
CS 6505: Computability & Algorithms
Lecture 1, January 11, 2010

Computation and Functions

Computation is the evaluation of functions. A function has a domain and a
range. Suppose a function f has a domain D and a range R. Then we say
that

f : D → R, x ∈ D, f(x) ∈ R

Another way of saying this is that f maps elements of D into elements
of R

Examples of functions

1. Suppose that D = {0, 1, 2, . . .} and R = 0, 1. Then

f(x) =

{
1 if x is prime
0 otherwise

2. D = { dog, cat, spider, caterpillar, . . . }, R = { 0, 1, 2, . . . }
f(x) = x’s number of legs

3. D = { set of all dates }, R = {0, 1}

f(x) =

{
1 if humans exist or existed on date x
0 otherwise

Computability

What functions can be computed? By what? Using what? How efficiently? If
a function cannot be computed, then why not? What is a computer program,
really?

A computer program is a function that maps an input to to an output.
Not all functions have valid computer programs.

Sample Problems

We can think of some common math problems, such as ”Add x and y”, ”Find
the Least Common Multiple (LCM) of x and y”, or even much more difficult
ones. Computer programs can be written to solve these math problems.
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To formalize all such problems, we have a finite alphabet Σ and the set
of strings over Σ. A language is a subset of such strings. We can view
languages as a function:

L ≡ fL : Σ∗ → {0, 1}

fL(x) =

{
1 if x is prime
0 otherwise

A language L is computable if we can compute whether x belongs to L for
any string x. Are all languages computable? Can we enumerate (i.e., list)
all languages?

We have:
Σ: finite alphabet (e.g., { a, b, c, . . . })
Σ∗ : set of strings over Σ
The set of strings over Σ is infinite, but it is countable!
Another way of saying this is:

∃g : Σ∗ → N

Now, if Σ = { 0, 1 }, then g(x) is just the number represented by x in
binary. If Σ has k elements, then g(x) is k-ary (e.g., k = 10 means that the
alphabet is decimal, k = 16 means that the alphabet is hexadecimal, etc.)

Now note that the set of all languages is uncountable! The set of all
languages is different from the set of all strings - it is the set of all possible
subsets of strings.

Let’s prove that the set of all languages is uncountable. We’ll proceed
using proof by contradiction. Suppose this is not true. This means there
exists an ordering L1, L2, L3, ... of languages.

Now consider the following matrix of strings (x1, x2, . . .) and languages
(L1, L2, . . .). The entry for language Li and string xj is 1 if xj ∈ Li and is 0
if xj ∈ Li.

x1 x2 x3 x4 . . .
L1 1 0 0 0 . . .
L2 0 0 1 1 . . .
L3 1 1 1 1 . . .
L4 0 1 0 0 . . .
. . . . .
. . . . .
. . . . .

Now we will define a new language L that does not match any of the
languages in the matrix. For language L, define xj ∈ L iff xj 6∈ Lj. This
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means that we have a new language L that is different from every other
language with respect to at least one string. Then the set of all languages
cannot be enumerated using the list presented in the matrix. So the set of
all languages is uncountable.

Relevant Readings

• Sipser, Chapters 3 & 4
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