CS6505 Homework 6. Due Fri, Mar 5th

1. Given a function $f:[0,1]^{n} \rightarrow \mathbb{R}$ which can be computed in polynomial time, show that the problem of determining whether $\exists x_{1} \ldots x_{n}$ such that $f\left(x_{1}, \ldots, x_{n}\right)>0$ is NP-complete.
2. You are given two multisets X and Y of integers. You can move any subset of numbers from X to Y and any subset of numbers from Y to X. Show that determining whether there is such a re-arrangement for which there exists an integer α such that

$$
\sum_{x \in X} \sum_{y \in Y}(x, y)=\alpha(|Y|,|X|)
$$

is NP-complete.
3. Given a graph $G=(V, E)$, and a number k, the boundeddegree spanning tree problem is to find a spanning tree with the property that the degree of every vertex in the tree is at most k. Show that the decision version of bounded-degree spanning tree is NP-complete.
4. For a graph $G(V, E)$, and a subset of vertices S, the density of the subgraph induced by S is the ratio of the number of edges with both endpoints in S to the number of pairs of vertices in S. Given a graph $G=(V, E)$, an integer k and a number δ between 0 and 1 , show that the problem of determining whether the graph has a subgraph with at least k vertices and density at least δ is NP-complete.

