
CS 2316
Individual Homework 5 – The Monty Hall 
Problem
Due: Wednesday February 12th, 2013
Out of 100 points

Files to submit: 1. HW5.py

This is an INDIVIDUAL assignment!
Collaboration at a reasonable level will not result in substantially 
similar code. Students may only collaborate with fellow students 
currently taking CS 2316, the TA's and the lecturer. Collaboration 
means talking through problems, assisting with debugging, 
explaining a concept, etc. You should not exchange code or write 
code for others.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums

-Don’t forget to include the required comments and 
collaboration statement (as outlined on the course syllabus).
-Do not wait until the last minute to do this assignment in 
case 
you run into problems. 

Premise:
In this assignment, you will be tasked with simulating the “Monty 
Hall Problem”. The scenario is such: You are on a game show and 
the host allows you to pick one of three doors. Behind one of the 
doors there is a car, and behind the others there is goat. After you 
make your choice, the game show host (knowing what is behind 
each door) opens one of the doors, which hides a goat. The host 
then gives you the option to remain with your original guess or 
switch to the only remaining door. Does it matter if you switch?

Watch the video here http://www.youtube.com/watch?
v=Zr_xWfThjJ0 for an example. 

We are going to answer this question by randomly simulating both 
situations a significant amount of times, while using a GUI.

You will be required to write the following methods in a class:

1. __init__()
2. importCSV()

http://www.youtube.com/watch?v=Zr_xWfThjJ0
http://www.youtube.com/watch?v=Zr_xWfThjJ0
http://www.youtube.com/watch?v=Zr_xWfThjJ0


3. randomGuess()
4. stayWithIt()
5. changeToWin()
6. maxProb() ~ Bonus

File Format Information

This homework uses a CSV file containing 10,000 pseudo-randomly 
generated rows with three strings in each row. The strings represent 
what is behind door 1 through 3. There can only be a goat or a car. 

Function Name: __init__

This method is automatically called whenever you create a new 
instance of your object. The __init__ method is responsible for 
arranging and initializing your GUI. You should create a GUI which 
looks like the following:

The “Don’t Switch” button should trigger the stayWithIt() method. 
The “Switch!” button should trigger the “changeToWin()” method. 
The “Clear entries” button should trigger a helper function that you 
will create in order to remove the contents of both entries. 

From this __init__ method you will also call the “importCSV()” 
method and the “randomGuess()” method to fill the self.doorList and 
self.randGuessList instance variables.

Function Name: importCSV
Parameters:

None
Return Value:

None
Instance Variable:

self.doorList – List containing each row of CSV file.

Description:



This method should read in the file “randomSetup.csv” by using the 
CSV module. It should then store the data in the instance variable 
“self.doorList”.  You can either store the strings directly (e.g. 
['Goat','Car','Goat'] ), or you can convert them into a numerical 
representation, such as [0,1,0].

Function Name: randomGuess
Parameters:

None
Return Value:

None
Instance Variables:

self.randGuessList

Description:

This method will use Python’s random module to simulate 10,000 
cases in which a contestant chooses one of the three doors 
(randomly each time). Instead of explicitly writing what is behind 
each door, you will use the number 1 to represent the door that 
hides the car, and 0’s for the other two. You will store the guesses in 
“self.randGuessList”. For example, a single “guess” would be sored 
in a sub-list of [0,1,0], which means that the user initially decided to 
pick the middle door. You will need to use a method from the 
random module to build the list of random guesses.

Function Name: stayWithIt
Parameters:

None
Return Value:

None
Instance Variables:

self.randGuessList
         self.doorList 
Description:

This method will compare the “user’s guesses” with the values in 
“self.doorList”. It should keep track of the amount of times the user 
guesses correctly, and then compute the ratio of successes. After it 
has been computed, it should be added to the GUI. For example, if 
the entry in the self.randGuessList was a [0,1,0], while the entry in 
the self.doorList was a ['Goat','Goat','Car'], they would NOT win, but 
if it was a ['Goat','Car','Goat']  (or [0,1,0 if you were using numbers) 
they WOULD win.  Because the user is not switching their choice, 
you do not need to simulate what the gameshow host does.



Keep track of how many guesses were made, and how many cars 
were won. Divide these numbers to get the “success ratio” and 
place that number in the appropriate entry on the GUI.

Function Name: changeToWin
Parameters:

None
Return Value:

None
Instance Variables:

self.randGuessList
         self.doorList 

Description:

This method will simulate the case where the contestant decides to 
switch their original guess after the game show host opens one of 
the doors that hide a goat. Similar to the “stayWithIt()” method, it 
should compute the success ratio and put that number into the 
appropriate entry on the GUI.  

In the changeToWin method, you need to simulate what the game 
show host does (which other door they open) to know which door 
the contestant changes their guess to. The gameshow host will 
never open the door that the contestant picked initially, and will 
never open the door that has a car behind it. In the case that the 
contestant initailly picked the door with the car behind it, the 
gameshow host will pick one of the other two doors randomly.  In 
the changeToWin method, the contestant will ALWAYS switch their 
choice from the initial choice (in the self.randGuessList to the other 
(non-opened) door.

After pressing both buttons in the GUI you should get an output 
similar to the following:



Note: You will probably get a slightly different numerical answer 
every time a button is pressed.
Your grading TA should be able to clear the entries and press each 
button again without losing functionality.  (e.g. your system should 
allow the “Don't Switch” and “Switch!” buttons to be pressed 
multiple times.)

Extra Credit Opportunity:

Function Name: maxProb
Parameters:

None
Return Value:

None

Description:

Now, what would happen if the contestant continuously chooses the 
same initial door? Find the initial door choice that maximizes the 
contestant’s chance of winning given the current data set. Once you 
find the door, you must add a label to the bottom of your GUI stating 
“The optimal door is: Door number ___”. You may assume that the 
contestant chooses the optimal strategy during the game (i.e. they 
switch doors after one of the other two is shown. ).



Grading:
You will earn points as follows for each piece of functionality that 
works correctly according to the specifications

The GUI 30
The GUI has all required components 15
 All buttons and entries work properly 15

importCSV() 15
Properly reads in csv file 10
Makes data accessible to other methods 5

randomGuess() 15
Properly generates random guesses 15

stayWithIt() 15
Keeps track of the number of correct guesses    10      
Computes correct average and places it in GUI 5

changeToWin() 20
Correctly identifies which door to switch to. 10
Keeps track of the number of correct guesses    5  
Computes correct average and places it in GUI 5

Miscellaneous    5
Code is commented and is written in proper style 5

maxProb() ~ Bonus 5
Solved correctly    


