
CS 2316 Individual Homework 2 – Conditionals & Loops
Due: Wednesday, September 3rd, before 11:55pm
Out of 100 points

File to submit: HW2.py

Students may only collaborate with fellow students currently taking CS
2316, the TA's, and the lecturer. Collaboration means talking through
problems, assisting with debugging, explaining a concept, etc.

For Help:
• TA Helpdesk – Schedule posted on class website.
• Email TA’s or use Piazza

Notes:
• Don’t forget to include the required comments and

collaboration statement (as outlined on the course
syllabus).

• Do not wait until the last minute to do this assignment in
case you run into problems

• Read the entire specifications document before starting
this assignment.

Simple Functions
You will write a few python functions for practice with the language. In
your HW2.py file, include a comment at the top with your name,
section, GTId/Email, and your collaboration statement. Also, include
each of the following functions below. For purpose of this homework,
you may assume that all inputs will be valid.

1. countLetter
2. gradeReplacement
3. findAvg
4. timeValueMoney
5. numHourglass
6. gpaCalculator
7. nutrition
8. clockTurtle

1. countLetter(10pts)

Description:
Write a function that takes in two string parameters. The first will
be a sentence, the second will be a letter. Your function will
analyze the string and print out the number of occurrences of the
letter. Note with caution that your function should be able to
recognize both uppercase and lowercase letters! The format of
the information to be printed can be found under “Test Cases”.

Parameters:
aString (String): A string
aLetter (String: A string

Return Value:
None

Test Cases:
1. countLetter(“so it goes”, ”s”) prints “The letter ‘s’ occurs 2

time(s).”
2. countLetter(“Would you kindly”, ”k”) prints “The letter ‘k’

occurs 1 time(s).”
3. countLetter(“CS is sOoOoOo fun!”, “o”) prints “The letter ‘o’

occurs 6 time(s).”

2. gradeReplacement (10pts)

Description:
Write a function that takes in a list of exam grades and returns the
average after performing a grade replacement policy. The grade
replacement policy takes the lowest grade from the list and
replaces it with the second lowest grade in the list. There will be
at least 2 numbers in the list, but there is no upper bound for the
length of the list.

Parameters:
gradeList (List): A list of exam grades as integers

Return:
(Float) The average of all the exam grades after replacement

Test Cases:
1. gradeReplacement([100,90,80,70]) returns 87.5
2. gradeReplacement([100,100,100,100]) returns 100.0
3. gradeReplacement([90, 80, 80, 90, 85]) returns 85.0
4. gradeReplacement([30, 80, 44, 90, 85]) returns 68.6

3. findAvg (10pts)

Description:
Write a function that takes in a list. The elements in the list can be
of any type (e.g. an integer, a float, a string, another list, etc.).
This function should calculate the average of all the integers and
floats contained in the list. That is, all non-number data types
should be ignored. You may assume that at least one integer or
float will be in each list.

Parameters:
findAvg(List): A list containing elements of various data types

Return Value:
(Float): The average of all numbers in the list

Test Cases:
1. findAvg([“hi”, 1.1, [2, 3], 15, {“32”:32}, 4, True]) returns 6.7
2. findAvg([True, False, 0, 1]) returns 0.5
3. findAvg([None, “32”, 10, “five”]) returns 10.0
4. findAvg([4242, 4010, 7646, [4311], “4133”]) returns

5299.333333
5. findAvg([32/4, 16.9, 500]) returns 174.96667

4. timeValueMoney(10pts)

Description:
Write a function that takes in a list containing integers/floats and
a float between 0 and 1. The values in the list will represent
cashflows(CF). Each cashflow’s index+1 will be the time period(t)
the cashflow is received. The function will return the present
value of the cashflows based on the float parameter passed in
(which represents the interest rate (r))using the formula:
PV = SUM(Cashflow/(1+ r)^t). For example given the list
[10,20,30] and interest rate 0.1. The present value would be
calculated as PV = 10/1.1 + 20/1.1^2 + 30/1.1^3

Parameter:
aList (List): a list representing cashflows
intRate (Float): a float representing the interest rate

Return Values:
(float): The present value of all cashflows rounded to two decimal
places

Test Cases:
1. timeValueMoney([10,20,30], 0.1) returns 48.16
2. timeValueMoney([500,400,-30], 0.08) returns 782.08
3. timeValueMoney([330,-400,-450.32,20,1500.00], 0.06) returns

713.95

5. numHourglass(15pts)

Description:
Write a function that will take in an integer X and return an
hourglass with a maximum width of 2X-1. Each row will be made
of integers representing said row, see the output examples below
for clarification.
Parameters:
aNum (Int): An integer representing the maximum width of the

hourglass
Return Value:
None

Test Cases:
Notice that you have three 2’s, seven
4’s, nine 5’s, etc.

5. gpaCalculator (20pts)

Description:
Write a function that takes in 2 lists of equal length. The first list
will contain numbers from 0-100 representing final grades in
different classes. The second list will represent the number of
credit hours each class grants upon completion. The indexes in
both lists coincide. For example, if the first element in the first list
is a 97 and the first element in the second list is 3, this data
represents a 3 hour class that one received a grade of 97 in. Using
this data you will need to calculate the number of quality points
received from each class. Quality points are calculated as the
grade point achieved in the class times the number of credit
hours of that class. Grade point are determined as follows: 4 for
[90,100], 3 for [80,90), 2 for [70,80), 1 for [60,70) and 0 for
[0,60). Once the quality points have been determined, the grade
point average is calculated as the sum of quality points over the
sum of the credit hours.
Your function should return the calculated GPA.
Parameters:
gradesList (List): This list will hold finals grades (out of 100)
hoursList (List): This list will hold the amount of course hours

granted
Return Value:
(Float): A floating point value representing the grade point

average.

Test Cases:
1. gpaCalculator([87,81,91,99,93],[3,3,4,3,3]) returns 3.625
2. gpaCalculator([74,90,88,40],[3,4,4,3]) returns 2.4286
3. gpaCalculator([100,30,50,75,90],[3,3,1,4,2]) returns 2.153846
4. gpaCalculator([59,82,74,79,66],[4,3,3,1,3]) returns 1.42857

7. nutrition(10pts)

Description:
This function will take in a list of tuples. Each tuple will contain
two integers which represent a specific food’s calorie and protein
content (in grams), respectively. The tuples will always be of the
form (calories,protein). This list represents all the food eaten in a
day. The function will also take in an integer representing weight
(in lbs.). The goal of the function is to determine whether or not
the amount of protein consumed was greater than half of the
body weight while not exceeding 2500 calories.

If these conditions are met, the function should print out the
grams of protein consumed, as well as the number of calories
under the 2500 threshold you are in the following format: “Nice!
You consumed X grams of protein and still have Y calories left!”

If these conditions are not met due to insufficient protein intake,
the function should print out the difference between half the
body weight and grams of protein consumed, along with the
number of calories consumed in the following format: “Sorry, you
still need to eat X grams of protein, and have already consumed
Y calories.”

If these conditions are not met due to exceeding 2500 calories,
the function should print out the amount of protein consumed
and the difference in the amount of calories consumed and the
2500 allotment in the following format: “Sorry, you ate X grams
of protein but consumed Y too many calories.”

If none of the conditions are met, the function should print out
the difference in half the body weight and grams of protein
consumed, as well as the amount of calories over 2500 in the
following format: “Sorry, you still need to eat X grams of protein,
but consumed Y too many calories.”

Parameters:
aList (List): A list of tuples representing the calorie
and protein content of various foods
aNum (integer): An integer representing body weight

(in lbs.)

Return Values:
None

Test Cases:
1. nutrition([(180,3), (750,10), (493,20), (390, 0), (910, 16)], 150)

prints “Sorry, you still need to eat 26.0 grams of protein, but
consumed 223 too many calories.”

2. nutrition([(330,14), (543,22), (599,34), (120, 11)], 119) prints
“Nice! You consumed 81 grams of protein and still have 908
calories left!”

3. nutrition([(500,8), (443, 2), (200,10), (840, 15), (732, 9), (901,
14)], 110) prints “Sorry, you ate 58 grams of protein but
consumed 1116 too many calories.”

4. nutrition([(400,13), (130,4)], 178) prints “Sorry, you still need
to eat 72.0 grams of protein, and have already consumed 530
calories.”

8. clockTurtle (15pts)

Description:
Write a function that uses the turtle module to draw a clock with a
given clickHour, as the short hand of clock, and aNum, as the
radius. You may assume that the long hand of the clock will stay
at 12 at all times. You do need to draw the clock layout using the
turtle module. At each hour position (12, 1, 2, 3, 4, 5, etc.), make
your turtle leave a stamp of itself. (You can change the turtle
shape if you want).
Parameters:
clockHour (Integer): an integer between 1 and 12 representing
the short hand of the clock
aNum (Integer): radius of the clock

Return Values:
None

Examples:
clockTurtle(9,100) clockTurtle(5,70)

Grading Rubric
countLetter (10pts)
- Loops through input string 2pts
- Identifies lowercase letters 2pts
- Identifies uppercase letters 2pts
- Keeps track of the number of occurrences of letter 2pts
- Prints correct information in the correct format 2pts

gradeReplacement(10pts)
- Correctly identifies the lowest grade 2pts
- Correctly identifies the second lowest grade 2pts
- Replaces lowest grade with second lowest grade successfully 4pts
- Returns correct average 2pts

findAvg(10pts)
- Loops through input list 1pts
- Identifies which elements are valid ints/floats

1pt
- Keeps track of valid values 2pts
- Counts number of valid values 1pt
- Correctly sums values 1pt
- Correctly calculates average of valid values 2pts
- Returns correct average 2pts

timeValueMoney (10pts)
- Loops through input list 1pt
- Correctly implements PV formula 5pts
- Rounds PV to two decimal places 2pts
- Returns correct PV 2pts

numHourglass (15pts)
- Correct number of rows 5pts
- Each row is the correct number 5pts
- Not hardcoded 5pts

gpaCalculator(20pts)
- Takes in two correctly formatted parameters 2pts
- Loops through both lists 2pts
- References correct elements in both lists when calculating qlty.pts 4pts
- Correctly calculates quality points for each grade-hours pair 6pts
- Correctly calculates GPA 4pts
- Returns GPA in the correct format 2pts

nutrition(10pts)
- Function header and parameters are correct 2pts
- Correct output for sufficient protein/insufficient calories case 2pts
- Correct output for insufficient protein/sufficient calories case 2pts
- Correct output for insufficient protein/insufficient calories case 2pts
- Correct output for sufficient protein/sufficient calories case 2pts
clockTurtle(15pts)
- Takes in 2 parameters 1pt
- Long hand stays at 12 3pts
- Short hand is drawn at correct hour position 5pts
- Short hand is (recognizably) shorter than long hand 1pts
- Turtle is stamped at each hour position 2pts
- Turtles are stamped in the correct orientation 1pts
- The clock size changes as radius changes 2pts

