
CS 6505: Computability & Algorithms
Lecture Notes for Week 5, Feb 8-12

P, NP, PSPACE, and PH
A deterministic TM is said to be in SPACE (s (n)) if it uses space O (s (n))
on inputs of length n. Additionally, the TM is in TIME(t (n)) if it uses time
O(t (n)) on such inputs. A language L is polynomial-time decidable if ∃k and a
TM M to decide L such that M ∈ TIME(nk). (Note that k is independent of
n.)

For example, consider the langage PATH, which consists of all graphsdoes there
exist a path between A and B in a given graph G. The language PATH has a
polynomial-time decider. We can think of other problems with polynomial-time
decider: finding a median, calculating a min/max weight spanning tree, etc.
P is the class of languages with polynomial time TMs. In other words,

P = ∪kTIME(nk)

Now, do all decidable languages belong to P? Let’s consider a couple of lan-
guages:
HAM PATH: Does there exist a path from s to t that visits every vertex in G
exactly once?
SAT: Given a Boolean formula, does there exist a setting of its variables that
makes the formula true? For example, we could have the following formula F :

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

The assignment x1 = 1, x2 = 0, x3 = 0 is a satisfying assignment.

No polynomial time algorithms are known for these problems – such algorithms
may or may not exist. They can be solved (i.e., decided) by polynomial-
time Nondeterministic TMs (NTMs). The idea behind this polynomial time
algorithm is that a nondeterministic TM “guesses” the correct path for the
HAM −PATH language, and it “guesses” the correct assignment for the SAT
language.

Recall that an NTM accepts iff any one of its computation paths accepts. The
path amounts to a verification of the YES answer. We have NSPACE(s (n))
and NTIME(t (n))

NP is the class of languages that can be decided by polynomial-time NTMs:

NP = ∪kNTIME(nk)

1

Alternately, NP is the class of languages with the property that the membership
(“YES”) can be verified in polynomial-time using a polynomial-sized certificate.
For example, consider SAT : if F is satisfiable, a valid assignment is the certicate.
In HAMPATH, if G has a Hamiltonian path, then the sequence of vertices
visited is the certificate.
Clearly P ⊆ NP . From Savitch’s theorem,

NSPACE = PSPACE

Since the space requirement for PSPACE only squares that for NSPACE.
Also, we have NTIME (t (n)) ⊆ DTIME(2{O(t (n)})
We define EXP or EXPTIME = Languages that can be decided in exponential
time.
So

P ⊆ NP ⊆ PSPACE ⊆ EXP

Amazingly, we do not know if any of these containments is strict. In other
words, does there exist a language L such that L ∈ EXP and L 6∈ PSPACE
or even L 6∈ P?
L ∈ NP ⇐⇒ ∃NTM M s.t. L = {x | ∃ accepting path in M on input x}

The class of languages that are complements of languages in NP is called coNP .
L ∈ coNP ⇔ ∃NTM M such that

L = { x | Every valid computation path of M is an accepting path for x }.

L ∈ coNP ⇔ T ∈ NP ⇔ T = {x |x 6∈ L},

L = {x |x is not accepted by a TM for L on any path }

In other words, L is rejected on every path.
How do we verify membership of a language in coNP? We need a short (polynomial-
sized) certificate that, if x 6∈ L. For example, we need to show that a graph G
does not belong in HAMPATH, or we need to show that a formula F does not
have a satisfying assignment.

What is the hierarchy of P, NP, and coNP? We know that every language that’s
in P can be solved in polynomial time. So we certainly have a certificate that
shows that a language belongs to P – it’s the TM that decides the language!
So P is in NP. Likewise, the same TM that decides a language L in P will also
reject its input in polynomial time, so P is also in NP. What about NP and
coNP? Well, we don’t know.

Polynomial Hierarchy (PH)

2

We would like to construct a hierarchy of problems within PSPACE that are
successively more difficult. First, let’s revisit definitions for a couple of lan-
guages:

SAT : { F | ∃x : F (x) = 1}

SAT : {F | ∀x : F (x) = 0}

So SAT is the set of all formulae such that there is some satisfying assignment
for each formula, and is the set of all formulae such that all assignments are not
satisfying (i.e., there are no satisfying assignments).

We have used a computation tree to visualize finding a solution to a problem.
We can imagine the same kind of computation tree for solving SAT : we can
set x1 to 0 or 1, then we can set x2 to 0 or 1, and so on. Whenever we see ∃,
the existential quantifier, we are asking if one of those two settings will yield a
satisfying assignment. So setting x1 = 0, Whenever we see ∀, we are asking if
all of the branches yield a satisfying assignment. For example, we may ask that
some satisfying exists for x2 = 0 and x2 = 1. If any of the branches under a
universal quanitifer fail, then the quanitifier will fail.

This gives us the concept for an Alternating Turing Machine. An Alternating
Turing Machine is one that can, at each node of computation, accept if any one
path emanating from the node accepts (i.e., we have an existential quantifier
∃) or if all paths accept (i.e., we have a universal quantifier). The Alternating
Turing Machine must also alternate between ∃ and ∀ quantifiers.

We will use this same idea to build a hierarchy of problems in PSPACE. Let’s
define the following:

Σi is an alternating Turing Machine that alternates i times between existentially-
quantified (∃) and universally-quantified (∀) stages, starting with an existentially-
quantified stage.

Πi is an alternating Turing Machine that alternates i times between universally-
quantified and existentially-quantified stages, starting with a universal quanti-
fier.

So Σ2SAT = { F | ∃x1∀x2, F (x1, x2) = 1 }. That is, it is the set of all two-
variable formulae such that there is some assignment to the first variable such
that all assignments to the second variable will satisfy the formula. Similarly,
Π2SAT = { F | ∀x1∃x2, F (x1, x2) = 0}. We can also alternate up to as many

3

variables as we like: ΣiSAT = {F | ∃x1∀x2∃x3∀x4 . . . , F (x1, . . . , xi) = 1},
and we can have ΠiSAT = {F | ∀x1∃x2∀x3∃x4 . . . , F (x1, . . . , xi) = 0 }.
We define the Polynomial Hierarchy, PH, as follows:

PH = ∪iΣi = ∪kTIME
(
nk

)
= ∪iΠi∪kTIME(nk)

PH ⊆ PSPACE

PSPACE Complete
We have an idea of what’s in PSPACE, but what are the “hardest” algorithms
in PSPACE? We want to know if solving one problem in PSPACE will somehow
yield a solution to another problem in PSPACE. For that, we have the notion
of PSPACE-completeness:
A language L is PSPACE-complete if it satisfies two conditions:

1. L is in PSPACE;

2. All languages in PSPACE are polynomial-time reducible to L.

We know that all Turing Machines that use O(nk) space for some k are in
PSPACE, but we don’t have a PSPACE-complete language yet. For that, we
will use the language TQBF : TQBF = { φ|φ is a fully quantified Boolean

formula }.

A fully-quantified Boolean formula is a Boolean formula in which every variable
has a quantifier. For example, the following formula is fully-quantified:

φ = ∃x1∀x2∃x3[(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Each variable, x1, x2, and x3, has a quantifier that precedes it.

We want to show that TQBF is PSPACE-complete. Again, we do not have
any other languages that are PSPACE-complete, so we must turn the execu-
tion of any Turing Machine M with input w into a quantified Boolean formula.
If M accepts w, then the quantified Boolean formula has a satisfying assign-
ment. Otherwise, the quantified Boolean formula does not have a satisfying
assignment. Here is a sketch of how we proceed:

We construct a tableau that describes the Turing Machine’s computation from a
configuration A to a configuration B. We want to go from the starting configu-
ration A to the accepting configuration B in at most t steps. Now we construct
a Boolean formula for the Turing Machine such that each tape character and
Turing Machine state corresponds to a literal. Each clause is equivalent to de-
termining the possible values on the tape and the Turing Machine’s state. The
Boolean formula is true if the Turing Machine M will accept w in at most t steps.

4

We proceed recursively like we did in solving the PATH problem: we cut the
distance from t to t/2 and look for a configuration C such that we can find a
path from A to C in at most t/2 steps and another path from C to B in at
most t/2 steps. So we can actually find a solution, but we may end up with an
exponentially large formula. We avoid this by introducing quantifiers that help
us cut down the size of the formula. (For a more detailed description, see Sipser
section 8.3.)
For more information on showing that TQBF is PSPACE-complete, see chapter

9 of Kleinberg/Tardos or see Sipser section 8.3.

References

1. Sipser, Sections 7.3 (P and NP), 8.2 and 8.3 (PSPACE), and 10.3(PH)

2. Papadimitriou, chapter 7 (P, NP, and PSPACE), section 17.2 (PH)

3. Arora and Barak (Draft at http://www.cs.princeton.edu/theory/index.php/Compbook/Draft),
Chapters 2 (NP and NP completeness) and 5 (PH)

4. Kleinberg and Tardos, chapter 9 (PSPACE). Kleinberg and Tardos present
a more in-depth version of PSPACE that may be preferred by those who
prefer a more conversational style.

5

