
CS 2316
Homework 4 – Employee Ranker
Due: Wednesday, September 19th, before 11:55 PM
Out of 100 points

Files to submit: 1. HW4.py

This is an INDIVIDUAL assignment!
Collaboration at a reasonable level will not result in substantially similar code. Students may only
collaborate with fellow students currently taking CS 2316, the TA's and the lecturer. Collaboration means
talking through problems, assisting with debugging, explaining a concept, etc. You should not exchange
code or write code for others.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums

Notes:
• Do not forget to include the required comments and collaboration statement (as

outlined on the course syllabus).
• Do not wait until the last minute to do this assignment in case you run into problems.
• Read the entire specifications document before starting this assignment.

Premise

The Supervisor at the Aquatics department needs to schedule time slots to lifeguards every week
according to their availability. To do this efficiently and fairly, they hired an Industrial Engineer
to devise a ranking system for priority. He worked with them over the summer and suggested
that each employee be given a score for ranking purposes. The IE who devised the system
graduated after the summer, and now the Aquatics Department has hired you to write python
code to rank all the employees from the CSV data they have. The IE left you a detailed report of
the ranking scheme and how the program should be coded.

The ranking scheme is as follows:

• The Rank score of a lifeguard are based on 3 categories: Position score, Supervisor
evaluation score, and Peer evaluation score.

• Position Score : The employee has one of three positions, and receives corresponding
points as follows -

o New Lifeguards are employees that have been employed for less than a semester
(112 days). New Lifeguards get 5 points as their Position score.

o Lifeguards are employees that have been employed for 1 semester or more (112
days or more). Lifeguards get 15 points as their Position score.

o Head Guards are employees that have been employed for at least a year (365 days
or more). Head Guards get 20 points as their Position score.

• Peer Evaluation Score : A score given to each employee by their peers and ranges from
0 to 5 points.

• Supervisor Evaluation Score : A score given to each employee by their supervisor and
ranges from 0 to 10 points.

• The Rank Score is calculated by simply adding up the 3 scores.
[Rank score = Position score + Supervisor evaluation score + Peer evaluation score]

• The higher the score, better the rank. The employee with the highest score will be
awarded rank 1, the next highest will be rank 2, and so on.

• If employees have the same rank score, you should decide their rank as follows:
o The employee who has been employed the longest should be ranked higher.
o If the workers were employed on the same date, compare the Supervisor

Evaluation Score. The employee with the higher Supervisor Evaluation Score
should be ranked higher.

o If they were employed on the same day and have the same Supervisor evaluation
score, compare their GTIDs. The employee with a larger GTID value should be
ranked higher. [Note that if they were employed on the same day, have the same
Supervisor evaluation, and are in conflict, it means that they have the same Peer
evaluation score, so we can't use the Peer evaluation score to de-conflict.]

Program specifics

The data will be provided to you in CSV format and it will change every month as lifeguards are
promoted and scored by their peers and supervisors. SE score is the Supervisor Evaluation Score,
PE score is the Peer Evaluation score, and Days being the Days since employment, the CSV file
will have data in the following format:

GTID, Last Name, First Name, SE score, PE score, Days

An example record would be:

902345678, Burdell, George, 9, 5, 320

You have to parse the data into a list of lists in the following format:

 [[(GTID, Last name, First name), SE score, PE score, Days], …]

An example of the inner list (representing each employee) inside the list (that stores all
employees) would be:

[(902345678, “Burdell”, “George”), 9, 5, 320]

The (GTID, Last name, First name) is a tuple inside each list record.

At this point, you should calculate the Rank Score for each employee and start ranking them,
resolving the conflicts of any employees that might have the same Rank score according to the
rules mentioned above. As you give ranks to the employees, they should be stored in a dictionary
using the rank as the key and a list with the following information as the value:

 [(GTID, Last Name, First name), Position]

This list has two items, a tuple that represents the lifeguard (gtid, lastname, firstname) and their
title/position.

Example:

Dictionary[4] → [(902345678, “Burdell”, “George”), “Lifeguard”]

Once you have ranked them and created the dictionary, you should write the records to a new
CSV file called “employeeRanks.csv” in the following format:

Rank, GTID, Last Name, First name, Position

Example record that you write out to the file would be:

4, 902345678, George, Burdell, Lifeguard

You will be writing the following functions:

1. parseRecord
2. readCSVFile
3. getPositionScore
4. rankEmployees
5. writeCSVData
6. employeeRanker

Plus any helper functions that you may decide to create and use. You are not required to
use helper functions, but you are encouraged to do so if it makes your primary functions
easier to understand.

Function Name: parseRecord

Parameters:
string – A string which contains one record (one line) from the file.

Return Value:
list – the data structure containing the employee information after adding the new record.

Description:

Write a function that will accept a string parameter which contains the contents of the one line
from the file you are reading in the function readCSVFile(). This function will parse the given
string from comma separated values into a list of the following format:
[(GTID, Last name, First name), SE score, PE score, Days]
Note that the GTID, SE Score, PE Score, and Days entries will need to be converted to an
integer, while the Last name and First Name should stay as strings. You should strip any leading
or trailing whitespace from the strings.
The GTID, Last name and First name are in a tuple. This list is a record of one employee and has
to be returned by this function. If the data format of this line is invalid (not all data for the
employee exists), you should raise a ValueError with a: raise ValueError statement. This
value error will be handled by the employeeRanker function.

Function Name: readCSVFile

Parameters:
 none
Return Value:

list – the data structure containing the employee information in the above mentioned
format.

Description:
Write a function that will ask the user for a valid CSV file to read (for example,
“employeeInfo.csv”). In the event that the user provides an invalid file name or the file doesn’t
open, you should print a message such as “Invalid file name” and prompt the user to enter
another valid file name. You should force the user to enter a valid filename until the file
successfully opens. Your function will then read in this file and call parseRecord on each line to
parse the information contained within that line. You must call parseRecord inside of
readCSVFile to parse each line of the file. Create the new list of records that will be returned by
this function. Each record that is returned (as a list) by parseRecord should be appended to this
list. The list that is to be returned should be a collection of lists that represent individual lifeguard
records. Remember to close the file when you’re done reading in the information. You may not
use the CSV reader module; you must implement CSV reading yourself.

Function Name: getPositionScore

Parameters:
int – Number of days the employee has been employed for.

Return Value:
tuple – Tuple containing the employee’s position and its corresponding score

Description:
Write a function that takes in the days of employment of an employee and finds the
corresponding position of the employee. The position of an employee can be one of the
following: “New Lifeguard”, “Lifeguard”, and “Head Guard”. New Lifeguards are employees

that have been employed for less than 112 days and get 5 points as their position score.
Lifeguards are employees that have been working for 112 days or more and get 15 points as their
position score. Head guards have worked for 365 days or more and get 20 points as their position
score. You should return the employee’s position and its corresponding score in a tuple of the
format (“New Lifeguard”, 5) (if the employee has worked for less than 112 days).

Function Name: rankEmployees

Parameters:
list – a data structure containing employee records.

Return Value:
Dictionary – a data structure containing ranks and employee information.

Description:
Write a function that will accept the list that contains employee information as a collection of
lists obtained after reading the file, as a parameter. Use the contents of each record in the list to
calculate the Rank Score of each employee. The getPositionScore function should be helpful in
calculating the Rank Score.

You should then rank all the employees. Be sure to resolve all conflicts where two employees
have the same Rank Score according to the rules given above. No two employees can have the
same rank. The details of how you want to resolve the conflicts and where you want to store the
rank scores are up to you.

You may use the dictionary while you are ranking employees, or transfer the data to the
dictionary after you have finished ranking them. You are most welcome to use any helper
functions that may assist you in ranking the employees and resolve the conflicts.

Create a new empty dictionary with the key as Rank (not to be confused with Rank Score), in the
following format:
Rank [(GTID, Lastname, Firstname), Position]
Notice, (GTID, Lastname, Firstname) is still a tuple. Rank, which is a key in the dictionary, is an
integer value starting with 1. You will need to use the Position score given in the list to compute
the Position of employee that you need to store in the dictionary. Once your dictionary is
complete, you should return it. Note that the Position is a textual label, not a position score
(number).

Function Name: writeCSVData

Parameters:
 Dictionary – the data structure that contains the ranks and the employee information.
Return Value:

None

Description:

Write a function that will accept one parameter that is a dictionary with key as Rank of each
employee. The dictionary would have the following format:
Rank [(GTID, Lastname, Firstname), Position]
Use this information to write all the records of this dictionary into a CSV file called
“employeeRanks.csv” in the following format:
Rank, GTID, Last Name, First name, Position
Order the records starting at the employee with the first rank (1) and moving up in rank as you
write the file until you have written out the details for all of the employees. Remember to close
the file when you’re done writing in the information.

Function Name: employeeRanker

Parameters:
 None
Return Value:

Bool – True if everything went smoothly, or False if their was an error reading or writing
files.

Description:
This is the main function or the driver function of this Ranking code that will make calls to some
of the other functions. Your TA will call this function to test your code. This function essentially
makes calls to readCSVFile, rankEmployees, and then writeCSVData. There are no parameters,
but you must return True if the code ran without any problems. If there was an error while
reading the file, writing the file, or in the formatting of the given data, the code should not crash.
Instead, you should use try and except at various points in this method to make sure all the
possible errors are caught. If an error is encountered, return False. (You do NOT have to recover
from an error other than if the user enters an invalid file name.)

Testing your Code:

Read from the attached file: “employeeData1.csv”
Your output CSV file should look like the attached file: “employeeRanks1.csv”

You may create your own CSV data and experiment with your code, as our test data may not
exercise all possible situations.

Grading:

You will earn points as follows for each function that works correctly according to the given
specifications.

parseRecord 10

Properly handles invalid strings by raising a value error
Records correctly formatted data into the list with a tuple inside

3
7

readCSVFile 25

Properly handles invalid files
Properly reads multi-line data
Properly passes each line into parseRecord function
Formats and appends the records correctly into a list that is returned
Closes file before exiting function

5
5
5
5
5

getPositionScore 5

Returns the correct position
 Returns the correct position score

2
3

rankEmployees 30

Correctly computes the Rank Score of each employee
Calculates the ranks correctly taking care of all conflicts
Correctly creates and returns the dictionary of ranks

10
10
10

writeCSVData 20

Properly opens the file to write
Uses the correct filename
Properly writes the data in the correct format
Closes the file before exiting function

3
2

10
5

employeeRanker 10

Properly makes all the required function calls
Does not let the program crash
Returns True or False correctly in the appropriate situations

3
5
2

