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1 Evaluating polynomials at many points

Suppose that we want to evaluate a polynomial A(x) = a0 + a1x+ · · ·+anxn at many points – say
n points in all. If we were just evaluating A at one point, say x0, then we can naively perform the
multiplication in O(n2) multiplications, but divide-and-conquer algorithms should make us think
that we can do better. First, we can rewrite our computation of A as

A (x) = a0 + x(a1 + x (a2 + x (· · ·+ xan)))

This is known as Horner’s Rule : each coefficient ai is associated with a single multiplication
with x. So calculating A can be done in n multiplications for a single value of x. If we want to use
this method to evaluate, say, n points, then we need O

(
n2

)
multiplications.

Can we do better than this? With divide-and-conquer methods, we would want to find some way
to eliminate redundant multiplications. If the xj are chosen randomly, it seems like we will have
no hope for overlapping or weeding out our multiplications. What if we chose our xj cleverly so
that a multiplication for one gives us the same answer for some other xi? This is at the heart of
the Fast Fourier Transform : we will choose our xj so that we can cut out multiplications.

Suppose we choose xj = −xi. Then all of the even monomials are the same, and the odd monomials
have opposite sign. In other words, a2kx

2k = a2k(−x)2k and a2k+1x
2k+1 = −a2k+1(−x)2k+1 for

0 ≤ k ≤ n
2 . There is a set of numbers that have this property. In complex numbers, we have n

solutions to the equation xn = 1, and these solutions are known as the nth roots of unity. These
are denoted as 1, ω, ω2, ω3, . . . , ωn−1, where ω = e

2Πi
n .

There are some special properties of the nth roots of unity that we can see right away. For example,
if n is even and xn = 1, then (−x)n = 1. How do we find −x? If n is even, then we have ω

n
2 = −1.

So if x = ωk, then we know that ωk+n
2 = x ∗ −1 = −x.

Now let’s take a look at our polynomial A(x) again. Let’s examine A (ω) and A(-ω):

A (ω) = a0 + a1ω + a2ω
2 + a3ω

3 + . . .

A
(
ω

n
2
+1

)
= A (−ω) = a0 − a1ω + a2ω

2 − a3ω
3 + . . .

This looks like something that can be tackled with divide-and-conquer techniques. All of the
even-exponent monomials, such as a0, a2ω

2, a4 ω4, and so on, are the same in A (ω) and A (−ω),
while all of the odd-exponent monomials, such as a1, a3ω

3, a5ω
5, and so on, are of the opposite sign

in A(ω) and A(−ω).So now we can split up A into two polynomials of even and odd degree, say
A0 and A1, as follows:
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A (ω) = A0

(
ω2

)
+ ωA1

(
ω2

)
A0 (ω) = a0 + a2ω + a4ω

2 + · · ·+ adω
d
2

A1 (ω) = a1 + a3ω + a5ω
2 + · · ·+ ad−1ω

d−1
2

So what has happened? We have broken the original polynomial A into two smaller polynomials
A0 and A1 of degree d

2 . How many distinct nth roots of unity (ωk) do we need? We don’t need
to calculate all n - since we’re squaring them, we only need n

2 of them. So our original problem
has now been halved: we originally were evaluating A, which has degree d, at n points, and now
we’re evaluating two polynomials A0 and A1 that are of degree d

2 at n
2 points. So our recurrence

for evaluating A will involve two variables: n and d. If n = d, then we have:

T (n) = 2T
(n

2

)
+ O (n)

Then we can evaluate A over n points in time O(n log n). Now what if n 6= d? If d = 1, then all
polynomials are of degree 1 and it just takes O(n) time to evaluate them. Otherwise, we have

T (n, d) = 2T

(
n

2
,
d

2

)
+ O (n)

From Horner’s Rule, we also have T (1, d) = O(d) (i.e., we’re evaluating one point of degree k).
Then we can derive T (n, d) = O(d log n). Likewise, if the degree d is larger, then we could derive
a running time of O(n log d).

2 Equivalence between function values and coefficients

So we can go from values of the polynomial, say A (1) , A (ω) , A
(
ω2

)
, . . . , A

(
ωn−1

)
, to the

coefficients a0, a1, . . . , an−1 of A (so we are assuming that d = n)? If we want to calculate all of
A’s values, we could represent them in matrix form as follows:


A(1)
A(ω)

...
A(ωn−1)

 =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)




a0

a1

a2
...

an−1


We can write the nxn matrix of ω values as M (ω). It is also known as the Vandermonde matrix .

How do we solve for the coefficients of A? If we have to calculate an inverse naively, then this
calculation could take a long time to compute – O

(
n3

)
. However, our nxn matrix with the values

of ωk has some special properties. First, note that

ωn − 1 = (ω − 1)
(
ωn−1 + ωn−2 + · · ·+ ω + 1

)
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If we take ω 6= 1, then we have ωn−1 + ωn−2 + · · · + ω + 1 = ωn−1
ω−1 = 0 because we know that ω

is an nth root of unity (and so ωn = 1). This helps when we generate M(ω)−1, since the identity
matrix I = M (ω) ∗M(ω)−1 will have 1s on the diagonal and 0s everywhere else.

We now claim that M(ω)−1 = 1
n ∗ M(−ω). We can validate this for both the diagonal and off-

diagonal entries. For the kth diagonal entries, we will take the dot product of the kth row of M(ω)
with the kth column of M(ω)−1. This gives us

˙1
n

(
1 ωk ω2k . . . ωk(n−1)

) (
1 (−ω)k (−ω)2k . . . (−ω)(n−1)k

)
=

˙1
n

(
1 ωkω2k . . . ωk(n−1)

)
(1 ω−k ω−2k . . . ω−(n−1)k)

=
1
n

(1 + 1 + · · ·+ 1) = 1

For the off-diagonal entry at position (j,k), we multiply the j row of M (ω) with the k column
of M (−ω). That gives

1
n

˙(
1 ωjω2j . . . ω(n−1)j

)
(1 ω−k ω−2k . . . ω−(n−1)k)

=
1
n

(
1 + ωj−k + ω2j−2k + . . . ω(n−1)(j−k)

)
=

1
n

ωn(j−k) − 1
ωj−k − 1

= 0

So the inverse matrix M(ω)−1 is easy to calculate. That means that, using the method we
previously described, we can recover the coefficients of the polynomial A in time O (n log n). This
has important applications to signal analysis, where we can uncover the frequencies of a signal.

3 Multiplying Polynomials

Suppose that we now have two polynomials, A(x) and B(x), of degree d, and we want to calculate
C (x) = A (x) B(x). Then C (x) has degree 2d, so it is determined by any 2d + 1 points. So we
can determine enough information to reconstruct C(x) from any 2d + 1 values of A(x) and B(x).
So our procedure for determining C is as follows:

1. Calculate A(x) and B (x) at n = 2d + 1 points, which will require time O(n log n);

2. Calculate C (x) = A (x) B(x) at the n selected points, which will require time O(n);

3. Determine C’s coefficients, which will take time O(n log n).

All three of these steps have already been described in detail. We just need to select the nth roots
of unity for the n selected points, and we’re done.
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4 String Matching

Suppose that we have a pattern p = pm−1pm−2 . . . p0 that we want to match against an n-character
string s = sn−1sn−2 . . . s0. We could compare the m-character pattern against all possible n−(m−1)
starting positions of the pattern, but that gives a running time of O(m(n−m + 1)). For example,
take p = abba and s = aababbabba. Then we might have to compare abba against aaba, abab,
babb, and so on. Can we do better using the FFT?

Let’s assume that the pattern and string have the same binary characters, say a and b. Now let’s
map a to -1 and b to 1. Then the product of the mapped pattern, abba → (-1)11(-1), with the first
four characters of the string, aaba →(-1)(-1)1(-1) gives us a dot product of (-1)(-1)+1*(-1) +1*1
+(-1)(-1) = 2. When we do have a match, the dot product is (-1)(-1)+1*1+1*1+(-1)(-1) = 4. So
when we have a match, each term in the dot product is 1 and the dot product is m. If we do not
have a match, then at least one term in the dot product is -1 and so the dot product is less than
m.

This looks just like the polynomial multiplication that we just saw – the pattern can be translated
to one polynomial, and the text string can be translated to another polynomial. We want to
know if the text starting at position k agrees with the input pattern. Let the pattern’s polynomial
A (x) = pm−1x

m−1+pm−2x
m−2+· · ·+p0 and take the m text polynomial to be B (x) = sn−1x

n−1+
sn−2x

n−2+· · ·+s0. Then C (x) = A (x) B(x) will not give us information about whether the pattern
matches up at position k in the text – we cannot just look at a coefficient of C and determine if
we have m matches at the corresponding text position. Instead, we want coefficient ck to tell us if
position k in the text matches with position m in the pattern, if position k +1 in the text matches
with position m − 1 in the pattern, and so on. So we want to know if sk = pm−1, sk+1 = pm−2,
and so on until sk+m−1 = p0. Notice that the sum of the two indices is always k + m− 1.

Our insight is to reverse the order of one of these strings with respect to how its polynomial is
created. So now let’s try A (x) = pm +pm−1x+ · · ·+p0x

m (i.e., A(x) with its coefficients reversed)
and use the same B (x) . We can see that the jth coefficient of C, which we will denote cj , is as
follows:

cj = Σipisj−1

So we get exactly what we want: if we want to know if the text and pattern match up in the kth

position, then we just need to examine ck.

How does FFT help with pattern matching? We can see that we have just reduced the problem
of pattern matching to polynomial multiplication: we multiplied the polynomial A(x) with B(x).
The polynomial multiplication algorithm above tells us that we can do this in n log m, where n
is the length of the text and m is the length of the pattern. This is not the last word on string
matching, but it is an interesting application of FFT and divide-and-conquer methods in general.
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