CS 6505: Computability \& Algorithms

Lecture Notes for Week 5, Feb 8-12

P, NP, PSPACE, and PH

A deterministic TM is said to be in $S P A C E(s(n))$ if it uses space $O(s(n))$ on inputs of length n. Additionally, the TM is in $\operatorname{TIME}(t(n))$ if it uses time $O(t(n))$ on such inputs. A language L is polynomial-time decidable if $\exists k$ and a TM M to decide L such that $M \in \operatorname{TIME}\left(n^{k}\right)$. (Note that k is independent of n.)

For example, consider the langage $P A T H$, which consists of all graphsdoes there exist a path between A and B in a given graph G. The language $P A T H$ has a polynomial-time decider. We can think of other problems with polynomial-time decider: finding a median, calculating a min/max weight spanning tree, etc. P is the class of languages with polynomial time TMs. In other words,

$$
P=\cup_{k} T I M E\left(n^{k}\right)
$$

Now, do all decidable languages belong to P? Let's consider a couple of languages:
HAM PATH: Does there exist a path from s to t that visits every vertex in G exactly once?
$\underline{S A T}$: Given a Boolean formula, does there exist a setting of its variables that makes the formula true? For example, we could have the following formula F :

$$
F=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
$$

The assignment $x_{1}=1, x_{2}=0, x_{3}=0$ is a satisfying assignment.

No polynomial time algorithms are known for these problems - such algorithms may or may not exist. They can be solved (i.e., decided) by polynomialtime Nondeterministic TMs (NTMs). The idea behind this polynomial time algorithm is that a nondeterministic TM "guesses" the correct path for the $H A M-P A T H$ language, and it "guesses" the correct assignment for the SAT language.

Recall that an NTM accepts iff any one of its computation paths accepts. The path amounts to a verification of the YES answer. We have $\operatorname{NSPACE}(s(n))$ and $\operatorname{NTIME}(t(n))$
$N P$ is the class of languages that can be decided by polynomial-time NTMs:

$$
N P=\cup_{k} N T I M E\left(n^{k}\right)
$$

Alternately, NP is the class of languages with the property that the membership ("YES") can be verified in polynomial-time using a polynomial-sized certificate. For example, consider $S A T$: if F is satisfiable, a valid assignment is the certicate. In $H A M P A T H$, if G has a Hamiltonian path, then the sequence of vertices visited is the certificate.
Clearly $P \subseteq N P$. From Savitch's theorem,

$$
N S P A C E=P S P A C E
$$

Since the space requirement for $P S P A C E$ only squares that for $N S P A C E$.
Also, we have NTIME $(t(n)) \subseteq D T I M E(2\{O(t(n)\})$
We define EXP or EXPTIME = Languages that can be decided in exponential time.
So

$$
P \subseteq N P \subseteq P S P A C E \subseteq E X P
$$

Amazingly, we do not know if any of these containments is strict. In other words, does there exist a language L such that $L \in E X P$ and $L \notin P S P A C E$ or even $L \notin P$?
$L \in N P \Longleftrightarrow \exists N T M M$ s.t. $L=\{x \mid \exists$ accepting path in M on input $x\}$

The class of languages that are complements of languages in NP is called coNP. $L \in \operatorname{coNP} \Leftrightarrow \exists N T M M$ such that
$L=\{x \mid \underline{\text { Every }}$ valid computation path of M is an accepting path for $x\}$.

$$
L \in \operatorname{coNP} \Leftrightarrow T \in N P \Leftrightarrow T=\{x \mid x \notin L\}
$$

$L=\{x \mid x$ is not accepted by a TM for L on any path $\}$

In other words, L is rejected on every path.
How do we verify membership of a language in coNP? We need a short (polynomialsized) certificate that, if $x \notin L$. For example, we need to show that a graph G does not belong in $H A M P A T H$, or we need to show that a formula F does not have a satisfying assignment.

What is the hierarchy of P, NP, and coNP? We know that every language that's in P can be solved in polynomial time. So we certainly have a certificate that shows that a language belongs to P - it's the TM that decides the language! So P is in NP. Likewise, the same TM that decides a language L in P will also reject its input in polynomial time, so P is also in NP. What about NP and coNP? Well, we don't know.

Polynomial Hierarchy (PH)

We would like to construct a hierarchy of problems within PSPACE that are successively more difficult. First, let's revisit definitions for a couple of languages:

$$
\begin{aligned}
& S A T:\{F \mid \exists x: F(x)=1\} \\
& \overline{S A T}:\{F \mid \forall x: F(x)=0\}
\end{aligned}
$$

So $S A T$ is the set of all formulae such that there is some satisfying assignment for each formula, and is the set of all formulae such that all assignments are not satisfying (i.e., there are no satisfying assignments).

We have used a computation tree to visualize finding a solution to a problem. We can imagine the same kind of computation tree for solving $S A T$: we can set x_{1} to 0 or 1 , then we can set x_{2} to 0 or 1 , and so on. Whenever we see \exists, the existential quantifier, we are asking if one of those two settings will yield a satisfying assignment. So setting $x_{1}=0$, Whenever we see \forall, we are asking if all of the branches yield a satisfying assignment. For example, we may ask that some satisfying exists for $x_{2}=0$ and $x_{2}=1$. If any of the branches under a universal quanitifer fail, then the quanitifier will fail.

This gives us the concept for an Alternating Turing Machine. An Alternating Turing Machine is one that can, at each node of computation, accept if any one path emanating from the node accepts (i.e., we have an existential quantifier $\exists)$ or if all paths accept (i.e., we have a universal quantifier). The Alternating Turing Machine must also alternate between \exists and \forall quantifiers.

We will use this same idea to build a hierarchy of problems in PSPACE. Let's define the following:
$\boldsymbol{\Sigma}_{\mathbf{i}}$ is an alternating Turing Machine that alternates i times between existentiallyquantified (\exists) and universally-quantified (\forall) stages, starting with an existentiallyquantified stage.
$\boldsymbol{\Pi}_{\mathbf{i}}$ is an alternating Turing Machine that alternates i times between universallyquantified and existentially-quantified stages, starting with a universal quantifier.

So $\Sigma_{2} S A T=\left\{F \mid \exists x_{1} \forall x_{2}, F\left(x_{1}, x_{2}\right)=1\right\}$. That is, it is the set of all twovariable formulae such that there is some assignment to the first variable such that all assignments to the second variable will satisfy the formula. Similarly, $\Pi_{2} S A T=\left\{F \mid \forall x_{1} \exists x_{2}, F\left(x_{1}, x_{2}\right)=0\right\}$. We can also alternate up to as many
variables as we like: $\Sigma_{i} S A T=\left\{F \mid \exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots, F\left(x_{1}, \ldots, x_{i}\right)=1\right\}$, and we can have $\Pi_{i} S A T=\left\{F \mid \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \ldots, F\left(x_{1}, \ldots, x_{i}\right)=0\right\}$.
We define the Polynomial Hierarchy, PH, as follows:

$$
\begin{gathered}
P H=\cup_{i} \Sigma_{i}=\cup_{k} T I M E\left(n^{k}\right)=\cup_{i} \Pi_{i} \cup_{k} T I M E\left(n^{k}\right) \\
P H \subseteq P S P A C E
\end{gathered}
$$

PSPACE Complete

We have an idea of what's in PSPACE, but what are the "hardest" algorithms in PSPACE? We want to know if solving one problem in PSPACE will somehow yield a solution to another problem in PSPACE. For that, we have the notion of PSPACE-completeness:
A language L is $\boldsymbol{P S P A C E}$-complete if it satisfies two conditions:

1. L is in $P S P A C E$;
2. All languages in $P S P A C E$ are polynomial-time reducible to L.

We know that all Turing Machines that use $O\left(n^{k}\right)$ space for some k are in $P S P A C E$, but we don't have a PSPACE-complete language yet. For that, we will use the language $T Q B F: T Q B F=\{\phi \mid \phi$ is a fully quantified Boolean formula $\}$.

A fully-quantified Boolean formula is a Boolean formula in which every variable has a quantifier. For example, the following formula is fully-quantified:

$$
\phi=\exists x_{1} \forall x_{2} \exists x_{3}\left[\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right)\right.
$$

Each variable, x_{1}, x_{2}, and x_{3}, has a quantifier that precedes it.

We want to show that TQBF is PSPACE-complete. Again, we do not have any other languages that are PSPACE-complete, so we must turn the execution of any Turing Machine M with input w into a quantified Boolean formula. If M accepts w, then the quantified Boolean formula has a satisfying assignment. Otherwise, the quantified Boolean formula does not have a satisfying assignment. Here is a sketch of how we proceed:

We construct a tableau that describes the Turing Machine's computation from a configuration A to a configuration B. We want to go from the starting configuration A to the accepting configuration B in at most t steps. Now we construct a Boolean formula for the Turing Machine such that each tape character and Turing Machine state corresponds to a literal. Each clause is equivalent to determining the possible values on the tape and the Turing Machine's state. The Boolean formula is true if the Turing Machine M will accept w in at most t steps.

We proceed recursively like we did in solving the PATH problem: we cut the distance from t to $t / 2$ and look for a configuration C such that we can find a path from A to C in at most $\mathrm{t} / 2$ steps and another path from C to B in at most $\mathrm{t} / 2$ steps. So we can actually find a solution, but we may end up with an exponentially large formula. We avoid this by introducing quantifiers that help us cut down the size of the formula. (For a more detailed description, see Sipser section 8.3.)
For more information on showing that TQBF is PSPACE-complete, see chapter

9 of Kleinberg/Tardos or see Sipser section 8.3.

References

1. _Sipser, Sections 7.3 (P and NP), 8.2 and 8.3 (PSPACE), and 10.3(PH)
2. _Papadimitriou, chapter 7 (P, NP, and PSPACE), section $17.2(\mathrm{PH})$
3. _Arora and Barak (Draft at http://www.cs.princeton.edu/theory/index.php/Compbook/Draft), Chapters 2 (NP and NP completeness) and 5 (PH)
4. Kleinberg and Tardos, chapter 9 (PSPACE). Kleinberg and Tardos present a more in-depth version of PSPACE that may be preferred by those who prefer a more conversational style.
