
CS 6505, Complexity and Algorithms Week 7: NP Completeness

Reductions
We have seen some problems in P and NP, and we’ve talked about space com-
plexity. The Space Hierarchy Theorem showed us that there are some problems
that can be solved in certain amounts of space but cannot be solved with any
less space. In PSPACE, we constructed a series of increasingly more difficult
problems using Alternating Turing Machines and also introduced the concept
of PSPACE-Completeness. Now we want to know about NP – are there some
problems that are more difficult than others? Do we have a concept of “com-
pleteness” in NP that lets us decide if a class of problems are just as hard to
solve as others?

We’ve seen some NP problems and coNP problems before. Remember, an NP
problem is one that has a short proof that a solution is correct, and a coNP
problem is one that has a short proof that there is no solution. Here are some
examples:

Let L = { (G,k) : G has an independent set of size ≥ k }
Then L = { (G,k) : G has an independent set of size < k }

So these two problems are complements of each other. (Note that L is the
problem INDEPENDENT-SET.)

We have also briefly mentioned SATISFIABILITY, but let’s revisit it. Suppose
we have a formula as follows:

φ = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5)

In the formula φ, each variable xj is a Boolean literal that may be 0 or 1, and
a collection of the literals joined by disjunctions (e.g., (x2,1 ∨ x2,2)) is called a
clause . All of the clauses are linked together with conjunctions (∧). We can
find an assignment that makes this formula true. For the formula above, we
could choose x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1. There may be many
ways to satisfy a formula.

Now let’s define a generic problem:

SAT = { φ : φ has a satisfying assignment }

SAT = { φ : φ does not have a satisfying assignment }

We use SAT in place of ”SATISFIABILITY”. If each clause has exactly 3 literals
within it, then we refer to this problem as 3-SAT .

1

SAT is in NP. Suppose that we are given a certificate with φ and a satisfying
assignment x1 = b1, x2 = b2, . . . , xn = bn. φ has at most n clauses, and each
clause requires a constant amount of time to evaluate. If we try to solve SAT
through brute force, we may end up with an exponential number of possibili-
ties to search through. However, this is not enough to say that a problem is
“Complete” for NP: we need something more.

Let’s see some more problems that we know are in NP. First, we have the
Traveling Salesman Problem (TSP):

TSP = {(G, dij) : ∃ tour through all vertices of total length ≤ D?}

In other words, we are given a graph G with weights dij for the edge (if any)
between vertices vi and vj for all possible vertices. Now we want to know
if there is a tour, or path through G that visits every vertex and returns to
the beginning, where the sum of the edges’ weights is less than some value D.
Informally, we can see that TSP is also in NP: if we are given an ordering of the
vertices to visit, then we can sum up the edges between each of the successive
vertices and determine if the total weight is less than the threshold, D.

We have a similar problem in determining the Hamiltonian cycle. A Hamiltonian
cycle is a just a tour through a graph’s vertices without weights. The question
is whether such a cycle exists:

HAM − PATH = { G there exists a tour of G′s vertices }

Again, we can see that HAM-PATH is in NP.

Now we turn to Integer Linear Programming, or ILP . Suppose that we are
asked to solve

ΣAijxj ≤ bi, ∀i = 1, . . . , m, and xi are integers

So we are trying to solve m equations where we are given the values of Aij

and bi and want to determine the values of xj . Another way to think of this is
that we are solving the equation Ax = b for matrix A, vector b, and vector x.
Further, the xj values are restricted to integers. If the xj values are real values
and not integers, then we can refer to the simplex algorithm (not covered here)
to solve the problem in polynomial time. However, when the xj are integers,
the problem becomes very difficult. So we define the problem as the following:

ILP = { A, b : ΣAijxj ≤ bi, ∀i = 1, . . . , m, and x1, . . . , xm ∈ Z}

Cook & Karp Reductions

2

Now that we’ve seen some problems in NP, let’s return to SAT . Again, the
worst-case time that solves SAT is exponential – kn, k > 1, and the input size
is n. For example, we may try both 0 and 1 for m literals, which gives us a
time of at least O(2m). However, we’ve seen problems where we could have
had exponential running time but we found a way to reduce it – in TQBF,
we got rid of exponentially-long equations by using quantifiers, and in dynamic
programming we got rid of too many possibilities by solving subproblems and
using memorization.

So what makes a problem hard? What will convince us that a problem is hard?
We could see an explicit lower bound, but is there some other technique? We
want to try to connect together these problems.

Cook first defined NP-completeness, and Karp later defined 21 problems from
many fields that were also NP-complete. Suppose that we have a function
g that can transform a problem x in polynomial time. A Karp reduction
shows that x ∈ A ⇐⇒ g (x) ∈ B. Let’s give an example of a reduction.
Suppose that we have x = (G, k), where G is a graph and k is an integer,
and A = INDEPENDENT − SET . We want to know if x ∈ A. Now we can
reduce the problem. Let g (x) = x, so the transformation is trivial. Now we ask
if g (x) ∈ V ERTEX −COV ER, which we saw on the midterm. We know that
the maximal independent set is the complement of the minimal vertex cover,
so a graph G has a maximal independent set of size at least k iff G also has a
minimal vertex cover of size at most k.

A Karp reduction asks for the computation once. We can think of the deter-
mination if g (x) ∈ B as an oracle or a black box that is run a single time. If
the oracle returns “yes”, then x ∈ A. Otherwise, x 6∈ A. However, in a Cook
reduction , we are allowed to query the oracle multiple times. The total number
of times that we can query the oracle is polynomial in the size of the input.

As another example of a reduction, we can reduce from INDEPENDENT −
SET to CLIQUE. A clique on k vertices means that all k vertices have an edge
between them. So, given a graph G and an integer k, how do we reduce the
problem of finding an independent set of size at least k to that of finding a clique
of size at least k? As Tejas mentioned in class, we can take the complement of
the graph G and test if the complement of G has a clique of size at least k. If
there is no edge between vertices u and v in G, then there must be an edge
between u and v in the complement of G.

SATISFIABILITY: First NP-Complete Problem

Now we want to know if there are any problems that are NP-Complete. If a

3

problem is NP-Complete, then it must satisfy two conditions:

1. the problem is in NP;

2. every problem in NP can be reduced to any other NP-Complete problem
in polynomial time.

We have not defined any NP-Complete problems yet. A problem that is in
NP must be decided by a nondeterministic Turing Machine in polynomial time.
So what are we going to reduce an arbitrary NP language to? Let’s start with
SATISFIABILITY. That means that we are going to transform any NP language
to a Boolean formula. If we can do that, then we can determine if an NTM for a
language L ∈ NP will accept its input by transforming the NTM’s computation
into a Boolean formula. If the Boolean formula is satisfiable, then the NTM will
accept. (That’s cool.)

So how do we make this transformation? Well, we have to transform each piece
of the NTM to a formula (of course). Suppose that an NTM can decide a
language L in time nk for some k > 0. Then we could consider a configuration
table that shows the computation of the NTM over time. Each row of the table
is equivalent to the NTM’s configuration at some timestep in the computation.
If the NTM accepts its input, then we will end up with a configuration row that
corresponds to an accepting state.

It might help to review what constitutes a Turing Machine’s configuration. A
configuration consists of all of the tape to the left of the head, then the state
of the Turing Machine, and finally the character under the head and all charac-
ters to the right of the head. So suppose that the tape reads “abbababbaaa”,
that the Turing Machine is in state q3, and the Turing Machine’s tape head is
over the sixth character (or the third “a”). Then the configuration would be
“abbabq7abbaaa” – the five characters to the left of the head, the state of the
Turing Machine, and the characters under the tape head and to the right of the
head.

Each entry in the configuration table is written as xi,j,s, where i is the row
number, j is the column number, and s is a state or tape character. The row
number i corresponds to timestep i, the column number j corresponds to the
j-th entry of a configuration, and s corresponds to a state or tape character.
The table entry xi,j,s is 1 when the table entry on row i, column j contains the
symbol s. Otherwise, xi,j,s contains 0. The setup is shown below.

4

Now we notice that each entry in the table can only contain at most one symbol.
That means that our Boolean formula has to restrict itself to make sure that
xi,j,s is 1 for only one s. How do we make sure that only one symbol is turned
on? If we write this as xi,j,1 ∨ xi,j,2 ∨ xi,j,3 . . . xi,j,m, then two or more of the m
variables could be turned on and the equation is still true. So we could use the
following observation: (x1 ∨ x2) ∧ (x1 ∨ x2) is true only when exactly one of x1

and x2 is active. If we need to test multiple values (say, n), then we test every
pair of values xi and xj and we apply a logical AND to the result. If there are
two variables, say xi and xj , that are both enabled, then the equation will fail.
So we want to add the following constraint to our formula: for every row and
every column in the table, add a Boolean formula that tests every possible pair
of symbols:

φ =
∧

1≤i,j≤k

((
∨{all s}xi,j,s

)
∧

(
∧{all s,t}xi,j,s ∨ xi,j,t

))
(1)

This is a large expression. We had to be careful with TQBF, which had an
exponential number of entries before the quantifiers were applied. In this case,
we have nk entries, and each entry has at most m + 2m2 symbol literals, where
m is the number of possible symbols. In other words, this is large, but it’s still
polynomial in the size of the input.

Now we need to start our computation somehow. How do we do this? Well, we
add a formula that includes the variable x1,j,s when the starting configuration
contains symbol s in the jth entry. Then we combine them all together with
logical ANDs. So if the starting configuration tape only contained “abc”, then
our formula would be:

x1,1,a ∧ x1,2,b ∧ x1,3,c (2)

The space for the configuration is at most nk, so we have at most a polynomial
number of such literals.

5

We append this starting-configuration formula to φ. When we want to include
the accepting configuration, though, we want to make sure that any accepting
configuration is included. The symbol corresponding to accepting configuration
is qaccept, but it could appear anywhere in the configuration. So we include the
following in φ as well: ∨

1≤i,j≤nk

xi,j,qaccept
(3)

Now we must make sure that all of the transitions between timesteps are le-
gitimate. Legitimate transitions must follow the NTM’s transition function.
That means that the head can only move at most one tape character to the
left or right, the state transition is correct, and a character may be written at
the head’s current position. Let’s see this in the context of some cells of the
computation’s table. Suppose that we have a tape alphabet that consists of the
letters {a,b}. Three cells of the current configuration may look like this:

a q2 b

So the head is currently over the b, the Turing Machine is in state q2, and
the character to the left of the head is a. This is just part of the complete
configuration. Now what are some valid transitions that can take place? Here
are some possibilities:

1. The Turing Machine stays in the same state and its head moves to the
left. Then the configuration is “q2ab”.

2. The Turing Machine stays in the same state and its head moves to the
right. Then the new configuration is “abq2” – the head is over a tape
character to the right that just happens to not be visible yet.

3. The Turing Machine replaces the character “b” with a “c”. Then the
configuration is “aq2c”.

4. The Turing Machine transitions from state q2 to q4. Then the new con-
figuration is “aq4b”.

5. The Turing Machine executes some combination of moving left or right,
writing a character to the character under its current position, and chang-
ing state.

Now we want to place constraints on the Turing Machine’s next configuration
based on its current configuration. For a single transition, we want to just
restrict our focus to two rows of the table – the current timestep’s configura-
tion and the next timestep’s configuration. Then we check all of the possible

6

2x3 “windows” across the entire configuration table. So we add the following
formula: ∧

1<i≤nk, 1<j<nk

(the window at position i, j is legal)

=
∧

alln2kcells

(
∨

6cellsciarelegal

(xi,j−1,c1 ∧ xi,j,c2 ∧ xi,j+1,c3 ∧ xi+1,j−1,c4 ∧ xi+1,j,c5 ∧ xi+1,j+1,c6))(4)

So now we have a large formula that we have to satisfy, but is it of polynomial
size? Well, we have nk rows and we have up to nk entries per configuration, so
we have up to n2k entries. Our first formula, 1, checked that only one transition
was performed. That required O(n2k) entries since each cell had a fixed-size
formula. The formula from 2 only affects the top row, so it has size O

(
nk

)
.

The last two formulas also had formulas that were constant in size, so they
required size O

(
n2k

)
entries. Then the entire formula is polynomial in the

size of the input. Therefore we can construct a formula in polynomial time
that determines if a nondeterministic Turing Machine accepts an input. So our
reduction is complete, and SATISFIABILITY is NP-complete.

Sample Reduction: CLIQUE to SATISFIABILITY
So we have shown that solving SATISFIABILITY is as difficult as determining if
an NTM will accept its input, and we have our first NP-complete problem. What
other problems are NP-complete based on reducing from SATISFIABILITY to
the target problem? It turns out that CLIQUE is NP-complete, and we will
show it as follows.

Suppose that we have the following formula:

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

We construct a graph as follows. We create one vertex per literal. We connect
an edge between any two vertices subject to the following two constraints:

1. If the literals are in the same clause, then do not draw an edge between
them;

2. If the literals have the same “label” (e.g., x1 has the same label as x1 and
x1), then do not draw an edge between them.

So in our example we would have the following graph:

7

Can we find a clique of size 2? Sure – a clique of size two is just any edge
(since we just need to connect two vertices together). What about a clique of
size 3? Two such cliques are highlighted in the graph – they’re just cycles of
length 3. What about a clique of size 4? In this case, we cannot. Why not?
Well, a clique of size 4 would require that at least one of the partitions has at
least two vertices in the clique. (You can reason this out for yourself or try
the pigeonhole priniciple.) We have constructed our graph in a way that two
vertices in the same partition have no edge between each other, so no such edge
can exist. Then a clique of size four cannot be found here.
When we find a clique among all m partitions, we have found a satisfying
assignment for m clauses. Why? When we choose a vertex in the clique, we
are stating that it is true. Then we choose one vertex from each partition such
that it is connected to the vertices chosen in all other partitions. If such an
edge exists, then it cannot refer to the same literal by construction, so we will
not choose x2 in two clauses/partitions and we will not choose both x2 and x2

(since satisfying both of those would be impossible). So we have a satisfying
assignment iff we have found a clique of size at least m. Then SATISFIABILITY
reduces to CLIQUE.

8

