
CS 1301 Individual Homework 3 – Conditionals & Loops
Due: Friday, September 13th, before 11:55pm
Out of 100 points

File to submit: HW3.py

Students may only collaborate with fellow students currently taking CS 1301, the TA's,
and the lecturer. Collaboration means talking through problems, assisting with
debugging, explaining a concept, etc.

For Help:
 TA Helpdesk – Schedule posted on class website.
 Email TA’s or use Piazza

Notes:
 Don’t forget to include the required comments and collaboration statement

(as outlined on the course syllabus).
 Do not wait until the last minute to do this assignment in case you run into

problems
 Read the entire specifications document before starting this assignment.

Functions
You will write a few python functions for practice with the language. In your HW3.py
file, include a comment at the top with your name, section, GTId/Email, and your
collaboration statement. Also, include each of the following functions below. For purpose
of this homework, you may assume that all inputs will be valid.

Function Name: passOrNot
Parameters:

 grade – a number representing the user's grade as an integer or float
Return Value:

Either the string “Congratulations. You passed!” or the string “Sorry. You must have at least 70%
to pass. See you next semester.”

Description:
Write a function for your CS1301 class that determines whether the user passes the
class or not. If the user's grade, which is provided by the parameter grade, is greater
than or equal to the minimum grade (70), return the string 'Congratulations. You
passed!'. Otherwise, return the string “Sorry. You must have at least 70 percent to
pass. See you next semester.”

Test Cases:
passOrNot(42.5) --> “Sorry. You must have at least 70% to pass. See you next semester.”
passOrNot(89) --> “Congratulations. You passed!”

Function Name: modulusFour
Parameters:

start - an integer greater than 0 representing the number that will be modulated by four
Return Value:

None

Description:
Write a function to show how many times four divides into a number. The function should print the
numbers from the given number to the remainder (decreasing by 4 each time...if you go below 0, don't
print it!) in descending order, with each number being printed on its own line. After printing the required
numbers, on a separate line, print the string “The remainder is the number shown above.”

Test Cases:
 >>> modulusFour(5)
5
1
The remainder is the number shown above.

>>> modulusFour(27)
27
23
19
15
11
7
3
The remainder is the number shown above.

>>>modulusFour(2)
2
The remainder is the number shown above.

Function Name: letterSpace
Parameters:

userString - A String.
Return:

A String.

Description:
Write a function that uses a while loop to create and return a new string that contains only the letters of
the original input, leaving a space in the place of numbers, punctuation, and symbols.. If the input string
has no letters, you must return a string of spaces.
You MUST use a while loop for this problem! Hint: "import string" and use the "in" check along with
the "string.ascii_letters" constant to determine if each character is a letter or not.

Test Cases:
 >>> x = letterSpace("gburdell3")
 >>> print(x)
gburdell

 >>> y = letterSpace("Hello@World.com")
>>> print(y)
Hello World com

>>> letterSpace("2013")

' '

Function Name: complimentMaker
Parameters:

answer1 – a boolean (True or False) representing whether the user is "super"
answer2 - a boolean (True or False) representing whether the user is "nice"
answer3 - a boolean (True or False) representing whether the user is "smart"
answer4 - a boolean (True or False) representing whether the user is "cool"

Return Value:
The string “You are ” + the designated compliments + “.”

Description:
Write a function that returns a string of compliments based on the adjectives selected by the inputs. Use
the inputs True and False. The function should return the string “You are ” concatenated with the
compliments that are true. The four compliments should be: "super" "nice" "smart" and "cool". If none
of the compliments are true, return the string “No comment.” instead.

Test Cases:
1. complimentMaker(True, True, True, True) --> “You are super nice smart cool.”
2. complimentMaker(True, False, True, False) --> “You are super smart.”
3. complimentMaker(False, False, False, False) --> “No Comment.”

Function Name: wordMesh
Parameters:

wordA – a string
wordB – a string

Return Value:
aString – With the correct value.

Description:
Write a function that takes in a two strings. Have your function return out the two words as one meshed
word, with the characters alternating between the first word and the second word. Assume the user will
input words of equal length.

Test Cases:
>>> x = wordMesh("HELLO","world")
>>> print(x)
HwEoLrLlOd

>>> wordMesh("cat","DOG")
'cDaOtG'

>>> wordMesh("GOLD","fish")
'GfOiLsDh'

Function Name: replaceWord(10pts)

Parameters:
-oldWord (String): The letter you want to replace
-newWord(String): The letter that will replace oldLet
-aStr (String): A string

Return Value:
(String) The new string with all the correct letters replaced

Description:
Write a function that takes in three parameters: a string that consists of one word
(the word that will be replaced), a second string that consists of one word (the
replacement word), and a string. Your function should find all the occurrences of
your first parameter in the string. Every time that the first parameter letter occurs,
replace that word with the second parameter’s word. Note that uppercase letters
and lowercase letters are considered different letters. HINT: Look at the .replace
method in the string object!

Test Cases:
>>> replaceWord("Jack", "Jill", "Jack and Jill went up the hill to fetch Jack some water.")
‘Jill and Jill went up the hill to fetch Jill some water.’

>>> replaceWord("hard", "easy", "That CS test was so hard I wanted to cry.")
‘That CS test was so easy I wanted to cry.’

>>> replaceWord("Jingle", "Tinker", "I dropped my jingle bell!")
‘I dropped my jingle bell!’

Function Name: numMountainRange (10pts)

Description:
Write a function that takes in the number of rows of the mountain range as a
parameter. The function will then draw a number mountain range on screen using
the print function. See screenshots below in the test cases for clarification. DO
NOT HARD CODE THE PRINTOUTS, you should have one set of code that will
work for any number

Parameter:
X (Integer): An integer that specifies the number of rows of the mountain

range. You may assume the number is an integer between 2-9.

Return Values:
None

Test Cases:
You have X number of rows, but note that there are three 1s, five 2s, seven 3s, nine
4s, etc.

Function Name: print10table
Parameters:

none
Return Value:

none

You are hired to develop an educational software package. Your first job: Write a function print10table()
that will print the times tables (up to 100, by increments of 10) on the screen. When your function is
called, it should print the following:

Note that your function must print a header (Times: 10...100) and a first column number that goes from
10…100, while the interior of the grid is the X * Y value. Hint: Using two loops (one inside of the other)
is an easy (but not the only) way to accomplish this. You may want to use tab characters ("\t") to space
your grid out correctly.

Function Name: printTimes
Parameters:

N – an integer that limits the upper bound of the times table (inclusive)
inc – a positive integer (either 1 or 2) that decides increment

Return Values:
none

Description
Your boss was impressed with your 100x100 times table function. Now he wants you to modify the
function so that it will work for any sized times table, increasing by increments of 1 or 2. Write a
printTimes(N , inc) function that will print a times table from 1 up to N by increments of inc, for
any positive number N. Note: one parameter must be an odd number, and the other an even
number.

Test Cases:

Grading Rubric
passOrNot 5pts
- function takes in a grade 2
- function returns correct output for all valid inputs 3

modulusFour 5pts
- function prints numbers starting at specified parameter 2
- function print decreases by 4 every time 2
- function stops printing at proper value 1

letterSpace 10pts
- uses a while loop 4
- returns correct output for any valid input 6

complimentMaker 10pts
- function accepts parameters as booleans 4
- function correctly generates string output 6

wordMesh 10pts
- function accepts two parameters 5
- function correctly meshed word 5

replaceWord 10pts
- Finds all letters in the string that need to be replaced. 5
- Returns the correct string with the replaced letters 5

numMountainRange 20pts
- Correct number of rows and correct number in rows 10
- Correct shape (-5 if hard coded) 10

Print10table 10pts
- function prints correct multiplication output 5
- function prints with correct formatting 5

printTimes 20pts
- function accepts an integer n and inc as paremeters 5
- function correctly prints n x n times table 5
- function nicely formats the output 5
- function does not return any value 5

Elements of this homework created by Catherine Hwang and James Moore and Alec Kaye

