Debugging Lenses: A New Class of Transparent
Tools for User Interface Debugging

Scott E. Hudson
Human Computer Interaction Institute
Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213-3891
E-mail: hudson@cs.cmu.edu

ABSTRACT

The visual and event driven nature of modern user
interfaces, while a boon to users, can also make
them more difficult to debug than conventional
programs. This is because only the very surface
representation of interactive objects — their final
visual appearance — is visible to the programmer
on the screen. The remaining "programming
details" of the object remain hidden. If the
appearance or behavior of an object is incorrect,
often few clues are visible to indicate the cause.
One must usually turn to text oriented debugging
techniques (debuggers or simply print statements)
which are separate from the interface, and often
cumbersome to use with event-driven control flow.

This paper describes a new class of techniques
designed to aid in the debugging of user interfaces
by making more of the invisible, visible. This

class of techniques: debugging lenses, makes use .

of transparent lens interaction techniques:to show
debugging information. It is designed to work in
situ — in the context of a running interface,

without stopping or interfering with that interface.’

This paper describes and motivates the class of
techniques, gives a number of specific examples of
debugging lenses, and describes their

implementation in' the subArctic user interfacé.

toolkit. -

KEYWORDS: Interactive Debugging, Lens Interaction '

Techniques, Dynamic Queries, Context-Based Rendering;
User Interface Toolkits, subArctic, Java™,)

1. MOTIVATION AND BACKGROUND

Writing complex user interfaces can be difficult.
For example, even experienced programmers

'

*y

¥
]

This work was: supported in part by a grant from the Intel

Corporation, and in part by the National Science Foundation
under grants IRI1-9500942 and CDA-9501637.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its daté appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee

UIST 97 Banff;, Alberta, Canada
Copyright 1997 ACM 0-89791-881-9/97/10..$3.50

179

- Roy Rodenstein
Ian Smith

Graphics Visualization and Usability Center
"College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
E-mail: {royrod, iansmith}@cc.gatech.edu

make mistakes in specifying complex constraints
[Myers91]. The difficulty of debugging such-
problems can be exacerbated by the graphical
nature of the interface — objects and relationships
within the interface are seen only in their final

- rendered form. Hence, the great usefulness of the

visual interface to the end user can come at the
price to the programmer. If the appearance or
behavior of an object is incorrect, this can
sometimes be readily seen, but often few clues are
visible to indicate the cause. For example, if an
object does not appear on the screen when it
should, it could have been given a very small size,
it could have not been added to the interactor tree,
it could be marked as non-visible, it could be
positioned off screen or outside clipping bounds,
or it could be obscured by another object.
However, none of these causes presents visual cues,
and so the programmer must typically resort to
text oriented.techniques (debuggers or simply
print statements) which are separate from the flow
of the interface, and often cumbersome to use with
event-driven control flow.

This paper introduces a new class of debugging
aids designed to be used in concert with a running
interface, without stopping it or interfering: with'its-
normal operation. These techniques are based on
the use of Magic Lenses™ [Bier93, Ston94,
Bier94]. Magic Lenses are transparent interface
elements which' are designed to be moved over
other interface elements and modify the display: of
those elements in some way. 'In general lenses can
modify the appearance of objects in arbitrary ways:
— some - lenses add information to the display;
some remove all but selected information, and
some make more.arbitrary changes to-the display. -
In general, lenses can be seen as a form.of focus
plus context ‘visualization technique- [Furn86,
Mack91, Rao94] which displays information
relevant to a particular task (in our case a
debugging task) in the context of a "normal"

- display.

In general, lenses can reduce..screen clutter and
increase the usefulness of specialized or task
specific information by ‘focusing a greater level of
detail on particular screen areas. Further, because

%

ol lem ’re:«’c clazﬂ o

.]‘Bx’ﬁ"e Eruw Heads
%0 i‘i"’éia"srrew;Head

mw Heads /g‘ - ~\

F1gure 1 A srmple crrcular debaggmg lens whlch displays.a boundmg box around underlymg mieractors, as
: -+ iwell as a name tag with thelr class name.

Crob i_g(‘«‘ui

T,

o ‘i- 1.

they are transparent the‘y‘t’do"’not “obsciire ‘the
underlying, content,, they can display.:information.
in,;s situ ;—iny the underlying -area, .and in- the-
existing context: = so that the useris'not required
to,; make. the ‘s,wrtch to - an" eéxtrarieous mental.
context, nor.to:divert: attention to a different screen
area.in order, to-see the results.. Lenses .also, allow.
chck-through -interaction: with - the” underlying .
content- (via what were. called toolglasses by the
original 1nventors)~vTFmally, lenses can- display
naturally- graphical information which' would not-
be practical;to, display. as text.. For example, an
application.idescribed in:[Edwa97] (and.built with.
the ‘subArcticylensrinfrastructure) shows the face
and contactzinformation of the person 'who last’
modifiedi part;ofi,a shared document. Similarly,
Figure- 1, proyidés-a: graphical' display. of.the
boundmg box of:each: 1nterface elementx under. the-
lens.. T Y TSRSy G DAt S

This paper descnbes a new class of debuggmg'
tools -based; on,Jenses..» Debugging lefises operate
over the top: of :a:runfing:interface. This:allows
them. to ‘preserve code-integrity and.interactive
flow -by’ obyiating the addition of debugging print-
statements, or control flow interruptions.

T el

NS H I

R . fi e
10 Too L eTL T TR R

Debuggmg lenses are’ easy for the programmer to
use’ In the: subArctlc toolKit [Huds96, Huds97],
they can b’ added’ to ‘interface with only ‘a one-,
wor ‘*change to the' source code Debuggmg
lenses update dynamrcally,] the programmer ‘can’
be-siire that the information dlsplayed is up to
date; and lenses’ click-through interaction and
transparency, permit debugging lenses to be used
fully in_context, directly over the running mterface
of the real apphcatlon

A 3 “‘«

The remainder. of this paper contains a dlscusswn
of debuggmg lenses. Section 2 describes the
technique in general, while+Section 3 considers

“l

several examples:of debugging lenses that we have:

implemented. Section 4 provides a description of

the architecture and-implementation of our
debugging lenses, and fmally, Section 5 prov1des
some: brief conclusions. L L

2. THE TECHNIQUE * R

As mdrcated‘ above,. debuggmg Ienses possess the
general;capablhtyI to modify the appearance of the
underlying interface, add information, or focus on
particular-aspects of debugging. Figure 1 shows a
basic circular debugging lens which draws a small

: fine;d sp

Figure 2. The depth- and child-number-bound lens. Note that the arrow at-bottom is not in the selected range
and does not display debugging information.

name tag:showing underlying interactors’- class
name, as well as a bounding box showing: its
spatial extent. As the lens is moved its display
updates dynamically to encompass new objects
underneath it, while the area the lens was
prev1ous1y over is displayed in its normal form.

Debuggmg lenses require extra drawing,’ and
hence could conceivably cause performance
problems. However, the area of additional
drawing is limited in size, and our initial
experience with them has not uncovered
significant performance problems. In almost all
cases interface responsiveness has not been
noticeably slower when debugging lenses are used,
Maintaining responsiveness aids in the revallsuc
testmg of the interface through the lens.

Debuggmg lenses are highly extensible. Thelr
implementation uses a flexible lens and layer
infrastructure provided by the subArctic user
interface toolkit. This allows them to be easily
combined with existing or novel interactors: For
example, taking advantage of the fact that
debugging lenses provide a convenient on-screen
platform for debugging interactions, " the lens in
Figure 2 goes beyond the basic lens from Figure 1
to include a side-mounted tool palétte, allowing
for extended user control. Whereas the first lens
draws only a small tag with the class name of each

181

interactor 'and a: boundmg box around it, the
second lens’ controls'let the user turn various
additional information"displays on aiid off; Such as
interactors’ x ‘and y coordinates, width and height,
class riame, and bounding box, with’ constramed
edges- shown in blue and unconstramed edges
shown in Ted.’ e

A sample use case for these lenses would be if.one
has mistakenly created .an interactor (either at
initialization time or while the program is running)
of zero height arid/or width. In this case the lenses
would show the class.name tag for the, interactor,
alerting us to its existence and location; as well as
to the problem, its zero size. As another typical
example, if the interactor were placed into an
incorrect stacking layer, which would in most cises
hide it from view, the programmer might wonder
whether the code had- left out the 'interactor
completely, whether its pos1t10n or“size were
incorrect, or whether a constraint error was causing
it to be invisible, among other poss1b1ht1es
Debugglng lenses would reveal the rogue
intéractor’s presence -and show 'any ot all of the
standard lnformatlon about it.

An add1t10nal capability of the lens: .shown in
Flgure 2 allows it to provide more selected
information.” The depth and child-number range

Yiew:

= ___] Class Name

% Edges
B X Coordinate

|& ¥ Coordinate
|8 widith

|1 Height
ﬁ Isolation

‘&’J_J Y

Flgure 3. The isolation lens. Note that several arrows overlap, but only the one we have focused on usmg

BT BT
RN Z
sliders of the.lens (mounted on the left and bottom
of it ‘tool palette) can further. be used to 1solate
mterface elements and .study them md1v1dually
The sl1ders may be .used to. select mteractors ata
partlcular range of depths in the interface’s,
interactor ‘tree, or a’ range of mtcractors selected by
ofdinal number within a child list. The lens would
then display its added information only for those
interactors -falling Wwithin-the specified ranges. In
this’ manner, a singleinteractor or a subsét of
interactors. ini' the application ‘may'be selectlvely
included or ‘excluded. This'allows better v1s1b111ty
of ‘objects of partrcular intefest in' situations where
interface elements are densely packed or’ occlude
one another.” -

Movément of the depth and chlld—number sllders
cause ‘the lens .image -to be updated. ‘dynamically.
As a ‘result, - these controls provide a form of
dynanuc query, [Ahlb92 Ahlb%4, FlSh95] .This;,
combined. w1th the . ability - to select display.
components, as well as resize, and reposrtlon the
lens, provides a very flexible tool for focusmg on
the specrflc 1nformat10n needed for a. specrﬁq
debuggmg situation. The Ienses ability to let user
interaction pass through to the underlymg
interface also makes them further- surtable for use
in situ. 'Being able to see information dlrectly ‘on:
the interface'and ‘intefact normally-'with it is'

182

4_.\.4

-+ 15 - crosshairs (See grabber lens in Flgure 5)'1 1s dlsplayed m the lens, '+ i S

N (RN

extremely useful in -symptom detection, problem
diagnosis, test-case generat1on, and: demonstration
of repeatab111ty N SR Fo
3"~EXAMPLES M,: e :[H i | A
In Flgures 1 and 2 we thave séen 'a; version of: the
original debugging , lens "display that, . Was
distributed with pubhc releases “of the subArctlc
tOOlklt (and now _in use by a number of users
outside our group), as well as’ the most common
lens used in our current development releéase,
These 1llustrate many of the basw concepts’of
debugging ' lenses, . and have ‘been effectrve
debuggmg aids.in. pract1ca1 use’ (by our group and
others) 'In this section we cons1der several more
examples of this class of technique in order to
illustrate more of the possrblhtles of the desxgn
space. .-t e 17

In addltlon to the dynamlc query capabllltles
shown in F1gure 2, a, second method that
debuggmg lenses can employ to empower the user
in the interface debuggmg _process i$ l1m1tmg a
lens’ s focus at the atomic level. of specrfro,
selectable mteractors 'Fi gure 3. shows an 1solatlon
lens whose focus is 11m1ted to a partlcular set’ of
mteractors chosen by the user L

S 'rtflc,-fl.r - o T oo

: ':"j;C]asé Name |
|- JEdges -
__j}{ Coordinate| - +*
__jYCoordmate S
‘ JWldth '
. ___}Helght
=i Depth 1107 | -
Children: 1550~ e
P T

' 31 ‘
hﬁ{pﬂet 9tant L ‘ o

Figure 5. The grabber lens allows you to grab interface elements usmg the crosshairs, and reposmon them.

183

l

Figﬁré 6. The child-exploder:lens: sbféads out childrén.to reduce cluter in'the lens view'df the interface.

These interactors are drawn in their normal
position and the background of the lens is opaque,
visually isolating the interactors in the focus set
from the rest of the interface in order to avoid
clutter, and allow control of the lens’s display of
debugging information for the set. The drawing
"isolation can be toggled on and off, so that context
with the rest of the underlying interface can be
reestablished at any point, without losing the focus
set of interactors.

A further advantage of this focus model is that,
once set, the lens can display information about
interactors not only through drawing over the
interface, but also by using the anchored palette to
its side to display information. This information
remains current whether the lens’s transparent area
is over a focused-on interactor or not. If at some
point during runtime the interdctor that has the
focus disappears, this lens will make it clear
whether the interactor has become of zero size, has
been hidden under an opaque interactor, or has
actually been removed from the interface.

As indicated above, debugging lenses are easily
extensible. Figure 2 above shows an example of
this, an interactor that places three lenses into a
tabbed-folder parent. This allows the user to switch
between the different capabilities provided by each
lens and use-the-most approprlate one at all tlmes,

St HBOYUT B Tl ETERIE A N g

184

each lens preserves its state, so no context or effort
is lost in switching between lenses.

Figure 4 shows another tab of this tabbed-panel
interactor, which contains a constraint-graph lens.
This lens displays arrows depicting constraints on
interactors, such as the horizontal arrow spanning
the width of the parent panel on the left side. This
lens is useful for visualizing constraints, and
although somewhat cluttered in this full view, can

also be focused using the range sliders to obtain a

more targeted view.

A different type of debugging lens appears in
Figure 5. This is a grabber lens. It can pick up
interface elements under the crosshairs, reposition
them, and drop them back into the interface. This
can be useful both for debugging of an interface’s
visual design and for testing of interactors in
different locations and under different parents.
This can bring to light certain problems that a
static interface might not indicate so readily.

Finally, Figure 6 shows a child-exploder lens. This
lens explodes the representation of a parent
interactor’s children (that is, a subtree, or interior
node, in the interactor tree. The children are
spread out, that is, the vertical and horizontal space
between them is mcreased so that a tight layout or

‘overlapping interactors can be viewed with
. minimal, interference. .This.is an example of a

specialized lens that can be applied in particular
situations to handle particular visualization needs..

Although a number of different, and very useful
examples have been shown here, it should also be
clear that these particular techniques are only the
beginning of a larger tool suite that can be
developed within the. framework of debuggmg
lenses. :

4. ARCHITECTURE AND IMPLEMENTATION

User interfaces written using the subArctic toolkit
utilize a structure typical in user -interface
construction: they maintain a ‘root’ interactor and
build an n-ary tree of child interactors with this
root interactor at the top as shown in Figure 7.
Rendering of the user interface is performed
through a recursive traversal of the interactor tree,
passing a drawable object down the tree starting
from the root. The drawable object maintains
current drawing state (such as the current clipping
rectangle) and provides operations for producing
output on a drawing surface. Each interactor is
responsible for producing its ‘own output. The
non-leaf interactors draw themselves then continue
the traversal of their children, while leaf interactors

—— o

Display

Drawable

D

an [drawing
| state

Figure 7. A representation of the typical structure
of a user interface. Drawing of the interface is
performed as a recursive traversal of the interactor
tree passing a drawable object which maintains
drawing state and provides access to a drawing
surface.

185

| Drémllable

Normal Draw -—&
Lens Draw 'm,y/,.

o ST

Figure 8. The interactor tree as set up for using
lenses. The lens’s redraw causes a second drawing
pass through the interactor tree. . f

! / '

i ' . ‘

1

51mply drawmg themselves and return.

To 1mp1ement lenses in subArctic, a specxal lens
parent is inserted above the normal top interactor,
as depicted in Figure 8. This parent ensures that
damage resulting from modifications to interactors
appearing under- the lens is . communicated to the
lens so that it may redraw itself. This ensures.that
the most current state is always displayed. No
modifications beyond this change of the root
interactor are necessary to utilize lenses; indeed, a
one-word change in the main source fileé of a
program (e.g., changing "interactor_applet" to
"debug_interactor_applet") allows the programimer
to take advantage of lenses to debug“their user
interface. The use of the special lens parent is
invisible to the program, and no other code need
be “modified. When used in this manner,
debugging lenses may be shown or hidden by the
user through a special keypress-mouse click
combination. In the current system, this brings up
the tabbed-panel lens shown in Figures 2 and 4
(which is currently being extended. to include
additional lens types).

The lens object placed under the lens parent w111
receive a redraw request as a part of the normal
recursive redraw process. This lens object acts on
this request by domg a second specialized drawmg
traversal starting at ‘its parent (taking care not to

recursively draw itself with this traversal). For the
most common case of additive lenses, the lens
drawing is simply done over “the top of the existing
object drawing. For lenses that completely replace
the area under them (e.g., the isolation lens shown
in Figure 3), the lens s1mply clears its background
then performs the drawmg traversal

The drawmg traversal performed by the lens is
implementéd usmg a general trayersal mechanism
provide by the subArctic toolklt This traversal
mechanism works on the basis of a parameterized
top-down tree walk. -The walk is controlled by a
predicate object wh1ch determines at each node
whether the recursive traversal should end at that
point, or continue. The predicate operates, ‘both on
the basis- of -the node it visits, and using a special
state object passéd-down the traversal. This state
object typically .contains a drawable giving access
to a properly chpped ‘portion of the screen, and
encodes things like the current tree level and child
number, as well as the ranges that drawing should
take place at. '

The predicate-first testswthe.-object position to
insure that..its -drawing. would 'not be totally
discarded by clipping (i:e.,~does-atrivial reject
test), . then. performs__semantic_ tests. such as
verifying that the interactor is within the user
requested ranges.. . If the. predicate, indicates that a
node should be’ v131ted a specral action object is
mvoked with. both the v1s1ted 1nteractor and the
state obJect passed as | parameters This action
object performs the drawrng action for the lens

In order to step deeper: irito- ‘the-traversal the state
obJect is" transformed flom"a a state suitable for’ the
parent object into‘a; State’ obJect suitable for tise by
a’ candrdate rclknld 1nteractor (thls mlght for
example involve 1ncrement1ng the current tree
depth) Fmally, the traversal process is repeated
recurs1vely w1th the newlyﬂ transformed state
1nformat10n T

oY v : -
- ‘ © ot . i)

The ‘code * for the - standard bounds lens ¢!
staridalone vers1on of ‘the: lens shown in Figure 2)
is 1mplemented in just over 1300 lines of Java
code.' Additional ‘lenses’ are of "similar- size
(although subclassmg can reduce their s1ze m
gome cases) 7 Lo

CONCLUSIONS {lz e

The debugging lenses introduced in thls paper
provide .a- new: class: of-debugging tool for. user
interfaces., ; These -tools .can -significantly help
debugging by, making information about interface
obJects which would have been ;invisible, visible to
Further they allow this

W

186

information. to be ‘presented in a selective and
focused manner that-provides data of interest in
the context of the interface. Finally, debugging
lenses have the adyantage that they can operate in
situ ‘on any interface, with minimal dlsruptlon to

'the workings. of the interface. g

One limitation of the current lens infrastructure is
that, while permitting composition of lenses via
overlap, it does not have particular capabilities to

attempt to intelligently arbitrate this composition.

We are currently working on a new and simplified
lens - infrastructure which will. allow for more
semantically. meaningful and - sophlstlcated
composmng techmques ’ ,

REFERENCES

[Ah1b92] Ahlberg, C., Williamson, C.,

. Shnerderman, B., “Dynamic Queries
* for ' Informatlon Exploration: An
Implementatlon and Evaluation”,
- Proceedzngs of ACM CHI'92
AT 'A - Conference on. .Human Factors, in
Computzng Systems, 1992, .pp., 619-
626. 5 RN

Ahlberg, C., Shneiderman, B., “Vlsual
Informatlon Seeking: Tight couplmg
of Dynamlc Query Filters with
Starfreld Dlsplays” Proceedmgs of
ACMICHI'94 Conference on' Human
Faétors: in Computing Systems, 1994,
pp 313-317.

B1er, -E.A., Stone, M.C., Pier, K.,
Buxton, W., DeRose, T.D., “Toolglass
and Magic Lenses: The See-Through
Interface”, Proceedings of ACM
SIGGRAPH '93 Conference on
Computer Graphics and Interactive
n.Techmques, 1993 pp. 73-80.

Brer, E., Stone, MC Fishkin, K.,
Buxton, W., Baudel T, “A
Taxonomy of See-Through Tools”,
Proceedings of *ACM CHI'94
Conference on Human Factors in
Computing Systems, 1994, pp. 358-
364. '

Edwards, K., Mynatt, B.,
Techmques for Autonomous
‘Collaboration,” to appear in
Proceedings, of ACM. CHI'97
. -tywo~ Conference on Human- Factors in
e Computmg Systems, 1997.

[Fishos] ' Fishikin, ‘K., Stone, M., “Enhanced
T Dynamic Querles via Movable

1

[AhIb94]

[Bier93]

[Bier94]

[Edwa97] “Timewarp:

J’f

[Furn86]

[Huds96]

[Huds97]

[Macki91]

Filters”, Proceedings of ACM CHI'95
Conference on Human Factors in
Computing Systems, 1995, pp. 415-
420.

Furnas, G. W., "Generalized Fisheye
Views", Proceedings of ACM CHI'86
Conference on Human Factors ‘in
Computing Systems, 1986, pp. 16-23.

Hudson, S., Smith, I., “Ultra-
Lightweight Constraints”,
Proceedings of the ACM Symposium
on User Interface Software and
Technology, 1996, pp. 147-155.

Hudson, S., Smith, 1., “The subArctic
User Interface Toolkit Home Page",,
Web document available at:
http://www.cc.gatech.edu/gvu/ui/sub_ar
ctic

Mackinlay, J. D., Robertson, G. G.,
Card, S., K., "The Perspective Wall:

Detail and Context Smoothly
Integrated", Proceedings of ACM

187

[Myer91]

[Rao9%4]

[Ston94]

CHI'91 Conference on Human
Factors in Computing Systems, 1991,
pp- 173-179.

Myers, B., “Graphical Techniques In
a Spreadsheet For Specifying User
Interfaces”, Proceedings of ACM
CHI'91 Conference on Human
Factors in Computing Systems,, 1991,
pp. 243-249.

Rao, R., Card, S. K., "The Table Lens:
Merging Graphical and Symbolic
Representations in an Interactive
Focus+Context Visualization for
Tabular Information", Proceedings of
ACM CHI'94 Conference on Human
Factors in Computing Systems, 1994,
pp. 318-322.

Stone, M.C., Fishkin, K., Bier, E,,
“The Movable Filter as a User
Interface Tool”, Proceedings of ACM
CHI'94 Conference on Human
Factors in Computing Systems, 1994,
pp- 306-312.

