
CS 2316

Individual Homework 3 – Enigma Fun
Due: Monday September 9th, before 11:55 PM
Out of 100 points

Files to submit: HW3.py

For Help:

• TA Helpdesk Schedule posted on class website

• Use Piazzza or e-mail TA’s

Notes:

• Don’t forget to include the required comments and collaboration statement
(as outlined on the course syllabus).

• Do not wait until the last minute to do this assignment in case you run into
problems

User Interaction

You will write a few python functions for practice with user interaction and string and list
processing. In your HW3.py file, include a comment at the top with your names, section,
GTID/Emails, and your collaboration statement. Also include each of the following func-
tions:

1. getNumber()

2. getYesNo()

3. getDirection()

4. doShift()

5. doEncryption()

6. encryptor()

Function Name: getNumber
Parameters:

1



• promptMessage — The message that you will display to the user when asking the user
for input

Return Value:

• An integer.

Description:

This function should request that the user enter a number using the message
passed into the function through the parameter promptMessage. Once the user
enters the a value, you should ensure three things:

1. The user entered an integer.

2. The user entered a number greater than or equal to zero.

3. The user entered a number less than 26.

If all three conditions are satisfied, you should return the integer that the user
entered (as an integer). If one or more of the conditions are not satisfied, you
should continue to ask the user for input using promptMessage until he or she
enters an integer that satisfies the three conditions, at which point you should
return that integer.

Test Cases:

• getNumber("Enter a number:")⇒

Enter a number: 15

15 is returned.

• getNumber("Enter a valid integer:")⇒

Enter a valid integer: blah

Enter a valid integer: -4

Enter a valid integer: 50

Enter a valid integer: 5

5 is returned.

2



Function Name: getYesNo
Parameters:

• promptMessage — The message that you will display to the user when asking the user
for input

Return Value:

• A boolean:

– True if the user entered Y/yes/Yes/YES/y etc. . .

– False if the user entered N/NO/No/nO/n, etc. . .

Description:

Write a function that takes in a string as a prompt to the user for input. It
should display that string and get input from the user. If the user enters Y, or
y, or YES, or Yes, or yeS, or YeS or yEs, or any other permutation of lower and
upper case letters that spells out a yes, return true. If they enter N, or n, or
NO, no, or any permutation of lower and upper case letters that spells out a no,
return False. If they enter anything else, give them the error “Not a valid answer,
enter Y or N.” and then repeat the question until they give a valid answer.

Your function should be able to tolerate whitespace at the beginning end of a
line; any number of tabs, spaces, or other whitespace character may be present
at the beginning or end of the line; this should not affect whether your function
works.

Test Cases:

• getYesNo("Do you want to continue?")⇒

Do you want to continue? I don’t know

Not a valid answer, enter Y or N.

Do you want to continue? Yes

True is returned.

• getYesNo("Encrypt again?")⇒

Encrypt again? nO

False is returned.

3



Function Name: getDirection
Parameters:

• promptMessage — The message that you will display to the user when asking the user
for input

Return Value:

• A string, either "->" or "<-"

Description:

Write a function that takes in a string as a prompt to the user for input. It
should display that string and get input from the user. If the user enters ->(a
right arrow) or <- (a left arrow), you should return the string containing the
arrow (i.e. ”->” or ”<-”). If the user enters anything other than one of the two
arrows, you should display, “Not a valid direction.” and prompt the user for
input again using promptMessage, continuing to ask for a valid input until one
of the two arrows is entered.

Your function should be able to tolerate whitespace at the beginning end of a
line; any number of tabs, spaces, or other whitespace character may be present
at the beginning or end of the line; this should not affect whether your function
works.

Test Cases:

• getDirection("Shift direction? ")⇒

Shift direction? left

Not a valid direction.

Shift direction? <-

"<-" is returned.

• getDirection("Enter the shift direction: ")⇒

Enter the shift direction: ->

"->" is returned.

4



Function Name: doShift
Parameters:

• character — The character you want to shift in a particular direction.

• direction — A string, either "<-" or "->" which indicates whether you need to shift
the character forward or backward.

• shiftAmt — The number of characters to shift "character" by, either left or right.

Return Value:

• The character after it has had the shift applied to it.

Description:

The doShift function takes in one individual lowercase character and then will
convert it into the character that is either shiftAmt number of characters to the
right or left (What we are trying to implement here is a Caesar Cipher). So, if
we shift the character ‘a’ right 3 characters, the resulting value is ‘d’. If we shift
the character ‘d’ left 3 characters, we would wind up with ‘a’ again (Note that
a character shift is reversable if you shift the same number of characters in the
opposite direction).

But what happens when we shift a character like ‘z’ to the right? Or the character
‘a’ to the left? We are forced to wrap-around to the other end of the alphabet
and continue moving in the original direction of the shift. So, the character ‘z’
shifted right 1 character would result in the character ‘a’; ‘z’ shifted right 2 would
be the character ‘b’ and so on. So, how do we go about doing this?

One way is to use ascii lowercase and string indexing. As you’ve learned
in class and on HW2, ascii lowercase is a string containing all the lowercase
letters of the alphabet. In this string, the letter ‘a’ is index 0, ‘b’ is index 1,
all the way through ‘z’ being index 25. Therefore, there are 26 letters in the
string. For a right shift, we know that if the index of the character we have
in the ascii lowercase plus the offset is greater than 25, we need to wrap
around. To perform this wrap around, all we need to do is add the offset to the
index of the original character and then subtract the total number of characters
in ascii lowercase; this will give you the index of the character you should
return.

For a left shift, you should simply perform the normal subtraction between the in-
dex and the shift amount, then add the number of characters in ascii lowercase.
This will give you the index of the character you should return.

Test Cases:

• doShift(’d’, "->", 5)⇒ ’i’ is returned.

• doShift(’i’, "<-", 5)⇒ ’d’ is returned.

5



• doShift(’a’, "<-", 10)⇒ ’q’ is returned.

• doShift(’v’, "->", 13)⇒ ’i’ is returned.

• doShift(’a’, "->", 25)⇒ ’z’ is returned.

Function Name: doEncryption
Parameters:

• None

Return Value:

• A string which represents the message the user inputs which has had each character
shifted in the string shifted by the shift amount the user enters.

Description:

Write a function that will ask the user to enter a string made solely of lowercase
letters (no spaces, punctuation, etc). Then, using your getDirection function that
you wrote earlier, ask the user to enter a direction. Then, using your getNumber
function you wrote earlier, ask the user to enter a shift amount. Once you have
stored all this information from the user, use your doShift function to encode each
character in the string. Once you have encoded the entire message, return the
encoded message. You must call and use the output from the functions
you wrote earlier to receive full credit.

Test Cases:

• doEncryption()⇒

Enter a valid string: asdf

Enter a direction: ->

Enter an integer: 7

"hzkm" is returned.

• doEncryption()⇒

Enter a valid string: cstwentythreesixteen

Enter a direction: <-

Enter an integer: 10

"sijmudjojxhuuiynjuud" is returned.

6



Function Name: encryptor
Parameters:

• None

Return Value:

• None

Description:

Write a function that uses your other functions to allow the user to do multiple
encryptions. Your function must deal properly with invalid inputs, which is most
easily done by making use of the previous functions you have already written.
After each calculation, ask the user if they want to do another encryption. Be
sure to save the results of each calculation as they go!

Once the user says they do not want to do any more encryptions, print a final
message that states the total number of encryptions they performed, and lists
the results (final answer) of each encryption (each encryption on its own line)
before saying “Goodbye!”

Test Cases:

• encryptor()⇒

Enter a valid string: asdf

Enter a direction: <-

Enter an integer: 8

Result is skvx

Encrypt another? yes

Enter a valid string: cstwentythreesixteen

Enter a direction: ->

Enter an integer: 5

Result is hxybjsydymwjjxncyjjs

Encrypt another? no

Your 2 Encrypted lines:

skvx

hxybjsydymwjjxncyjjs

Goodbye!

7



Grading:
You will earn points as follows for each function that works correctly accord-

ing to the specifications.

getNumber 20
Properly shows prompt 5

Properly returns answer 5
Properly handles invalid input – “ten” 5
Ensures number is between 0 and 25 5

getYesNo 20
Properly shows prompt 3

Properly handles leading spaces 3
Properly handles trailing spaces 3

Properly handles invalid input 11
getDirection 10

Properly shows prompt 2

Properly handles leading spaces 1
Properly handles trailing spaces 1

Properly handles invalid input 6
doShift 10

Properly shifts characters up 3
Properly shifts characters down 2

Properly implements wraparound 5
doEncryption 20

Uses previously written functions 5

Does correct shift 5
Returns the correct string 10

encryptor 20
Allows multiple encryptions 5

Correctly allows user to quit 3
Prints correct messages 2

Remembers/prints number and value of results 10

8


