
Jay Summet
CS 1803

Python Review 1

2

Outline

Introduction to Python
Operators & Expressions
Data Types & Type Conversion
Variables: Names for data
Functions
Program Flow (Branching)
Input from the user
Iteration (Looping)

3

Introduction to Python

Python is an interpreted programming language
A program is a set of instructions telling the computer what
to do.
It has a strict syntax, and will only recognize very specific
statements. If the interpreter does not recognize what you
have typed, it will complain until you fix it.

4

Operators

Python has many operators. Some examples are:
+, -, *, /, %, >, <, ==
print

Operators perform an action on one or more operands.
Some operators accept operands before and after
themselves:

 operand1 + operand2, or 3 + 5
Others are followed by one or more operands until the end
of the line, such as: print “Hi!”, 32, 48
When operators are evaluated, they perform action on
their operands, and produce a new value.

5

Example Expression Evaluations

An expression is any set of values and operators that will
produce a new value when evaluated. Here are some
examples, along with the new value they produce when
evaluated:

 5 + 10 produces 15
“Hi” + “ “ + “Jay!” produces “Hi Jay!”
10 / (2+3) produces 2
10 > 5 produces True
10 < 5 produces False
10 / 3.5 produces 2.8571428571
10 // 3 produces 3
10 % 3 produces 1

6

List of Operators: +, -, *, /, <, >, <=, >=, ==, %, //

Some operators should be familiar from the world of
mathematics such as Addition (+), Subtraction (-),
Multiplication (*), and Division (/).
Python also has comparison operators, such as Less-
Than (<), Greater-Than (>), Less-Than-or-Equal(<=),
Greater-Than-or-Equal (>=), and Equality-Test (==). These
operators produce a True or False value.
A less common operator is the Modulo operator (%),
which gives the remainder of an integer division. 10
divided by 3 is 9 with a remainder of 1:

10 // 3 produces 3, while 10 % 3 produces 1

7

DANGER! Operator Overloading!

NOTE! Some operators will work in a different way
depending upon what their operands are. For example,
when you add two numbers you get the expected result: 3
+ 3 produces 6.
But if you “add” two or more strings, the + operator
produces a concatenated version of the strings: “Hi” +
“Jay” produces “HiJay”
Multiplying strings by a number repeats the string!

“Hi Jay” * 3 produces “Hi JayHi JayHiJay”
The % sign also works differently with strings:

“test %f” % 34 produces “test 34”

8

Data Types

In Python, all data has an associated data “Type”.
You can find the “Type” of any piece of data by using the
type() function:

type(“Hi!”) produces <type 'str'>
type(True) produces <type 'bool'>
type(5) produces <type 'int'>
type(5.0) produces <type 'float'>

Note that python supports two different types of numbers,
Integers (int) and Floating point numbers (float). Floating
Point numbers have a fractional part (digits after the
decimal place), while Integers do not!

9

Effect of Data Types on Operator Results

Math operators work differently on Floats and Ints:
int + int produces an int
int + float or float + int produces a float

This is especially important for division, as integer division
produces a different result from floating point division:

10 // 3 produces 3
10 / 3 produces 3.3333
10.0 / 3.0 produces 3.3333333

Other operators work differently on different data types: +
(addition) will add two numbers, but concatenate strings.

10

Simple Data types in Python

The simple data types in Python are:
Numbers

int – Integer: -5, 10, 77
float – Floating Point numbers: 3.1457, 0.34

bool – Booleans (True or False)
Strings are a more complicated data type (called
Sequences) that we will discuss more later. They are
made up of individual letters (strings of length 1)

11

Type Conversion

Data can sometimes be converted from one type to
another. For example, the string “3.0” is equivalent to the
floating point number 3.0, which is equivalent to the
integer number 3
Functions exist which will take data in one type and return
data in another type.

int() - Converts compatible data into an integer. This
function will truncate floating point numbers
float() - Converts compatible data into a float.
str() - Converts compatible data into a string.

Examples:
int(3.3) produces 3 str(3.3) produces “3.3”
float(3) produces 3.0 float(“3.5”) produces 3.5
int(“7”) produces 7
int(“7.1”) throws an ERROR!
float(“Test”) Throws an ERROR!

12

Variables

Variables are names that can point to data.
They are useful for saving intermediate results and
keeping data organized.
The assignment operator (=) assigns data to variables.

Don't confuse the assignment operator (single equal sign, =)
with the Equality-Test operator (double equal sign, ==)

Variable names can be made up of letters, numbers and
underscores (_), and must start with a letter.

13

Variables

When a variable is evaluated, it produces the value of the
data that it points to.
For example:

myVariable = 5
myVariable produces 5
myVariable + 10 produces 15

You MUST assign something to a variable (to create the
variable name) before you try to use (evaluate) it.

14

Program Example

Find the area of a circle given the radius:

Radius = 10
pi = 3.14159
area = pi * Radius * Radius
print(area)

will print 314.15 to the screen.

15

Code Abstraction & Reuse Functions

If you want to do something (like calculate the area of a
circle) multiple times, you can encapsulate the code inside
of a Function.
A Function is a named sequence of statements that
perform some useful operation. Functions may or may not
take parameters, and may or may not return results.

Syntax:
def NAME(LIST OF PARAMETERS):

STATEMENTS
STATEMENTS

16

How to use a function

You can cause a function to execute by “calling” it as
follows:

functionName(Parameters)
You can optionally assign any result that the function
returns to a variable using the assignment operator:

returnResult = functionName(Parameters)

17

Indentation is IMPORTANT!

A function is made up of two main parts, the Header, and
the Body.
The function header consists of:
def funcName(param1,param2):

def keyword
function name
zero or more parameters, comma separated, inside of
parenthesis ()
A colon :

The function body consists of all statements in the block
that directly follows the header.
A block is made up of statements that are at the same
indentation level.

18

findArea function naive example

def findArea():
 Radius = 10
 pi = 3.1459
 area = pi * Radius * Radius
 print(area)

This function will ONLY calculate the area of a circle with a
radius of 10!
This function will PRINT the area to the screen, but will
NOT return the value pointed to by the area variable.

19

findArea function, with syntax error!

def findArea():
 Radius = 10
 pi = 3.1459
 area = pi * Radius * Radius
 print(area)

You can NOT mix indentation levels within the same block!
The above code will result in a syntax error!

20

What's wrong with findArea – Limited Applicability

def findArea():
 Radius = 10
 pi = 3.1459
 area = pi * Radius * Radius
 print(area)

It will only work for circles of size 10!
We need to make this function more general!
Step 1: Use parameters to accept the radius of any sized
circle!

21

findArea function better example

def findArea(Radius):
 pi = 3.1459
 area = pi * Radius * Radius
 print(area)

This function will work with any sized circle!
This function will PRINT the area to the screen, but will
NOT return the value pointed to by the area variable.

22

What's wrong with findArea

findArea(10) prints 314.59 to the screen
findArea(15) prints 707.8275 to the screen
myArea = findArea(10) will assign “None” to the
myArea variable. (Due to the lack of an explicit return
statement, the function only prints the value, and does not
return it.)
We need to make this function return the value it
calculates!
Step 2: Use a return statement to return the calculated
area!

23

findArea function best example

def findArea(Radius):
 pi = 3.1459
 area = pi * Radius * Radius
 return area

This function will work with any sized circle!
This function will return the area found, but will NOT print it
to the screen. If we want to print the value, we must print it
ourselves:

circleArea = findArea(15)
print circleArea

Note the use of the circleArea variable to hold the result of
our findArea function call.

24

Keywords, Name-spaces & Scope

In Python, not all names are equal.
Some names are reserved by the system and are already
defined. Examples are things like: def, print, if, else, while,
for, in, and, or, not, return. These names are built in
keywords.
Names that are defined in a function are “local” to that
function.
Names that are defined outside of a function are “global”
to the module.
Local names overshadow global names when inside the
function that defined them.
If you want to access a global variable from inside of a
function, you should declare it “global”.

25

Global vs Local example

myVariable = 7
myParam = 20

def func1(myParam):
 myVariable = 20
 print(myParam)

func1(5)
print(myVariable)

What gets printed? 5 and 7
The “local” myVariable inside func1 is separate from (and
overshadows) the “global” myVariable outside of func1
The “local” myParam inside func1 is different from the
“global” myParam defined at the top.

26

Global vs Local example – part 2

myVariable = 7
myParam = 20

def func1(myParam):
 global myVariable
 myVariable = 20
 print(myParam)

func1(5)
print(myVariable)

What gets printed? 5 and 20
The “local” myVariable inside func1 is separate from the
“global” myVariable outside of func1
The function assigns 20 to the “global” myVariable,
overwriting the 7 before it gets printed.

27

Making Decisions – Controlling Program Flow

To make interesting programs, you must be able to make
decisions about data and take different actions based
upon those decisions.
The IF statement allows you to conditionally execute a
block of code.
The syntax of the IF statement is as follows:

if boolean_expression :
 STATEMENT
 STATEMENT

The indented block of code following an if statement is
executed if the boolean expression is true, otherwise it is
skipped.

28

IF statement - example

numberOfWheels = 3
if (numberOfWheels < 4):
 print(“You don't have enough wheels!”)
 print(“I'm giving you 4 wheels!”)
 numberOfWheels = 4

print(“You now have”, numberOfWheels,
“wheels”)
The last print statement is executed no matter what. The
first two print statements and the assignment of 4 to the
numberOfWheels is only executed if numberOfWheels is
less than 4.

29

IF/ELSE

If you have two mutually exclusive choices, and want to
guarantee that only one of them is executed, you can use
an IF/ELSE statement. The ELSE statement adds a
second block of code that is executed if the boolean
expression is false.

if boolean_expression :
 STATEMENT
 STATEMENT
else:
 STATEMENT
 STATEMENT

30

IF/ELSE statement - example

numberOfWheels = 3
if (numberOfWheels < 3):
 print(“You are a motorcycle!”)
else:
 print(“You are a Car!”)

print(“You have”, numberOfWheels, “wheels”)

The last print statement is executed no matter what. If
numberOfWheels is less than 3, it's called a motorcycle,
otherwise it's called a car!

31

IF/ELIF/ELSE

If you have several mutually exclusive choices, and want
to guarantee that only one of them is executed, you can
use an IF/ELIF/ELSE statements. The ELIF statement
adds another boolean expression test and another block
of code that is executed if the boolean expression is true.

if boolean_expression :
 STATEMENT
 STATEMENT
elif 2nd_boolean_expression):
 STATEMENT
 STATEMENT
else:
 STATEMENT
 STATEMENT

32

IF/ELSE statement - example

numberOfWheels = 3
if (numberOfWheels == 1):
 print(“You are a Unicycle!”)
elif (numberOfWheels == 2):
 print(“You are a Motorcycle!”)
elif (numberOfWheels == 3):
 print(“You are a Tricycle!”)
elif (numberOfWheels == 4):
 print(“You are a Car!”)
else:
 print(“That's a LOT of wheels!”)

Only the print statement from the first true boolean
expression is executed.

33

IF/ELSE statement – example – Semantic error!

numberOfWheels = 3
if (numberOfWheels == 1):
 print(“You are a Unicycle!”)
elif (numberOfWheels > 1):
 print(“You are a Motorcycle!”)
elif (numberOfWheels > 2):
 print(“You are a tricycle!”)
elif (numberOfWheels > 3):
 print(“You are a Car!”)
else:
 print(“That's a LOT of wheels!”)

What's wrong with testing using the greater-than
operator?

34

Getting input from the User

Your program will be more interesting if we obtain some
input from the user.
But be careful! The user may not always give you the
input that you wanted, or expected!
A function that is useful for getting input from the user is:

input(<prompt string>) - always returns a string

You must convert the string to a float/int if you want to do
math with it!

35

Input Example – possible errors from the input() function

userName = input(“What is your name?”)
userAge = int(input(“How old are you?”))
birthYear = 2007 - userAge

print(“Nice to meet you, “ + userName)
print(“You were born in: “, birthYear)

input() is guaranteed to give us a string, no matter
WHAT the user enters.
But what happens if the user enters “ten” for their age
instead of 10?

36

Input Example – possible errors from the input() function

userName = raw_input(“What is your name?”)
userAge = input(“How old are you?”)
try:
 userAgeInt = int(userAge)
except:
 userAgeInt = 0
birthYear = 2010 - userAgeInt

print(“Nice to meet you, “ + userName)
if userAgeInt != 0:
 print(“You were born in: “, birthYear)

The try/except statements protects us if the user enters
something other than a number. If the int() function is unable to
convert whatever string the user entered, the except clause
will set the userIntAge variable to zero.

37

Repetition can be useful!

Sometimes you want to do the same thing several times.
Or do something very similar many times.
One way to do this is with repetition:

print 1
print 2
print 3
print 4
print 5
print 6
print 7
print 8
print 9
print 10

38

Looping, a better form of repetition.

Repetition is OK for small numbers, but when you have to
do something many, many times, it takes a very long time
to type all those commands.
We can use a loop to make the computer do the work for
us.
One type of loop is the “while” loop. The while loop
repeats a block of code until a boolean expression is no
longer true.
Syntax:

while boolean expression :
 STATEMENT
 STATEMENT
 STATEMENT

39

How to STOP looping!

It is very easy to loop forever:
while True :
 print(“again, and again, and again”)

The hard part is to stop the loop!
Two ways to do that is by using a loop counter, or a
termination test.

A loop counter is a variable that keeps track of how many
times you have gone through the loop, and the boolean
expression is designed to stop the loop when a specific
number of times have gone bye.
A termination test checks for a specific condition, and when
it happens, ends the loop. (But does not guarantee that the
loop will end.)

40

Loop Counter

timesThroughLoop = 0

while (timesThroughLoop < 10):
 print(“This is time”, timesThroughLoop,
 “in the loop.”)

 timesThroughLoop = timesThroughLoop + 1

Notice that we:
Initialize the loop counter (to zero)
Test the loop counter in the boolean expression (is it smaller
than 10, if yes, keep looping)
Increment the loop counter (add one to it) every time we go
through the loop

If we miss any of the three, the loop will NEVER stop!

41

While loop example, with a termination test

Keeps asking the user for their name, until the user types
“quit”.

keepGoing = True
while (keepGoing):
 userName = input(“Enter your name! (or
quit to exit)”)

 if userName == “quit”:
 keepGoing = False
 else:
 print(“Nice to meet you, “ + userName)

print(“Goodbye!”)

42

The End!

Next up – Python Review 2 – Compound Data Types and
programming tricks..

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

