the interface

 Draw attention to important details
 Provide a sense of realism
 Provide important affordances and feedback to user

actions

8

Three principles from traditional
animation

 Not mutually exclusive:
 Solidity

 make objects appear to be solid, have mass
 Exaggeration

 exaggerate certain physical actions to enhance perception
 paradoxically, increases realism (liveness) by being less

literal
 Reinforcement

 effects to drive home feeling of reality...often more subtle
than the above

 We’ll discuss a set of techniques that build on these... each
technique may draw from multiple principles

9

Specific techniques drawn from
these principles

 Solid drawing
 Want objects to appear solid and appear to have

mass
 Solid (filled) drawing

 now common place

10

Specific techniques drawn from
these principles

 No teleportation
 objects must come from somewhere

 not just “pop into existence”

 nothing in the real world does this
(things with mass can’t do this)

 E.g., OS X Dock
 (new windows still

materialize though)

11

Specific techniques drawn from
these principles

 Motion blur
 if objects move more than their own length (some

say 1/2 length) in one frame, motion blur should be
used

 matches real world perception of solid objects
 makes movement look smoother
 doesn’t need to be realistic

12

Specific techniques drawn from
these principles

 Squash and stretch
 Cartoon objects are typically designed to look

“squishy”
 When they stop, hit something, land, they tend to

squash
 like water balloon
 compress in direction of travel

13

Specific techniques drawn from
these principles

 Squash and stretch
 Also stretch when they accelerate

 opposite direction

 Basically an approximation of inertia + conservation of
volume (area)

14

Specific techniques drawn from
these principles

 Squash and stretch
 Conveys solidity
 Although S&S makes things look “squishy” they

reinforce solidity because they show mass
 (This is tends to be exaggerated)

15

Specific techniques drawn from
these principles

 Follow through (& secondary action)
 Emphasize termination of an action

 Solid objects don’t just stop, they continue parts
of the motion
 e.g., clothes keep moving, body parts keep moving

 Reinforces that object has mass via inertia
 (also tends to be exaggerated)

16

Example of
Follow Through

 Notice feather
lags behind
character

 Also S&S here

 From: Thomas & Johnston
“The Illusion of Life: Disney
Animation”, Hyperion, 1981

17

Specific techniques drawn from
these principles

 Anticipation
 Example of exaggeration in the interface
 small counter movement just prior to the main

movement
 this sets our attention on the object where the action

is (or will be)
 Contrast to follow-through (which is about

termination of movement)... anticipation is about the
start of movement

18

Specific techniques drawn from
these principles

 Slow-in / Slow-out
 Movement between two points starts slow, is fast in the

middle, and ends slow
 Two effects here

 objects with mass must accelerate... thus reinforces solidity
 interesting parts typically @ ends

 tweaking perception to draw attention to most salient aspects
of motion from a UI perspective

19

Specific techniques drawn from
these principles

 Movement in arcs
 Subtle reinforcement effect
 Objects in the real world rarely move in a straight line
 Animate objects to move in gently curving paths, not

straight lines
 Why?

 Movements by animate objects are in arcs (due to
mechanics of joints)

 Most movements in gravity also in arcs

20

Recap

 Appearance of mass
 solidity & conservation of volume
 several ways to show inertia

 Tweak perception
 direct attention to things that count
 time on conceptually important parts

 Caricature of reality

21

Examples From Video

22

Reminder

 Animation can bring otherwise boring things to
life, but…

 Its not a uniformly good thing
 demands a lot of attention
 can take time

 Needs to be used wisely (and probably sparingly)

23

Making animation happen in a
toolkit

 Paper describes model in subArctic (and
predecessor)
 high to middle level model
 robust to timing issues

 Primary abstraction: transition
 models movement over time

 arbitrary space of values (eg, color)
 screen space is most common

24

Transition consists of

 Reference to obj being animated
 passage of time modeled as events

 Time interval
 period of time animation occurs

 Trajectory
 path taken through value space
 timing of changes through values

25

Trajectory has two parts

 Curve
 set of values we pass through
 typically in 2D space, but could be in any space of values

(e.g., font size)
 Pacing function

 mapping from time interval (0…1) to “parameter space”
of curve (0…1)

 determines pacing along curve
 e.g., slow-in / slow-out

26

Mapping from time to value

 Time normalized with respect to animation interval (0...1)
 Normalized time is transformed by pacing function (0…1)
 Paced value is then fed to curve function to get final value

27

To get a movement

 Create and schedule a transition
 several predefined types (i.e., linear)
 scheduling can be done absolute

 start stop at the following wall clock times
 or relative

 D seconds from now
 D seconds from start / end of that

28

System action

 Transition will deliver time as input using animatable
interface
 transition_start()
 transition_step()
 transition_end()

 Each delivers:
 trajectory object, relative time & value

29

Transition steps

 Steps represent intervals of time, not points in time
 deliver start and end times & values

 Typical OS can’t deliver uniform time intervals
 Number of steps (delivery rate) is not fixed in advance

(animation system sends as many as it can)

 system delivers as many as it can

30

Recap

 Transition
 Object to animate
 Time interval to work over

 Time (0…1)
 Trajectory to pass through

 Pacing function (0…1) (0… 1)
 Curve (0...1) Value

Animation in Swing
 Unfortunately, no nice API custom built for animation
 Animation usually cobbled together using a grab bag of tricks

 Separate thread to update positions or other attributes of animated
components

 Custom repaint code

 Graphical trickery

 Understanding/using the Swing threading model

 (Depending on what you want to do...)

31

Good Animation Examples
 Excellent book: Swing Hacks, Marinacci and Adamson, O’Reilly Press

 Hack #8: Animated transitions between tabs

 Hack #18: Animated fade-ins of JList selections

 Hack #42: Animated dissolving JFrames

 Plus several others
 Most involve:

 Subclassing existing components to override their painting behavior (overriding
paintComponent() for example)

 Capturing on-screen regions in an Image, and then:
 Fiddle with the image

 Blit it to the screen
 Lather, rinse, repeat as necessary to do a transition

 Simply using a thread to update existing properties on normal components

32

Using a Thread to Update
Normal Component Properties
 If you want to do simple animation (just move a component on-screen, or

change its size), you can do this pretty easily
 No need for crazy custom paint code or imaging

 Figure out the two states you want to change between
 Example: location is currently (0, 0); want to get to (100, 100)

 Figure out how often you want to do updates, and how long the total
transition should take
 Example, want the entire move to happen in .5 seconds; would like .1 seconds

between updates, so ideally 5 “frames” in the animation

 Create a thread that sleeps for the interval, wakes up, and does the update

33

Threading and Swing
 Caution!

 You cannot (should not) update or read any Swing property from a thread
other than a Swing thread

 Example: ok to update component properties in an event handler, as that code
is running in the Swing event dispatch thread

 Updating outside a Swing thread can yield unpredictable results

 See: http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

34

How to Run Code in the Swing
Event Dispatch Thread?
 javax.swing.SwingUtilities

 invokeLater(Runnable r) -- queue up a runnable to execute on the Swing event
dispatch thread at some later time

 invokeAndWait(Runnable r) -- caution: may lead to deadlock!

 Useful for one-off updates to Swing state

 javax.swing.Timer
 Fires one or more actions after a specified delay
 Calls out to ActionListeners, whose code executes on the event dispatch

thread

35

SwingUtilities.invokeLater
Example

SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 someComponent.setLocation(50, 50);

 }

});

 Take care -- don’t loop in run() or you’ll tie up the event dispatch thread

36

SwingUtilities.Timer Example
public final static int TENTH_OF_A_SECOND = 100;

public int numIterations = 0;

timer = new Timer(TENTH_OF_A_SECOND, new ActionListener() {

 public void actionPerformed(ActionEvent ev) {

 if (numIterations++ >= 5) {

 timer.stop();

 } else {

 someComponent.setLocation(startX + numIterations * (endX - startX)/5,

 startY + numIterations * (endY - startY)/5);

 }

 }

 });

timer.start();

 (Be sure to distinguish from non-Swing java.util.Timers, which aren’t smart with respect to the event
dispatch thread)

37

Gotchas
 Don’t forget that some updates may conflict with other ongoing processes

in Swing
 Example:

 Changing a component’s layout may not “take” if you’re using a LayoutManager
in the parent of that component

38

39

