
CS 1803
Pair Homework 10 – Newsvendor Inventory Policy
Due: Wednesday, April 13th before 6:00 PM
Out of 100 points

Files to submit: 1. HW10.py

This is a PAIR PROGRAMMING Assignment: Work with your partner!
For pair programming assignments, you and your partner should turn in identical assignments.
List both partners names at the top. Your submission must not be substantially similar to another
pairs' submission. Collaboration at a reasonable level will not result in substantially similar code.
Students may only collaborate with fellow students currently taking CS 1803, the TA's and the
lecturer. Collaboration means talking through problems, assisting with debugging, explaining a
concept, etc. You should not exchange code or write code for others.

For Help:
• TA Helpdesk – Schedule posted on class website.
• Email TA's or use T-Square Forums
Notes:
• Don’t forget to include the required comments and collaboration statement (as
outlined on the course syllabus).
• Do not wait until the last minute to do this assignment in case you run into problems.
• Read the entire specifications document before starting this assignment.

Premise
You own a fruit stand that sells apples, pears, and grapes, and you receive a new shipment of
fruit every day. You may not hold produce for more than one day- anything that you do not sell
is picked up by your vendor the next morning to be taken to the local zoo to feed the monkeys. It
seems recently that you have not been ordering an amount that is appropriate for the demand.
You have been collecting daily demand data for the past year and it is stored in the demand table
in your database. Using this data you will calculate a new daily ordering policy.

In addition, since you have a crazy course load next semester you will be hiring an assistant who
will need to be able to calculate a new policy when you get new costs from your supplier.
Therefore you will need to make a GUI interface for them to use that will allow for the problem
parameters to be given as user inputs.

Your code should be in one class and contain the following methods:
• __init__()
• clicked()
• computePolicy()
• connectMySQL()

1

Newsvendor Problem

The Newsvendor Problem is the problem where you have to determine the order policy for one
item with stochastic (uncertain) demand over one period- in our case one day. There are two
costs that have to be taken into consideration, the overage cost (or the cost for each unit over the
quantity demanded) and the shortage cost (the cost for each piece that is demanded but that you
do not have inventory for).

For this problem assume that the demand is normally distributed.

The first step is to solve for the critical ratio R where cu is the shortage (underage) cost and co is
the overstock cost.

The second step is to find the z-value. Mathematically we have :

However this is difficult to calculate so we will use a modified z-table. Information about the
standard z-table can be found at http://en.wikipedia.org/wiki/Standard_normal_table. The data from
this table has been placed into a database table as described below so that it can be accessed
easily for this assignment. The format of the zValues table is different than the standard z-table
but the data is the same.

The final step is to calculate the daily order quantity Q* where µ is the mean of the demand, σ is
the standard deviation of the demand and z is the z-value that was looked up in the z-table.

Database Table Structure Information
demand table
There are 4 fields:
Auto-Incrementing product number: id (integer)
Product name: name (text)
Date of recorded demand: date (date)
Number ordered: demand (integer)

demand
id name date demand
1 Apple 2010-11-01 15
2 Pear 2010-11-01 23
3 Grape 2010-11-02 8
4 Apple 2010-11-02 21
5 Grape 2010-11-02 23
6 Pear 2010-11-03 10

2

http://en.wikipedia.org/wiki/Standard_normal_table

zValues table
There are 2 fields:
Z-Value: z (float)
Critical Ratio (R): ratio (float)

zValues
z ratio

1.45 0.4265
3.20 0.4993

Function Name: __init__
This method is automatically called whenever you create a new instance of your object.
The __init__ method is responsible for arranging and initializing your GUI. You should create a
GUI which has the following functionality but you may customize the design:

Window Title
Descriptive title for your GUI

User input to select product- “Apples”, “Grapes”, “Pears”
You may use an entry, radio buttons, drop down menu, etc
You may choose to have a default value or not

User input for overage cost- any floating point or integer ≥ 0
You may use an entry, slider, drop down menu, etc
You may choose to have a default value or not

User input for underage cost- any floating point or integer ≥ 0
You may use an entry, slider, drop down menu, etc
You may choose to have a default value or not

Button that triggers the order quantity calculation
Must have descriptive text (“compute policy”, “find order qty”, etc)

Display order policy
You may use whatever display method you prefer (read only entry, label, etc)

Sample GUI:

3

Function Name: clicked

When the “Compute Daily Order Quantity” (with whatever name you have given it) button is
clicked the clicked() method must be called. This method must check to see if all of the data
input entry inputs have valid values. If there is data missing or it is of a type/format that cannot
be used (ex: “two” instead of 2) your code should produce an error dialog box informing the user
of the problem. After this nothing else should be done until the button is clicked again.

If all of the input data is present and valid the computePolicy method should be called. The
value returned from this method must then be displayed in the GUI in whatever format you have
chosen.

Function Name: connectMySQL
This method will connect to the database. The parameters are the hostname, username, and
password. These are the server for the course database, the class username and the class
password, respectively (which you can find on T-Square).

Function Name: computePolicy
This method will take in as parameters the user specified values for the product, the overage cost
and the shortage cost.

From the data in the demand table you will need to find the average daily demand (µ) as well as
the standard deviation(σ) . *Hint: there is a SQL function stddev_samp() for standard deviation.

Calculate the critical ratio (R) and round to 4 decimal places.

After the critical ratio has been calculated, find the corresponding z-value in the zValues table.
Because your calculated R may not exist in the table you need to select the z value that
corresponds to the ratio that is closest (smallest absolute difference) to your R value.

This method must return the daily order quantity as an integer. Any value that would have been
fractional should be rounded up instead of truncated (You can't order 0.75 of a grape). *Hint:
there is a function in the math class - math.ceil(input) – that may be helpful.

Example Calculations:

Given the demand table on page 2, the zValues table below, and the Co and Cu values below, the
following policies would be obtained.

zValues Co and Cu values
z ratio Fruit Cu Co

1.10 0.8643 Apples 3 0.50
1.21 0.8869 Pears 4 0.75
1.29 0.9015 Grapes 2 0.25

4

results
 Average STDEV R z Q*

Apple 18 4.242641 0.8571 1.10 23

Pear 16.5 9.192388 0.8421 1.10 27

Grape 15.5 10.6066 0.8889 1.21 29

Grading:

You will earn points as follows for each piece of functionality that works correctly according to
the specifications.

General 10
Comments are used to explain each function and query 10

The GUI 25
GUI has all required components and is easy to use 15
Correct binding 5
Multiple trials can be conducted without restarting 5

clicked() 20
Checks that all required inputs are present and valid 10
Calls computePolicy() with the correct parameters 5
Updates GUI with the computed order quantity 5

computePolicy() 40
Policy computed for the selected product 5
Correctly finds the average daily demand 10

valid query and usable result
Correctly computes the R value 5
Correctly finds the z value 10

valid query and usable result
Correctly computes the daily order quantity 5
Returns the order quantity 5

connectMySQL() 5
correctly connects to the database 5

5

