
CS 6505: Computability & Algorithms
Lectures for Week 3, January 25-29, 2010

A Turing Machine TM is defined by the following:
Σ is the Input alphabet
Γ is the Tape alphabet. Γ = Σ ∪ {B}, where B is the blank symbol. Q: set
of states
∆: Transition function
∆ : Q× Γ → Q× Γ× {L,R}
So ∆ maps (state, symbol) to (new state, new symbol, head movement left
or right)
q0: start state
qA: ACCEPT state
qR: REJECT state

So what can a Turing Machine do?
”All computable functions can be computed on Turing Machines.” - Church-
Turing Thesis
Example 1: Everything that you can do on your laptop can be done (even-
tually) on a Turing Machine.
Example 2: We could compute f(n) = 2n or f(n) = n2.

It can be helpful to think of an input tape that is read only and a working
tape that acts as memory. So does a second tape help? That is, does adding
a second tape allow us to compute something that cannot be done on a
single tape.

For example, suppose that we have a Turing Machine that will accept x iff
x is a palindrome. Suppose that we operate on a single tape to determine
if x is a palindrome. The head starts at the beginning of the tape and then
moves to the end of the tape. The symbol at the end of the tape must match
the symbol at the beginning of the tape. We then scan from the next-to-last
entry to the second entry, repeating the process. If the length of the input
is n, then we require around n2 operations, within a constant.

Now suppose that we use two tapes. We could copy the input tape to the
second tape and then compare each element in order. This would require

1

time complexity O(n).

Nondeterministic Turing Machines

The following is a list of the finite possible states of a Turing Machine:

∆(q, a) = {(q1, a1,L/R), (q2, a2,m2), ...}

While the computation of a Deterministic Turing Machine (DTM) as a se-
quence of states (i.e., a path), a Nondeterministic Turing Machine (NTM)
can be viewed as a computation tree. An NTM can ”guess” a path to an
accepting state if one exists. (Note that this is an abstract model. We do
not actually have an NTM that we can run.)

Suppose that a Turing Machine has input length n. Turing Machines have
a time complexity t(n) if the Turing Machine takes time at most t(n) on
any input of length n. Turing Machines have a space complexity s(n) if the
Turing Machine uses space at most s(n) on any input of length n.

NTMs can be simulated by DTMs. To simulate an NTM, apply breadth-first
search (BFS) to the NTM’s computation tree. Then

DTime(|T |) captures NTime(depth(T))

.
For example, we can simulate an NTM that solves the Factoring problem.
Given an integer n, we want to find prime numbers p1, . . . ,
pk such that

∏k
j=1 pj = n. We could create a DTM to solve this by having

a DTM first divide n by prime numbers 2, 3, Then we would go to the
next level of the computation: we would find whether n was divisible by
each of the primes and then continue to divide each n/pi by 2, 3, . . ., and
so on.

Another example is to find a path from s to t in LOGSPACE (i.e., find a
path from s to t using space that is logarithmic in the size of the graph).
We will cover this algorithm later in these notes. (Note that LOGSPACE
denotes all of the algorithms that can be solved with space O(log n), where
n is the length of the input.)

2

Space Hierarchy Theorem

So now we must ask: Does more time allow for more powerful Turing Ma-
chines?
Does more space allow for powerful Turing Machines?
Does nondeterminism allow for powerful Turing Machines?

Big-Oh:

g = O(f) → ∃C > 0 such that ∀x ≥ x0, g(x) <= Cf(x).

In other words, g is an asymptotic upper bound for f . So when x becomes
sufficiently large, we can ignore constant factors between f and g.

Little-Oh:

g = o(f) →6 ∃c > 0 such that ∀x ≥ x0, g(x) ≥ cf(x)

In other words, no matter what constant c you choose, g will always outstrip
f by more than that constant for sufficiently large x.

Space Hierarchy Theorem: A function f is space constructible if there
exists a TM M that, on unary input n outputs f(n) (in, say, binary) and
uses O(f(n)) space. (We should also assume that f(n) > log n.)

Theorem For any space constructible function f , there exists a language L
accepted by a Turing Machine using f(n) space but not any Turing Machine
using o(f(n)) space.
Proof Any TM M has a finite description < M >. Now consider the following
table.
Now consider D = {< M > | If running M on < M > uses space at most
f(n) and time 2f(n), then M does not accept < M > }
The language D can be recognized by a Turing Machine in space O(f(n)).

1. Mark f(n) spaces. If M ever tries to use more space, then REJECTM.

2. Check that the input is valid. If the input is not valid, then REJECT.

3. If the execution time ever exceeds 2f(n), then REJECT.

4. Else, if M accepts, then REJECT. If M accepts, then REJECT.

3

Figure 1: Space Hierarchy Theorem - determine what each Turing Machine
accepts and rejects

So D can be recognized by some TM using O(f(n)) space.

Claim: No TM using o(f(n)) space can recognize D.
Proof: Assume there exists a TM M that recognizes D using o(f(n)) space.
Running M on input < M >, the algorithm (simulator) will finish and use
space at most f(n). But M accepts iff M rejects, which is a contradiction.
(Add something to clarify the proof here.)

So what do we get out of the Space Hierarchy Theorem? First, we now
know that there are algorithms that have minimum requirements for space.
So there will be algorithms that require O(log(n)) space, some that require
O(n) space, O(n2) space, O(n3) space, and so on. We will not be able to
get away with just a lower bound on space for all algorithms, either.

Space Complexity

Suppose an NTM uses s(n) space and t(n) time. We saw that a DTM can
do the same computation in Ct(n) time. How much space will it need?
Graph reachability: G = (V,E), where V is a set of vertices (or nodes) and
E is a set of edges from pairs among V . ij ∈ E, i → j is a directed edge (or
arc) from i to j. Let n = |V |.

The question is, given a graph G, is there a path from s to t? For an NTM,
we could ”guess” the next vertex on a path. The NTM could effectively be

4

performing a breadth-first search on the graph. we would require O(log n)
space for a single vertex. For a DTM, if a BFS or depth-first search (DFS)
is performed, then the DTM needs up to (n-2) intermediate nodes. So the
space complexity is O(n log(n)).

Savitch’s Theorem

Definitions Let f : N → R+.
DSPACE(f(n)) = {L|L is a language decided by O(f(n)) space DTM }.
DSPACE is also called PSPACE(f(n)) in many texts and references.
NSPACE(f(n)) = {L|L is a language decided by an O(f(n)) space NTM
}

Theorem NSPACE(s(n)) ⊆ DSPACE(s2(n))
Theorem Graph reachability needs O(log2(n)) space on a DTM
Proof We want to calculate the path from vertex a to vertex b in Graph G
that takes at most k steps (i.e., edges between a and b). Define

PATH(a, b, k) =
{

1 if there exists a path in G of at most k steps
0 otherwise

PATH(a, b, k) algorithm

• If k = 0, then

– if a = b, ACCEPT

– else REJECT

• else if k = 1, then

– if a = b or (a, b) ∈ t, ACCEPT

– else REJECT

else

– for every c ∈ V \{a, b} :
if PATH(a, c, dk/2e) accepts AND PATH(c, b, dk/2e) accepts, then:
ACCEPT

– If we have not accepted, then REJECT.

5

What is the space complexity for PATH? We have to remember one node’s
”name” or label for every level of the recursion. Each node’s name requires
log n space to store. The depth of recursion = log2 k ≤ log2 n Therefore the
DTM algorithm runs in O(log2 n) (i.e., it is in DSPACE(O(log2 n))).

For an arbitrary computation, where NSPACE = s(n), consider the graph
of configurations using s(n) space. Each configuration needs O(s(n)) space
to name. Does there exists a path from the START configuration to the
ACCEPT configuration?

Applying PATH(START, ACCEPT, k), we find that k only needs to be
Cs(n) as that is the maximum number of configurations. So DSPACE =
O(s(n) log k) = O(s(n)2).

Reading

Sipser, Chapter 3 (Turing Machine Basics), Section 7.1 (Time Complexity
and Big-Oh, Little-Oh notation), Section 8.1 (Savitch’s Theorem, Space
Complexity), Section 8.2 (PSPACE/DSPACE), Section 9.1 (Space Hierarchy
Theorem)

6

