$Q(t) \quad Q(t+1)$


$$
Q j(t+1)=\max \{0, Q j(t)+A j(t+1)-1\}
$$

- $\mathrm{Qj}(\mathrm{t})$ - \# of HOL cells at ' N ' input ports destined for output port ' j '

Important characteristic of $\mathrm{Qj}(\mathrm{t})$ is that switching happens just before that and an arrival occurs after that which is called $\mathrm{Aj}(\mathrm{t}+1)$.

Thus $Q j(t)$ is the queue length at time ' $t$ ' and $A j(t+1)$ represent the cells that arrive after that at time $t+e$. If the sum of these 2 terms is $>0$, then there will be a packet switched before $Q j(t+1)$ (i.e. a departure).

Therefore,
queue_length at $\mathrm{t}+1=$ (queue_length at t$)+$ (any arrivals)- (departure)


$$
\begin{aligned}
& \mathrm{Q} 1(\mathrm{t}+1)=1 \\
& \mathrm{Q} 2(\mathrm{t}+1)=0 \\
& \mathrm{Q} 3(\mathrm{t}+1)=0 \\
& \text { state at time ' } \mathrm{t}+1 \text { ' }
\end{aligned}
$$

t+0.5


At cycle $\mathrm{t}+0.5$, the state would be as shown in the figure with cells switched for output ports 1,2 and 3.

At cycle t+1.5


Ideal situation:

$$
\begin{aligned}
& \mathrm{Q} 1(\mathrm{t}+2)=2 \\
& \mathrm{Q} 2(\mathrm{t}+2)= \\
& \mathrm{Q} 4(\mathrm{t}+2)= \\
& \mathrm{Q} 3(\mathrm{t}+2)=0 \\
& \text { state at time ' } \mathrm{t}+2 \text { ' }
\end{aligned}
$$

For all $\mathrm{j}, \mathrm{Qj}(\mathrm{t})=0$. i.e. all the input packets have been switched. If all are going to distinct ports, there will be N arrivals and N departures.

However, it is not possible to obtain ideal throughput because of collisions.

Let the saturation throughput be $\gamma$
Let the expectation of $\mathrm{Qj}(\mathrm{t}), \mathrm{E}[\mathrm{Qj}(\mathrm{t})]=$ ?
There are NHOL cells to start with and $\mathrm{D}(\mathrm{t})$ departures at time ' t '.
$Q(t)=N-D(t)$

Therefore, $\mathrm{Q}(\mathrm{t} / \mathrm{N}=1-\mathrm{D}(\mathrm{t}) / \mathrm{N}$
$\downarrow$

$$
Q(t) / N=1-\gamma
$$

Now $Q(\mathrm{t})={ }_{\mathrm{j}=1} \Sigma^{\mathrm{N}} \mathrm{Q}_{\mathrm{j}}(\mathrm{t})$
Therefore, $\quad\left(j=1 \Sigma^{N} Q_{j}(t)\right) / N=1-\gamma$

Calculating the Expectation on each side,
$\mathrm{E}\left[\left({ }_{j=1} \Sigma^{\mathrm{N}} \mathrm{Q}_{\mathrm{j}}(\mathrm{t})\right) / \mathrm{N}\right]=\mathrm{E}[1-\gamma]$
Expectation of $1-\gamma$ is $1-\gamma$ itself.
Every inout port are identical and thus have equal distribution. Therefore,

$$
\begin{aligned}
& \mathrm{E}[(\mathrm{j}=1 \\
&\left.\left.\Sigma^{N} Q_{j}(\mathrm{t})\right) / \mathrm{N}\right]=1 / \mathrm{N} * \mathrm{E}\left[\left({ }_{j=1} \Sigma^{N} Q_{j}(t)\right]\right. \\
&=1 / N * N * E\left[Q_{j}(t)\right] \\
&=E\left[Q_{j}(t)\right]
\end{aligned}
$$

Therefore,

$$
1-\gamma=E\left[Q_{j}(t)\right]
$$

## Alternate formula for $E\left[Q_{j}(t)\right]$ for calculating the value of $\gamma$

$\mathrm{D}(\mathrm{t})=$ \# departures at time $\mathrm{t}-\mathrm{\varepsilon}$

$D(t)$ number of these HOL cells are gone. Among these $D(t)$ cells, some may go to output port 1, some to output port 2 and so on. This distribution of cells at each output port follows the Binomial Distribution. Since there were $D(t)$ departures, there will be $D(t)$ arrivals. Among these $D(t)$ arrivals say,
$A_{j}(t+1)$ cells will go to output port ' j '.
Therefore, $D(t)={ }_{j=1} \Sigma^{N} A j(t+1)$ arrivals. which is the saturation throughput.

Therefore, the $\operatorname{Pr}\left[A_{j}(t+1)=k\right]=$

$$
\begin{aligned}
& \binom{D(t)}{k}\left(\frac{1}{N}\right)^{k}\left(1-\frac{1}{N}\right)^{D(t)-k} \\
& \quad \text { where } \mathrm{k}=0,1,2,3 . . \mathrm{D}(\mathrm{t})
\end{aligned}
$$

IIm
Recall, for a Binomial distribution, $n->\infty \quad \mathrm{B}(\mathrm{n}, \mathrm{p})=\operatorname{Poisson}(\lambda)$
$\mathrm{p}->\infty$
$\mathrm{np}->\lambda$

Therefore, Considering the Binomial equation Binomial( $\mathrm{D}(\mathrm{t}), 1 / \mathrm{N})$-> Possion $(\gamma)$
and rewriting $\operatorname{Pr}\left[A_{j}(t+1)=k\right]=e^{-\gamma}\left(\gamma^{k} / k!\right)$

This means that the number of arrivals at a particular input port ${ }^{\prime} j, A_{j}(t+1)$ is a random variable and follows the Poisson distribution.

Thus, the Renewal equation is a well-define queueing process. The 'Arrivals' follow Poisson Distibution with parameter $\gamma$, there is one departure. And with this, the average queue size can be determined.

Solving the Renewal equation, the value of $\mathrm{E}[\mathrm{Q}(\mathrm{t})]$ can be determined and it is $\mathrm{E}\left[\mathrm{Q}_{\mathrm{j}}(\mathrm{t})\right]=\gamma^{2} / 2(1-\gamma)$

Therefore equating this with $(1-\gamma)$, we obtain

$$
\begin{aligned}
& \gamma^{2} / 2(1-\gamma)=(1-\gamma) \\
& \gamma=2-\sqrt{ } 2
\end{aligned}
$$

