
CS 2316
Individual Homework 4 – Credit Standing
Due: Wednesday February 5th, 2013
Out of 100 points

Files to submit: 1. HW4.py

This is an INDIVIDUAL assignment!
Collaboration at a reasonable level will not result in substantially similar code. Students
may only collaborate with fellow students currently taking CS 2316, the TA's and the
lecturer. Collaboration means talking through problems, assisting with debugging,
explaining a concept, etc. You should not exchange code or write code for others.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums

-Don’t forget to include the required comments and
collaboration statement (as outlined on the course syllabus).
-Do not wait until the last minute to do this assignment in case
you run into problems.

Premise
In this assignment, you will be tasked with reading in data about a
student’s credits earned and find their current credit standing. Once
you read in the data from a CSV file, you will be required to insert the
data into a specified data structure which uses a Dictionary, lists, and
tuples. After inserting all of the data into the data structure, you will
be required to print out the structure in a human readable format and
also write out a CSV file with some results. Details about the file you
will be reading, the data structure you will be creating, and the output
format will be covered later in this specification. In this assignment,
you will be required to write the following five functions:

1. generateList()
2. parseLine()
3. readCSVFile()
4. writeCSVData()
5. printData()

File Format Information

The file will contain the following information: the GTID#, Last Name,
First Name, GPA, followed by a series of numbers representing the
number of credits taken each semester.
For Example:

902000001, Burdell, George, 4.0, 17,18,19, 21

The GPA will always have a decimal and the credits will always be
integers. Each line will have an absolute minimum of one semesters
worth of credit (one integer), and will likely have many semesters
worth of credits. In the example above George Burdell has a 4.0 GPA
and has taken 4 semesters of classes, with 17,18,19, and 21 credits
respectively.

Data Structure Information

The primary data structure for this assignment will be a dictionary
named classification. Remember that dictionaries contain a key,
which is how you look up information in the dictionary, and each key
has an associated value with it. In this particular dictionary, the key
will be the GTID# of the student and the value will be a list, which will
be constructed to look like this:

[(Last name, First name), GPA, Credit Total, Credit Classification]

Note that the GPA is a float, the Credit Total is an integer, while the
Credit Classification, Last name and First name fields are strings.

Finding Credit Classification:

The Credit Total will be calculated as the sum of all the semester
credits the student has taken and then the Credit Total will be used to
find the Credit Standing of the students as indicated in the following
table:

Freshman 0-29 credits
Sophomore 30-59 credits
Junior 60-89 credits
Senior 90-119 credits
Eligible to Graduate 120+ credits

Function Name: generateList
Parameters:

string – A string which contains the first name
string – A string which contains the last name

 float – A floating point number representing the GPA
 list – A list of integer credits

Return Value:
list – This list will have the value to be associated with the key in

the dictionary in the required format

Description:
Write a function that will take the first name, the last name, the GPA
and a list of all the credits that the student has taken so far. It will then
calculate the total number of credits and the credit standing of the
student based on the table included earlier. It will return a list in the
correct format to insert into the dictionary as specified above following
the format:

[(Last name, First name), GPA, Credit Total, Credit Classification]

Function Name: parseLine
Parameters:

string – A string which contains the contents of one line from the
file

Dictionary – the data structure which to add the total credit and
credit standing to.
Return Value:

Dictionary – the data structure containing the total credit and
credit standing.

Description:
Write a function that will accept two parameters. The first is a string
which contains the contents of one line from the file you are reading in
the function readCSVFile(). The second is the dictionary to which you
will be adding total credit and credit standing from the line to. The
parseLine() function will then separate out the parts of the file. It
should convert the GPA to a float and create a list of integers from all
the credits that the student has taken. Then make the appropriate call
to generateList() to generate the list that will be associated with that
key in the dictionary. Finally, put the returned list into the dictionary
data structure and return the dictionary.

Function Name: readCSVFile
Parameters:

string – A string which contains the name of the file to read in
Dictionary – An (likely empty) dictionary to add the data to.

Return Value:
Dictionary – the data structure containing the data.

Description:
Write a function that will accept two parameters. The first is a a string
which contains the name of the CSV file you wish to parse (for
example, “credit.csv”). The second is the dictionary into which you will
add all of your data from the file. (It is likely that this dictionary will be
empty when given to your function.) Your function will then open the
file and read it's contents. Call parseLine() on each line to parse the
information contained within that line. You must call parseLine() inside
of readCSVFile() to parse each line of the file; the only thing that this
function should do is read in the contents of the file and pass each line
to parseLine(). You may assume that the file name will be valid.
Remember to close the file when you’re done reading in the
information. You may not use the CSV reader module; you will
separate the data items yourself in the parseLine function described
above. (Future homeworks will make use of the CSV module).
Note that your data file may have blank lines!

Function Name: printData
Parameters:

Dictionary – The data structure that has all the required data in
the correct form
Return Value:

none

Description:
This function will ask the user to input a GTID#. The function will then
display the information for the respective GTID# from your data
structure in the following format:

GTID# FirstName LastName GPA CreditStanding
(Example: 902900001 George Burdell 4.0 Sophomore)

If the GTID# does not exist show the message “The GTID# entered
does not exist” and return. (Do NOT ask for another GTID#).

Function Name: writeCSVData

Parameters:
 Dictionary – the data structure that contains the ranks and the
employee information.
Return Value:
 None

Description:

Write a function that will accept one parameter that is a dictionary with
key as GTID of each employee. The dictionary would have the following
format:

Dictionary[GTID#]=[(Last name, First name), GPA, Credit Total, Credit
Classification]

Use this information to write all the records of the students who are
eligible to graduate from this dictionary into a CSV file called
“eligibleGraduate.csv” in the following format:

GTID#, Last Name, First name, GPA, Credit Total

Remember to close the file when you’re done writing the information.

Provided CODE:

Please include the following code (which uses all of your functions) in
your file and make sure that your functions work correctly when used.

def creditClassification():
 aDict=readCSVFile(“data.csv”, {})
 writeCSVData(aDict)
 printData(aDict)

creditClassification()

Grading:
You will earn points as follows for each function that works
correctly according to the specifications.

generateList() 20
 Finds the correct credit standing 5

Properly handles the name in a tuple 5
Returns the list in the correct format 10

parseLine() 25

Properly handles the GTID#,GPA and name 7
Properly handles all the credits in the line 10
Properly calls generateList() 5

 Correctly inserts data list into the data structure 3

readCSVFile() 12
Properly handles multi-line files 5
Properly ignores whitespace lines 3

 Properly passes lines in file to parseLine() 2
Closes the file before exiting the function 1

printData() 23
Properly handles input 5

 Properly handles input if GTID# does not exist 8
Output contains all data in correct format 10

writeCSVData() 20
Properly opens the file to write 5
Uses the correct filename 2

 Properly writes the data in the correct format 8
Closes the file before exiting 5

