
CS 2316 Individual Homework 2 – Conditionals & Loops
Due: Wednesday, Jan 25th, before 11:55pm
Out of 100 points

File to submit: HW2.py

This is an INDIVIDUAL ASSIGNMENT!
Collaboration at a reasonable level will not result in substantially
similar code. Students may only collaborate with fellow students
currently taking CS 2316, the TA's, and the lecturer. Collaboration
means talking through problems, assisting with debugging, explaining
a concept, etc. You should not exchange code or write code for others.
Furthermore, student code from previous semesters may not be used.

For Help:
• TA Helpdesk – Schedule posted on class website.
• Email TA’s or use Piazza

Notes:
• Don’t forget to include the required comments and

collaboration statement (as outlined on the course
syllabus).

• Do not wait until the last minute to do this assignment in
case you run into problems

• Read the entire specifications document before starting
this assignment.

Simple Functions
You will write a few python functions for practice with the language. In
your HW2.py file, include a comment at the top with your name,
section, GTId/Email, and your collaboration statement. Also, include
each of the following functions below. For purpose of this homework,
you may assume that all inputs will be valid.

1. countLetter
2. movieAge
3. curveGrade
4. numPyramid
5. appleFan
6. groupSeater
7. clockTurtle

1. countLetter(10pts)

Description:
Write a function that takes in a string that is one character and a
2nd string as parameters. Your function should find how many
times the letter appears in the string. Note that it should consider
both capital and lower case letters as matching!

Parameters:
-aLet (String): A string that is the letter you are trying to find
-aStr (String): A string

Return Value:
(Integer) Number of times the letter appears in the string.

Test Cases:
1. countLetter("e", “I like CS2316!”) returns 1
2. countLetter("L", “Hello world”) returns 3
3. countLetter(“m”, “MY NAME IS MILES”) returns 3

2. movieAge (10pts)

Description:
Write a function that takes in a list of ages and returns the total
amount needed to get into the movie theater. If you are 13 or
younger, you need to pay $8. If you are older than 13, you need
to pay $11. If you are 60 or older, you get a senior citizen
discount, and you will need to pay $9. Return a string that has a
dollar sign at the front!

Parameters:
aList (List): A list of people’s ages

Return Value:
totalAmount (String): The total amount need to be paid

Test Cases:
1. movieAge([65,12,23,30]) returns “$39”
2. movieAge([10,13,20,60]) returns “$36”

3. curveGrade (15pts)

Description:
Write a function to curve (add) points on each exam grade and
return the overall average of the class after the grades are
curved. The maximum points a student can get is 100, even
with the curve points.

Parameters:
aList (List): A list of grades, ranging from 0 to 100
curvePt (Integer): The amount each exam should be curved

Return Value:
(Float) Overall average of all exams in the list after curving. .

Test Cases:
1. curveGrade([89,40,73,90,55,69],5) returns
74.33333333333333
2. curveGrade([30,50,98,79,82],10) returns 76.2
3. curveGrade([100,73,49,95,20,37,83,74],13) returns
76.75

4. numPyramid (10pts)

Description:
Your function will draw a number pyramid on screen using the
print function. Your number pyramid will have X rows.

Parameter:
X (Integer): An integer that specifies the number of rows of

the pyramid. You may assume the number is an integer between
1-9.

Return Values:
None

Examples:
You have X number of rows, but note that there are three 2s, five
3s, seven 4s, etc.

5. appleFan (15pts)

Description:
Write a function that returns a string based on the apple products
selected by the inputs. Use the inputs True and False. The function
should return the string “I have ” concatenated with the
designated apple products. The four apple products should be:
"IPods", "ITouchs", "IPhones", and "Macs". If the user doesn’t have
any Apple products, return the string “Not an Apple fan.” If the
user has all four Apple products, return the string “I’m a huge
Apple fan!”

Parameters:
answer1: a boolean (True or False) representing whether the user
has “IPods”
answer2: a Boolean (True or False) representing whether the user
has “ITouches”
answer3: a boolean (True or False) representing whether the user
has “IPhones”
answer4: a boolean (True or False) representing whether the user

has “Macs”

Return Value:
The string “I have” + the designated Apple products + “.”

Test Cases:
1. appleFan(True, True, True, True) --> “I have IPods, ITouchs,

IPhones, Macs. I’m a huge Apple fan!”
2. appleFan (True, False, True, False) --> “I have IPods, IPhones.”
3. appleFan (False, False, False, False) --> “Not an Apple fan.”

6. groupSeater (20pts)

Description:
Write a function that takes in a List of parties and number of seats
available as parameters. You are trying to seat as many parties as
possible with the given groups. For example, if you have 8 seats
and parties of 10, 1, 3, and 4, you want to seat parties of 1, 3, and
4 first, instead of having to wait for 2 more seats for the party of
10. If you have 10 seats and the same parties, you want to seat
the party of 10 first. Always seat the groups with the most people
first (if they fit) before moving on to the smaller groups! Generate
a string: “You have seated parties of” and concatenate it with the
parties you have seated as well as the number of seats
remaining. If you have seated EVERYONE waiting in line, the string
should be “You have seated everyone!” If you can’t seat anyone
because there are no parties that can get seated with available
seats, return “You cannot seat anyone. Wait for more seats to be
available!”

Parameters:
aList (List): A list of parties of people
aNum (Integer): Integer that represents number of seats available

Return Value:
A string that describes given condition properly.

Test Cases:
1. groupSeater([10,1,2,3,7],8) returns: “You have seated parties of

7, 1. There are 0 seats left.”
2. groupSeater([10,9,8,11], 5) returns: “You cannot seat anyone.

Wait for more seats to be available!”

3. groupSeater([1,5,3,4,3,1,5], 25) returns: “You have seated
everyone!”

7. clockTurtle (20pts)

Description:
Write a function that uses the turtle module to draw a clock with
a given clockHour, as short hand of the clock, and aNum, as the
radius. You may assume that the long hand of the clock will stay
at 12 at all times. You do need to draw the clock layout using
turtle module. At each hour position (12, 1, 2, 3, 4, 5, etc), make
your turtle leave a stamp of itself. (You can change the turtle
shape if you want.)

Parameters:
clockHour (Integer): an integer between 1 and 12
representing the short hand of the clock
aNum (Integer): radius of the clock

Return Values:
None

Examples:
clockTurtle(9,100) clockTurtle(5,70)

Grading Rubric
countLetter(10pts)
- Finds all letters in both lower and upper case letters. 5pts
- Returns correct number 5pts

movieAge(10pts)
- Correctly limits age and converts to correct price 5pts
- Returns correct total amount 5pts

curveGrade(15pts)
- Limits grade above 100 while calculating average 5pts
- Returns correct average 10pts

numPyramid(10pts)
- Correct number of rows and correct number in rows 5pts
- Correct shape 5pts
-
appleFan(15pts)
- Takes in four parameters 1pt
- Returns proper “I have”+products+”.” 4pts
- Returns “Not an Apple fan if False for all parameters 5pts
- Returns “I’m a huge Apple fan!” in addition to “I have” string 5pts
-
groupSeater(20pts)
- Takes in two parameters 1pt
- Returns “You have seated parties of” string for excess seats 4pts
- Returns “There are x seats left” with correct number of seat left 5pts
- Returns “You cannot seat anyone….” If not enough seats 5pts
- Returns “You have seated everyone!” if all parties are seated 5pts
-
clockTurtle(20pts)
- Takes in two parameters 1pt
- Long hand stays at 12 3pts
- Short hand is drawn at correct hour position 7pts
- Short hand is shorter than Long hand (recognizably) 2pts
- Turtle is tamped at each hour position 2pts
- Turtles are stamped correctly (in correct direction) 3pts
- The clock size changes as radius changes 2pts

Homework Created by: Catherine Hwang – Spring 2012

