
Debugging Lenses: A New Class of Transparent
Tools for User Interface Debugging

Scott E. Hudson
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213-3891
E-mail: hudson@cs.cmu.edu

Roy Rodenstein
Ian Smith

Graphics Visualization,and Usability Center
1 College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

E-mail: { royrod, iansmith} @cc.gatech.edu

ABSTRACT

The visual and event driven nature of modem user
interfaces, while a boon to users, can also make
them more difficult to debug than conventional
programs. This is because only the very surface
representation of interactive objects - their final
visual appearance - is visible to the programmer
on the screen. The remaining “programming
details” of the object remain hidden. If the
appearance or behavior of an object is incorrect,
often few clues are visible to indicate the cause.
One must usually turn to text oriented debugging
techniques (debuggers or simply print statements)
which are separate from the interface, and often
cumbersome to use with event-driven control flow.

This paper describes a new class of techniques
designed to aid in the debugging of user interfaces
by making more of the invisible, visible. This
class of techniques: debugging lenses, makes use
of transparent lens interaction techniques to show
debugging information. It is designed to work in
situ - in the context of a running interface,
without stopping or interfering with that interface.-
This paper describes and motivates the class of
techniques, gives a number of specific examples of
debugging lenses, and ,describes their
implementation in’ the subArctic user interface
toolkit. ”
KEYWORDS: Interactive Debugging, Lens Interaction
Techniques, Dynamic Queries, Context-Based Rendering;
User Interface Toolkits, subArctic, Javam.

1. MOTIVATION AND BACKGROUND ”

Writing complex user interfaces can be difficult.
For example, even experienced programmers

*

This work was supported in part by a grant from the Intel
Corporation, and in part by the National Science Foundation
under grants, IRI-9500942 and CDA-9501637.

Y

Pcmlission to mnkc digital/hnrd topics ofnll or pnfl ofthis mnterinl for
pcnonnl or clnssroom use is gmntcd without fee provided that t&e copies
nrc not mndc or distributed for prolit or conuncrcinl advantage, the copy-
right notice. the title ofthe publication and its date nppcnr, and notice is
given that copyright is by permission ofthe ACM, Inc. To copy otherwise,
IO republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee

UIST 97 Bang Alberfa, Canada
Copyright 1997 ACM 0-89791-881-9/97/10..%3.50

make mistakes in specifying complex constraints
[Myers9 11. The difficulty of debugging such
problems can be exacerbated by the graphical
nature of the interface - objects and relationships
within the interface are seen only in their final
rendered form. Hence, the great usefulness of the
visual interface to the end user can come at the
price to the programmer. If the appearance or
behavior of an object is incorrect, this can
sometimes be readily seen, but often few clues are
visible to indicate the cause. For example, if an
object does not appear on the screen when it
should, it could have been given a very small size,
it could have not been added to the interactor tree,
it could be marked as non-visible, it could be
positioned off screen or outside clipping bounds,
or it could be obscured by another object.
However, none of these causes presents visual cues,
and so the programmer must typically resort to
text oriented / techniques (debuggers or simply
print statements) which are separate from the flow
of the interface, and often cumbersome to use with
event-driven control flow.

This paper introduces a new class of debugging
aids designed to be used in concert with a running
interface, without stopping it or interfering with its
normal operation. These techniques are based on
the use of Magic LensesTM [Bier93; Ston94,
Bier94-J. Magic Lenses are transparent interface
elements which’ are designed to be moved over
other interface elements and modify the display, of
those elements in some way. !In general lenses can
modify the appearance of objects in arbitrary ways<
- some lenses add information to the display;4
some remove all but selected information, and
some make more. arbitrary changes, toa the display.
In general, lenses can be seen as a forruof focus
plus context visualization technique-, [Fum86,
Mack91, Rao94] which displays information
relevant to a’ particular task (in our case a
debugging task) in the context of a “normal”
display.

In general, lenses can reduce.screen clutter and
increase the usefulness of specialized or task
specific information by :focusing a greater level of
detail on particular screen areas. Further,, because

1 .

179

\@gure 1:. A simplecirculardebugging lens jwhich displays-a .bounding box ‘around undeqlying interactors; as
‘,,l,-.:i ! 13 riyg-;I _ ,j! ’ - I ’ 1 * rt:!i’i !. iwell as a name tag with theit class name. .c., [’ _) :, : ~1 ‘1,

they are transparent they”d~‘;riot’ ‘obscure”the
underlying, cqntent,j they can .display l ‘information,
in, i situ : -~.in;r the: underlying *area, .and in, the-,
e&ting context& so that the useris’not required’
to,.) make. the ;-switch to : an-: extraneous ,mental,
context,: nor: to-divert: attention to a different screen
area -in, order to see, the. results., Lenses .also: allow:
click-through;jiiterdction~ -with -, the’ underlying ,
c.ontent- (via what, were,called toolglasses by the
original. .inventors)~7Finally; lenses can-, display
natural!y;graphical information which, would /“not*
be practical;to;:display,;to~:displayas f text.L .For example, an-
applicationidescribed, in, pdwa97] (and. built with.
the ‘spbArctic~Jens~~infrastructure) shows the face
and contact$nformation of the person lwho .lastr
modifiedi partioffla. shared .docunient. Similarly,
Figure- 1;. $ro,vjdbs*: a: graphical” display. of’::the
bounding-box ofieach~interface elementander. the
lens;,;, t< !; T;,; ;- +Jy, 14 ‘:*i: ,jj i, : .-I?, .‘I_

This paper describes a new class of debugging’
tools based: on,Jenses.!jjj:Debugging lenses operate
over, the top: of rarunxiings interface. CThis: allows I
them to ‘preserve code rinteg’rity and:(.interactive
flow *by’ obviating theyaddition ‘of debugging prim,
statements, or control flow interruptions.

1 ; J “iv:. F. iT rT:Ig : Ll . ,e*) :. ‘, q 1,

Debt&$& ienses”are’ easy’ for the programmer. to
use:’ @the$ubArcti&” toolkit’ [Huds96, ‘Huds971,
they can’ be ‘added)&‘interface with’, only ‘a one-,
tiord%h%ge- to- thea source code. Debugging
lens& update .dynamically, so‘ the -$rogram’mer :can ’
be’siire thzt the ir&iiation ‘displayed is up to
date; and lenses’ click-through interaction and
transparency, per+ debugging lenses to be, used
fully inTcontext, drrectly over the running interface
of the real application.. ‘I ‘? ‘I
The remainder. .of this paper contains a discussion of debu‘gg~yl~nse~~

~ Section ‘2 describes the
technique in general,‘;while r Section 3 considers
several example&of debugging Jenses that we have:
implemented. Section 4 provides a description of
the architecture and-- implementation of our
debugging lenses, and finally, Section 5 provides
some: brief,.conclusions: ~i 1 I 1 . i’

As indicated”ab,ove, debugging ‘lenses ‘possess the
ge~~~!,l’~~p~~i~~~~~~~~ ‘modify the appearance of the
underly&gZnterface, :add information; or focus on
partjcular aspects of ‘debugging. ‘Figure 1 sho’ws a
basiE’circular debugging lens which draws a small

* I, \i \,! ,,,“‘, ,I, I \
!ll II ’ !!I: /” ,,I

180

Figure 2. The depth- and child-number-bound lens. Note that the arrow at-bottom is not in the selected range
and does not display debugging information.

name tag : showing underlying interactors” class
name, as well as a bounding box showing. its
spatial extent. As the lens is moved its’ display
updates dynamically to encompass new objects
underneath it, while the area the lens was
previously over is displayed in its normal form.

Debugging lenses require extra drawing, ‘.and
hence could conceivably cause performance
problems. However,, the area of ad,ditional
drawing is limited in size, and our initial
experience with them has not uncovered
significant performance problems. In almost all
cases, interface responsiveness has not been
noticeably slower when ‘debugging lenses are us&d;
Maintaining respousiveness aids in the realistic
testing of the.inteiface through the lens.

Debugging lenses are highly extensible. Their
implementation uses a flexible lens, and layer
infrastructure provided by the subArctic user
interface toolkit. ‘This ,allows them, to be .easily
combined with existing or novel interactors; For
example, taking advantage. of the fact that
debugging lenses provide a convenient, on-screen
platform for debugging interactions,’ the lens in
Figure 2 goes beyond the basic lens from Figure 1
to include a side-mounted tool palette, allowing
for extended user control. Whereas the first lens
draws only a small tag with the class name of each

interactor’ and a: bounding box around it, the
second lens’ controls “let the user ’ turn various
additional information‘-displays on and off;‘&ch as
interactors’ ’ x and y coordinates, width and%‘ height,
class. name, a@ bounding box, with ‘constrained
edges shqwn in‘ blue and unconstrained edges
shown in red.’ ’ i,.. ”

A sample-use case for’these lenses wotiittbd’if:dne
has mistakenly created ,an interactor (either at
initi,al$zation time or while the program is running),
of zero ,height and/or ;width. In this case the lenses
would show the class,n-ame tag ,for jhel interactor,
alerting us to its existence and locatron; -as well as
to the problem, its zero size. As another typical
example, if the interactor were placed into an
incorrect stackinglayer, which would in most cases
hide it from view: the programmer might wonder
whether the code ,had left ,-out ‘the ’ interactor
completely, ,whether its posrtion, or” size were
incorrect, or whether a constraint error w,as causing
it, to be invisible, among other ‘possibilities.
Debugging lenses would reveal the rogue
intcractor’s presence -and show ‘any or all of the
standard information about it. ’

An’ additional ’ capability of the lens ,shown in
Figure:_2 allows ‘it to ..provide, more‘, selected
information. The depth and child:number range

181

Height

a Isolation

-’ , : ”

Figure -3; The isolation lens: Note-that several arrows overlap, but only the-one we have focused on ,using
&; cy! crosshairs (see grabber lens in Figure 5)~is!displayediri~the lens. /p -1 ~‘1.: ‘it

I
.I ; j, ;‘;-,a ’ ’

:.s i;’ k. in‘. .: / ,.QL 18. ‘/ e.,I”’

sliders, of the lens (mounted ,on the left and bottom
of its tool palette) can further be used, to isolate
interface ‘elements and .studv them-indivihuallv.

extremely ,ureful in symptom detection, problem
dragnosis, test-case‘generation, and,‘demonstration
of repeatability,. : ^‘.A _iid i; $8

Thud sliders’ may be .used to *Select in&actors at’s
I;ar,ticular;‘~ range of depths in the interface’s,
iriter%or .&eek, :or drairge of interactors, selected -by
ordinal ‘number within a child “list.“The lens would,
then. display its added information only for’those
interactors >falling Cthin- the Ispecified ranges. In
this! .manner, a single I interactor or- a subset of
interactors in’ the apfilication ‘may,lbe, selectrvely
included or’excluded. ThWallows better visibility
of!objects’ of’@rticularinterest in’ situatiohs where
interface elements are’ densely- Packed or’ occlude
dire. another,“ ;. _ .) . . _o -, -, ,‘, ’ ’ ; _ < . : “. 1-1
&o&%ent ofi the depth’.and. childnumber sliders-
&u.& -the. lens .image to’ be updated’.^dynamically<
&~-.a’ result,’ : these controls provide a form of
dyniiiric &&y ,[Ahlb92, Ahll&l, ‘Fish95]; This,
combined. &ith the - ability WZto, select . dis’playL
components, as, well as resize? and ,reposrt;on the
lens,, proyrdes,. a *very flexrble tool for focusing: on:
the specrfic, rnformation ,.necded, for a.. specific,
debugging situation. The lenses’ ability. to let user
interaction pass through to the underlying
interface also makes them furthiiir- suitable for use
in situ. ‘Being able ,fo see information directly on:
the interfaced’and’ ‘interact normally Gith: it is!

in Figures l[and :2’we;have -seen :ai versionlofi the
original debugging. p lens display that ,, ,y~i)s
drstrrbuted with publrc releaiqsf of the subArctic
toolkit (and now ..m use by ,a-‘number of users
outside our group)‘, as’(vjel1’ as the ‘most common
lens used in our Ccurient dev&$ment release.1
These illustrate many of the basic conce$tst of
debugging ’ lenses; _’ and, ha<{ “been effective,
debugging, aids, in. practical use, (by our groub,Land
o,@eis).:“In, this section we consiler several,more
examples of this class< of, techmque m order. to
illustrate more of the possibilities ;f the design
s&&. .2T’{;~:-,: 0” t ‘j:~,i I.

$r ‘addition’ to the.‘dynarnic.‘~6er~“ca~dbiliiies
shoivn ‘in 1 @igure i 2, a’ s’ecoiid .‘method that
dkb,ugging .lenses can e&h; ‘td empo&r the u&r
in the interface debugging ‘,process is limiting’ ‘a
len$s ‘focus ,,at,“the;h atomic, level.: of specific,
se,lectable,interactors. F&me 34hpv4sian is,olat,iqp
lens who+ focus ,is‘,lii-$ed’fo,:a qartrcular set of
interactors chos,e>n by. the user., , _ ‘T,‘~ : _*’ , ,i ,i,‘,)I : . ., ,. ;‘. j ‘i:*A”;ir’,. , I 6 I ‘i 1 ,,I
i. “‘_ L’>J .I* i, e I_‘, , / t! / ,!: ,<I i ;

182

ji

Figure 4. The, constraint-graph lens, shpwing constraint sources and targets. 3

,

‘_. -’

. .

Figure 5: The grabber ltns allows you to grab interface elements using the crosshairs, and reposition them.

183

.’
: .

,’

_.
.:

,

. :

1 . . .

.

Figure 6. The child-ex$oder:lens: spreads out .children to reduce ~clutter in the-i&s view of the interface.

These interactors are drawn in their normal
position and the background of the lens is opaque,
visually isolating the interactors in the focus set
from the rest of the interface in order to avoid
clutter, and allow control of the lens’s display of
debugging information for the set. The drawing
isolation can be toggled on and off, so that context
with the rest of the underlying interface can be
reestablished at any point, without’losing the focus
set of interactors.

A further advantage’ of this focus model is that,
once set, the lens can display information about
interactors not only through drawing over the
interface, but also by using the anchored palette to
its side to display information. This information
remains current whether the lens’s transparent area
is over a focused-on interactor or not. If at some
point during runtime the interactor that has the
focus disappears, this lens will make it clear
whether the interactor has become of zero size, has
been hidden under an opaque interactor, or has
actually been removed from the interface.

As indicated above, debugging lenses are easily
extensible. Figure 2 above shows an example of
this, an interactor that places three lenses into a
tabbed-folder parent. This allows the user to switch
between the different capabilities provided by each
lens and use- the most appropriate one at all times;

? -l’& ,;;I rgor@y, kc,‘-“\ “...7::.,&::~yi3 ; 3 :: .! ‘? ̂ i,,_ :,” ‘7

each lens preserves its state, so no context or effort
is lost in switching between lenses.

Figure 4 shows another tab of this tabbed-panel
interactor, which contains a constraint-graph lens.
This lens displays arrows depicting constraints on
interactors, such as the horizontal arrow spanning
the width of the parent panel on the left side. This
lens is useful for visualizing constraints, and
although somewhat cluttered in this full view, can
-:also be focused using the range sliders to obtain a
more targeted view.

A different type of debugging lens appears in
Figure 5. This is a grabber lens. It can pick up
interface elements under the crosshairs, reposition
them, and drop them back into the interface. This
can be useful both for debugging of an interface’s
visual design and for testing of interactors in
different locations and under different parents,
This can bring to light certain problems that a
static interface might not indicate so readily.

Finally, Figure 6 shows a child-exploder lens. This
lens explodes the representation of a parent
interactor’s children (that is, a subtree, or interior
node, in the interactor tree. The children are
spread out, that is, the vertical and horizontal space
between them is increased, so that a tight layout or
‘overlapping interactors can be viewed with
minimal interference. i , L,/ ~, cm, “‘., : ’ . J,bi , rThis.iis .,an example, of a

184

specialized lens that can be applied in particular
situations to handle particular visualization needs.,

Although a number of different, and very’useful
examples have been shown here, it should also. be
clear that these particular techniques are only the
beginning of a larger tool suite that can be
gnyeFped within the. framework of debugging

. ‘/

4. ARCHITECTURE AND IMPLEMENTATION

User interfaces written using the subArctic toolkit
utilize a structure typical in user interface
construction: they maintain a ‘root’ interactor and
build an n-ary tree of child interactors with this
root interactor at the top as shown in Figure 7.
Rendering of the user interface is performed
through a recursive traversal of the interactor tree,
passing a drawable object down the tree starting
from the root. The drawable object maintains
current drawing state (such as the current clipping
rectangle) and provides operations for producing
output on a drawing surface. Each ,interactor is
responsible for Producing its ‘own output. The
non-leaf interactors draw themselves then continue
the traversal of their children, while le’af interactors

Figure 7. A ‘representation of the typical structure
of a user interface. Drawing of the interface is
performed as a recursive traversal of the interactor
tree passing a drawable object which maintains
drawing state, and provides access to a drawing
surface.

I ,D&yable 1 ’
i

,I L :

(Lens Parent)

Normal Draw I

Figure 8. The interactor tree as set up for using
lenses. The lens’s redraw causes a second drawing
pass. through the interactor tree. . I-!

,,) I., /
1, ‘ I / ‘~

simply drawing themselves and return. ,: ’

To implement lenses in subArctic, a special lens
parent is inserted above the normal top interactor,
as depicted in Figure 8. This parent ensures that
damage resulting from modifications to interactors
appearing under- the lens is ‘communicated. to the
lens so that it ,may redraw itself. This ensures-that
the most current state is always displayed. No
modifications beyond this change of the root
interactor are necessary to utilize lenses; indeed, a
one-word change in the main source file’ of a
program (e.g., changing “interactor-applet”’ to
“debug-interactor-agplet”) allows the programmer
to take advantage of lenses to debug-Ltheir user
interface. The use of the special lens parent is
invisible tom the program, and no other code need
be modified. When used, in this, ,manner,
debugging lenses may be shown or hidden by (the
user through a special keypress-mouse clrck
combination. In the current system, this brings up
the tabbed-panel lens shown in Figures 2 and 4
(which is currently being extended. ,to include
additional lens types).. ’ ,
The lens object placed under the lens parent will
receive a redraw request as a part of the normal
recursive redraw process. This lens object acts on
this ‘request by ‘doing a second specialized drawing
traversal starting at its parent (taking care not’to

185

recursively draw lit$lf-with this traversal). For the
most common case of additive lenses, the lens
drawing is simply’done,-overthe top of the existing
object drawing. For lenses that completely replace
the area under them,(e.g., the isolation lens shown
in Figure 3), the lenr,$mply, clears its background
then performs the, drawing, traversal. es‘
The drawing~t&versal performed by the lens is
implemented using a general traversal mechanism
provide by the subArctic toolkit. This traversal
mechanism.works on the basis of a parameterized
top-down tree walk.,;,-?lhe walk is controlled by a
predicate object which determines at each node
whether the recursive traversal, should e&l at that
point, or continue. The predicate operateslboth on
the basis. of-the node it visits, and using a special
state’ object passed:‘down the traversal. This state
object typically .contains a drawable giving access
to a properly clipped ‘portion of the screen, and
encodes things’ like ‘the‘ current’ tree level and child
number, as well as the ranges that drawing should
take place at. ,t

The predicate -first test&he.,:object position -to
insure that .-its 1 drawing. would ‘not. be totally
discarded by clipping’ (i,e;,ddoes :a trivial, ‘reject
t.est), then- performs-semantictests.. such as
verifying that the interactor is within the user
requested range.s.lt;;~f;the, predicat$ indicates thaf a
node should be visited, a special action object is
invoked with both *the- visited iritcractor and the
s?ateobject’ ‘p&d as rpar&eters:’ This ! action
object performs tl+:drawing ,action’ for the lens. ,‘, ,‘I ‘!’ j+ 5 ‘_ >A te: : 1

In order to step ‘deeper irit&he^~traversal the state
object- is%-a&formed. from’J%- state suitable forthe
parent object ihto’a$ate%bjkcf suitable”for %e ‘by
a ” candid&k child interactor:;?this’ might‘~ for
exam@’ in&+ irictkme&ig _ the current tree
depth)&Finally, the t;aversal process is repeated
recursively: with. the newly- transformed.) state
informatiph.;-,::r, i : 1 j;“: : *. -::_>I r ,f,
r

The’ code ‘:f&-’ ‘the standard bounds lens ‘(2
standalone version of ‘the lens‘ shown in Figure’ 2)
is impleme&d in just’over ‘1300 lines of Java
code. ’ Additional lenses’ are of ‘similar-- size
(although’ subclassing .can” reduce
kbrn& :&e;)‘j’ ‘” * ,_, ..lj ,J. ‘their, $z,e;;in

, p..r, I’ ._b 1.8 -_.
~&&&j~S 1;’ t .s.; 1 ; _, I ,-; , I:

The debugging lenses introduced in this paper
pro.vide, , a ,new I class: of 7 debugging tool for, user
interfaces., ‘; These T tools can significantly help
debugging by making information about interface
objects, ,which would.have bepr@visible, visible to
;p,, programmer., _ ,_ Ail $-rtly $ they all?k ., ._” :$,

information’ to be lpresented in a selective and
focused -manner that’provides data of interest in
the context of the interface. Finally, debugging
lenses have the adyantage that. they can ,operate in
situ on any interfac,$, with minimal disruption to

‘the workings. of ,$e interface. : i

One- limitation ofthe current lens infrastructure is
that, while permitting composition of lenses via
overlap, it does not have particular capabilities to
‘attempt to mtelligently arbitrate this composition,
We are currently working on a new and simplified
lens a) infrastructure which will I allow for more
semantically. meaningful and ,‘sophisticated
cornpositing techniques. b I I

+&NC@ -”

[Ahlb92] Ahlberg,’ C.,

,,; ’

W,illiamson, C.;
: .: ‘:‘Shneiderrnan, B., “Dynamic Queries

’ for ‘Information Exploration: An

-*) Imple’mentation and Evaluation”,

; : x.,, r” 1 i Prbceedin&s,z of AGM C&lI,192
-,f ,>l! .‘I I C@+re~ce 93,. : Hum&z Factq,rs, in

! / .t., _, : CoFp;utfng Systems, 1992,. pp.,!619-
./.,‘, ‘,, 626. ,; ,hl ,’ ,’ t 1

[Ahlb94] Ahlberg, C:, Shneiderman, B., “Visual
Information Seeking: Tight coupling
of. Dynamic Query Filters with
Starf$d’~Displays”, Proceedings of
tiCMTHI’94. Conyerence on ’ Human
FaZtoks; irj Com$uiing System;, 1994,
pp.: 313:317. _

[Bier931 Bier;#,E.A.; Stone, M.C., Pier, K.,
Buxton, W., DeRose, T.D., “Toolglass
and Magic Lenses: The See-Through
Interface”, Proceedings of ACM
SIGGRA’PH ‘93 Conference on
,Co,tiputek Graphics and Interactive

-I”” Techniques, 1993, pp. 73-80.

[Bier941 Bier, E., Stone, hN!., Fishkin, K.,
. Buxton, W.; Baudel, T., “A

Taxonomy of Se&Through Tools”,
Proceedings of ‘\ ACM CHI’94
Conf+-ence on Human Factors in
CompFting Systems, 1994, pp. 358-
364:

[Edwa97] Edwards, K., Mynatt, B., “Timewarp:
Techniques for Autonomous
*‘Collaboration,” to appear in

?, .: jYic ,q<qce&jngs, of ACM, CHI’97
,lz’i‘rk.V’ C&f<rence on Human Factors in

i _ -. ._\ -‘. . . Computing Systems,. 1997.

[Fish951 ‘~Fislikin, !!K., Stone, M., t‘Enhanced ,.:<‘I I.
Dj&&‘c Queries via Movable

:186

Filters”, Proceedings of ACM CH1’95
Conference on Human Factors in
Computing Systems, 1995, pp. 415
420.

.

[Fur&61 Fumas, G. W., “Generalized Fisheye
Views”, Proceedings of ACM CHI’86
Conference on Human Factors ‘in
Computing Systems, 1986, pp. 16-23.

[Huds96] Hudson, S., Smith, I., “Ultra-
Lightweight Constraints”,
Proceedings of the ACM Symposium
on User Interface Software and
Technology, 1996, pp. 147-155.

[Huds97] Hudson, S., Smith, I., “The subArctic
User Interface Toolkit Home Page:,,
Web document available at:
http://www.cc.gatech.edulgvuluifsub_ar

1’ ctic
,’ I’ ,, -F-- [Mackigl] Mackinlay, J. D., Robertson, G. G.,

Card, S., K., “The Perspective Wall:
Detail and Context Smoothly
Integrated”, Proceedings of ACM

CHI’91 Conference on Human
Factors in Computing Systems, 1991,
pp. 173-179.

[MyerBl] Myers, B., “Graphical Techniques In ’
a Spreadsheet For Specifying User
Interfaces”, Proceedings of ACM
CHI’91 Conference on Human
Factors in Computing Systems,, 1991,
pp. 243-249.

[Rao94] Rao, R., Card, S. K., “The Table Lens:
Merging Graphical and Symbolic
Representations in an Interactive
Focus+Context Visualization for
Tabular Information”, Proceedings of
ACM CHI’94 Conference on Human
Factors in Computing Systems, 1994,
pp. 318-322.

[Ston94] Stone, M.C., Fishkin, K., Bier, E.,
“The Movable Filter as. a User
Interface Tool”, Proceedings of ACM
CHI’94 Conference on Human
Factors in Computing Systems, 1994,
pp. 306-312.

187

