
6505 HW9: Matching and Flows

1. Consider the following greedy algorithm for finding a maximum matching: Start
with an arbitrary edge as the initial matching. Find another edge that does not
have a vertex in common with the current matching. If one exists, add it to the
current matching. Repeat till no more edges can be added.

(a) What is the running time of this algorithm on a graph with n vertices and m

edges? [5pt]

(b) Give an example of a graph where the algorithm does not find the maximum
matching. [5pt]

(c) Show that the matching found by the algorithm always has at least half as
many edges as a maximum matching. [15pt]

(d) Now consider a similar algorithm for finding a maximum weight matching
in an edge-weighted graph: Greedily add the heaviest edge possible to the
current matching; stop when no further edge can be added. Show that this
algorithm finds a matching whose weight is at least half the optimum. [bonus]

2. Let G be a directed graph with two special vertices s and t. Any two directed
paths from s to t are called vertex-disjoint if they do not share any vertices other
than s and t. Prove that the maximum number of directed vertex-disjoint paths
from s to t is equal to the minimum number of vertices whose removal ensures that
there are no directed paths from s to t. [25]

3. Let G be a directed graph with capacities on its edges and two special vertices s

and t. The capacity of a directed path from s to t is the smallest of the capacities
of edges on the path. Give an efficient algorithm to find a path from s to t of
maximum possible capacity. [25pt]

4. Let P range over the set of s − t paths for two vertices s, t of a given undirected
graph. Let C range over cuts that separate s and t. Then show that

max
P

min
e∈P

ce = min
C

max
e∈C

ce.

Here ce is the capacity of edge e. [25pt]

1


