
CS 2316
Homework 9b – GT Brokers

Due: Wednesday April 9th
Out of 100 points

Files to submit:
 1. HW9b.py

This is an INDIVIDUAL assignment!
Collaboration at a reasonable level will not result in substantially similar code.
Students may only collaborate with fellow students currently taking CS 2316, the
TA's and the lecturer. Collaboration means talking through problems, assisting
with debugging, explaining a concept, etc. You should not exchange code or write
code for others.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums
Notes:
·Don’t forget to include the required comments and collaboration statement
(as outlined on the course syllabus).
· Do not wait until the last minute to do this assignment in case you run into
problems.
· Read the entire specifications document before starting this assignment.

Premise

This homework is part two of the previous GT Brokers assignment. You will add
on to the login functionality that you built to create two more GUI pages that use a
database to have the functionality of a simple online brokerage application.

Although this program does not require knowing much new information, it does
test SQL query and insertion abilities as well as coding practices to create two
more GUI pages that can be opened, closed, or updated at the click of a button.
This new information may take some understanding, so please do not wait
until the last minute to begin this assignment.

Database Format Information

The database for this part of the assignment only concerns a different table of
transactions, called BrokerageTransaction:

CREATE TABLE BrokerageTransaction
(TransactionID INTEGER NOT NULL AUTO_INCREMENT,
User VARCHAR(20) NOT NULL,
Type TEXT NOT NULL,
Stock TEXT NOT NULL,
Quantity INTEGER NOT NULL,
PRIMARY KEY(TransactionID),
FOREIGN KEY(User) REFERENCES BrokerageUsers(USERNAME),
CHECK(Type = "Buy" OR Type = "Sell"),
CHECK(Stock = "GT" OR Stock = "UGA"))

The SQL statement above was used to create the table. As can be seen, USER
and the transaction details are all NOT NULL, meaning you have to insert a value
for each of the fields. Also the User field must be identical to the person’s
Username, so the two tables we are using can be easily related to one another.

To be clear we’ll take a second to break it down: what is a transaction?
A transaction in GT Brokers is either selling or buying a stock.
The stock choices are: “UGA” or “GT”, and the prices will fluctuate with time (just
like in the real world!). You will have to scrape these prices from a website every
time you run your code, and that website is posted under this assignment on the
class webpage. Once you have this price, you can use SQL to record
transactions using the User, Type (“Buy” or “Sell”), Stock (“UGA” or “GT”), and
Quantity (How many?).

Further Development

You will be writing on top of your already written Homework 9a. If your old
program is not perfect feel free to update it as needed!

Your new program will create an account summary page for GT Brokerage users,
that will be opened right after they click the “Login” button (Instead of closing the
program as in the last assignment). An example of this GUI is shown below, and
will be described in more detail later:

Method Name: GetPrices

The first method you should focus on in this assignment, before the GUIs, is the
one that scrapes the prices from the online GT Brokers stock page. You will be
scrapping the price of both GT and UGA from the website linked under this
assignment on the class webpage.

Method Name: ComputeStats

The next logical step is to compute all the statistics we need to make the creation
of our home page and order page as easy as possible. This will require getting
the stock price from the previous method, and using several SQL queries to get
information about the user from the database. The base equation we are using is
simple, and is as follows:

Total Market Value + Cash = Account Value

It is obvious now how you will calculate account value, but as far as the other two
go:

• Cash is simply the dollar amount for the current user in the
BrokerageUsers table, in the Dollars column. If the user has never made a
transaction then we expect this number to be = $100,000. As the user
spends or gains money, YOU WILL NEED TO UPDATE THIS VALUE.

• Total Market Value is a little trickier, but is essentially the number of stocks
that user has times their current market price. That means you will have
to find all of their past transactions and use them to calculate their total
number of stocks. If the user has, for example, 10 UGA stocks at $10
each, and 5 GT stocks at $20 each, they would have a TMV of (10*10) +
(5*20) = $200

At the end of this function you should have these three values computed, and
ready to input into your two new GUIs!

Method Name: AccountPage

This method is called to create a new account summary window. It should be
displayed when you successfully login from the previous homework’s login page.
This method is responsible for arranging and initializing your GUI. You may
generate this window however you wish, but it is highly suggested that you use
the grid layout manager. Things to note about the GUI you see:

• The Homepage window has the title: “Account”
• The top row welcomes the user by their stored First Name
• The top row also displays the date, using the time module (“import time”)
• The information you computed in the computeStats method will be

displayed in the next two rows of the GUI, and should be updated every
time this GUI is opened.

• The trade button is at the bottom, spans the entire window, and will close
the Account Page GUI and open an Order Page GUI, described in the
next method:

Method Name: OrderPage

This method will create a new window that the user can use to complete the
transactions described earlier in the assignment. Before we get into too much
detail, here is what the GUI will look like:

Some notes about the GUI:
• The number presented at the top of the page is simply the number you

already computed for the users' Cash. Your PlaceOrder method will check
to ensure the user doesn’t spend more cash than they have on hand!

• As described earlier, there are a total of four options for Gt Broker users,
and that is Buying GT Stock, Buying UGA Stock, Selling GT Stock, or
Selling UGA Stock. This information is presented in the form of two sets of
radio buttons that the user will select.

• The Quantity entry box has a NORMAL state and can be edited by the
user, but you will have to ensure that the user entered an integer (You
can't buy fractional stocks.)

• The “Clear” button will reset the GUI entirely (including radio buttons). We
suggest you make a helper ClearOrder method to implement this.

• The “Place Order” button will call the final method, which will use SQL to
update the transactions table, then return the user to the Home Page

• The Portfolio portion at the bottom of the window shows the users' current
holdings in GT/UGA stock.

• The cancel button should close the current window and open the
Account window.

Method Name: AccountToOrder

This method should be called whenever you need to switch from your Account
page to your Order page. After switching, the visible page must be displaying the
correct information.

Consider creating your windows from your __init__ method, this way you are not
creating new toplevel windows every time you switch windows.

Method Name: OrderToAccount

This method should be called whenever you need to switch from your OrderPage
to your AccountPage. After switching, the visible page must be displaying the
correct information.

Method Name: PlaceOrder

In this final method, called by “Place Order” button on the order screen, you will
execute all the SQL necessary to complete the user’s transaction. The first
portion of this method should be dedicated to error checking, the main points of
which are:

• The user must select a radio button for each of the two categories, if not a
message box should appear telling them to please select a button!

• The user must input an integer value into the entry box before they click
the “Place Order” button. If the entry box is empty, or contains a non-
integer value then a message box should appear telling them so.

• The user cannot spend more than they already have, so you’ll have to
check the quantity of stock they are buying and it’s price, against the Cash
amount they can spend on the stock. If they try to buy too much, politely
let them know that they don’t have the capital (via message box).

• The user cannot sell more stock than he/she owns. If they try to then use
message box to let them know they can’t.

Now that the error checking is done we can assume that this is a valid
transaction, which means we will need to update BOTH of our SQL tables. Firstly,
we will input the transaction into BrokerageTransactions. The table is described in

detail earlier in this pdf, but remember that Type is either “Buy” or “Sell” and Stock
is either “GT” or “UGA”.

Once the transaction is input into BrokerageTransactions all we have left to do is
update the dollar amount in the Dollar part of BrokerageUsers. The exact change
will be based on the stock price, whether the user bought or sold, and the
quantity of the exchange.

Lastly, upon completing an order the user will be returned to their account
summary page with freshly updated variables. From here they could choose to
trade again, or simply exit the program.

Grading:
You will earn points as follows for each piece of functionality that works correctly
according to the specifications.

Account GUI 15
GUI has all components with proper characteristics 5
Trade button works as described 5
Inputs correct first name 3
Contains todays date in correct format 2

OrderPage GUI 20
GUI identical to the one displayed 10
Place order works as described 5
Cancel button works appropriately. 5

AccountToOrder 2
Properly switches windows. 2

OrderToAccount 2
 Properly switches windows. 2

GetPrices() 6
Correctly finds the prices of each stock 6

ComputeStats() 25
Correct Cash & Investments 15
Correct Market Value 10

PlaceOrder() 30
Correctly identifies if a user has enough cash to buy stock 10
Correctly identifies if user has enough stock to sell 10
Accounts for all possible errors 5
Reopens account summary page after order is placed 5

