
Grammar-like Functional Rules
for Representing Query Optimization Alternatives

Guy M. L&man
IBM Almaden Research Center

San Jose, CA 95120

Abstract
Extensible query optmuxahon reqmres that the “repertoue” of
alternatIve strate@es for executmg quenes be represented as data,
not embedded m the optumzer code Recogmzmg that query op-
tmuzers are essentlaliy expert systems, several researchers have
suggested usmg strategy rules to transform query execution plans
into alternatlve or better plans Though extremely flexrble, these
systems can be very mefflclent at any step m the processmg, many
rules may be ehable for apphcatlon and comphcated cond&ons
must be tested to detemune that ehgbtity dunng umfuzatlon We
present a constructwe, “buddmg blocks” approach to defmmg al-
ternative plans, m which the rules defmmg alternatives are an
extension of the productlons of a grammar to resemble the defuution
of a funcuon m mathematics The extensions pernut each token
of the grammar to be parametnzed and each of its alternative
deflmtlons to have a complex con&tlon The termmals of the
grammar are base-level database operations on tables that are
mterpreted at run-me The non-termmals are defined declaratively
by productlon rules that combme those operauons mto meamngful
plans for executton Each producuon produces a set of alternative
plans, each havmg a vector of propeties, mcludmg the estunated
cost of producmg that plan Producttons can reqmre certam prop-
ertles of theu mputs, such as tuple order and location, and we
descnbe a “sue” mechamsm for augmentmg plans to a&eve the
reqmred propertles We @ve detaded examples to dustrate the
power and robustness of our rules and to contrast them Hnth related
Ideas

I. Introduction

Ever smce the fast query optumzers [WONG 76, SELI 791 were
budt for relational databases, revlsmg the “repertoue” of ways to
construct a procedural executton plan from a non-procedural query
has reqmred comphcated and costly changes to the optmuzer code
Itself ms has hted the repertoire of any one optmuzer by
dlscouragmg or slowmg expenmentation wth - and lmplementatlon
of - all the new advances m relational technology, such as un-
proved loin methods CBABB 79, BRAT 84, DEWI 851, drstnbuted
query optmzation CEPST 78, CHU 82, DANI 82, LOHM 851,

Permlsslon to copy wlthout fee all or part of this materml IS granted provided
that the COPES are not made or mstnbuted for duect commercml advantage, the
ACM copyrlght notxe and the title of the pubhcation and Its date appear, and
notlce IS gwen that copymg IS by perrmsaon of the Assoclatlon for Computmg
Machmery To copy othemse, or to repubhsh, reqmres a fee and/or specdk
pertntsston

Reproduced by consent of IBM

0 1988 ACM 0-89791-268-3/88/ooo6/0018 $1 50

S~IIUJOUIS [BERN 811, BloomJoms [BABB 79, MACK 861, parallel
JOUB on fragments CWONG 831, Jam mdexes CHAER 78, VALD
871, dynanuc creauon of mdexes h4ACK 861, and many other
vanatlons of tradmonal processmg strateges The recent surge m
mterest 111 extensible database systems CSTON 86, CARE 86,
SCHW 86, BAT0 861 has only exacerbated the burden on optl-
nuzers, addmg the need to custonuze a database system for a
part~cuhu class of appbcations. such as geograptuc CLOHM 83 1,
CAD/CAM, or expert systems Now optmuzen must adapt to
new access methods, storage managers, data types, user-defmed
functions, etc. all combmed m novel ways Clearly the titlonal
speclficatlon of aU feasible strateges m the optmuzer code cannot
support such flu&y

Perhaps the most challengmg aspect of extensible query optmuzatlon
is the representation of alternative execution strateges Ideally,
this representation should be ready understood and mod&d by
the Database Custormzer (DBC)’ Recogmzmg that query optumx-
ers are expert systems, several authors have observed that rules
show great prormse for t& purpose CULLM 85, FREY 87, GRAE
87al Rules provide a high-level, declamt~ve (I e , non-procedural),
and compact speclftcatlon of legal altematwes, wluch may be mput
as dota to the optmuzer and traced to explam the ongm of any
execution plan Thus makes tt easy to m&y the strate@es wthout
unpactlng the optmuzer, and to encapsulate the strate@es executable
by a particular processor m a heterogeneous network But how
should rules represent alternative strate@es? The EXODUS project
CGRAE 87a, GRAE 87bl and Freytag [FREY 871 use rules to
transform a gwen execution plan mto other feasible plans The
NAIL! project CULLM 85, MORR 861 employs “capture rules”
to determme whch of a set of avadable plans can be used to
execute a query

In ti paper, we use rules to descnbe how to construct - rather
than to alter or to match - plans Our rules “compose” low-level
database operations on tables (such as ACCESS, JOIN, and SORT)
mto higher-level operations that can be re-used m other defuutions
These constructive, “bmldmg blocks” rules, which resemble the
productions of a grammar, have two major advantages over plan
transformation rules

. ‘l&?y are more readily understood, because they enable the DBC
to budd mcreasmgly complex plans from common buddmg blocks,
the detads of which may be transparent to bun, and

. They can be processed more efliereatly dunng optlmlzatron, by
simply fmdmg the deflmtlon of any buddmg block that IS refer-
enced, usmg a sunple dnztlonary search, much as ts done m macro
expanders By contrast, plan transformation rules usually must

I We feel ths term more accurately describes the role of adaptmg an uaplemented
bat extensible database system than does the term Dorobclre Impkmntw (DBI),
WIT by cmy et at [CARE 861

18

examme a large set of rules and apply comphcated condtttons on
each of a large set of plans generated thus far, m order to
detemune tf that plan matches the pattern to which that rule
apphes As new rules create new patterns, extstmg rules may
have to add condrtrons that deal wtth those new patterns

Our grammar-hke approach IS founded upon a few fundamental
observatrons about query opttmrxatton

l Ail database operators cunsome and produce a common object -
a table, viewed as a stream of tuples that IS generated by accessmg
a table [BAT0 87al The output of one operatton becomes the
input of the next Streams from mdrvrdual tables are merged by
Jorns, eventually mto a single stream [FREY 87, GRAB 87al

l Optumxers construct iegai sequences of such operators that are
understood by an mterpreter, the ovary ews/n&u In other words,
the repertoue of legal plans IS a language that mrght weii be
defined by a grammar

Decuaons made by the optmuzer have an mherent sequence depen-
dency that hnnts the scope of subsequent dectsrons [BAT0 87a,
FREY 871 For example, for a gtven plan, the order m whtch
a gtven set of tables are Jomed must be determmed before the
access path for any of those tables IS chosen, because the table
order determmes whtch predtcates are ehgrble and hence nught
be applied by the access path of any table (commonly referred
to as “pushmg down the selectton”) Thus, for any set of tables,
the rules for ordering table accesses must precede those for
choosing the access path of each table, and the former serve to
hmtt stgmftcantly whtch of the latter rules are apphcable

Akernahve plans may mcorporate the same pian fragment, whose
alternatives need be evaluated only once Thts further hmtts the
rules generating altemattves to Just the new portions of the plan

Unhke the sunple pattern-matchmg of tokens to determme the
apphcabthty of productions tn grammars, m query opttmtxatron
specifymg the crmdtknm under whwh a rule is appbcabie Is usualiy
barder thm spedfying the rule’s tnmsfmmn For example, a
muib-column mdex can apply one or more preQcates only tf the
columns referenced m the predtcates form a prefix of the columns
m the index Asstgnmg the predrcates to be apphed by the mdex
IS far easier to express than the condrhon that pemuts that
asstgnment

These observattons prompted us to use “strategy” rules to construct
legal nestmgs of database operators declaratrveiy, much as the
producttons of a grammar construct legal sequences of tokens
However, our rules resemble more the defmrtton of a functton m
mathemattcs or a rule in Prolog, m that the “tokens” of our
grammar may be parametnxed and theu defrmtron altematrves may
have complex conrhttons The reader IS cautioned that the upp/rcatron
- not the representatton - IS our ciarm to novelty Logtc pro-
grammmg uses rules to construct new relatrons from base reiattons
CULLM 851, whereas we are using rules to construct new operators
from base operators that operate on tables

Our approach 1s a general one, but we wtll present It m the context
of tts mtended use the Starburst prototype extenstbie database
system, which IS under development at the IBM Ahnaden Research
Center CSCHW 86, LIND 871

The paper IS orgamxed as follows Section 2 first defines the
end-product of optuntzatton - plans We descnbe what they’re
made of, what they look hke, how our rules are used to construct
all of them for a query In Sectton 3, we associate properties wtth
plans, and allow rules to impose requrrements on the properties of
theu mput plans A set of possible rules for Joins IS gtven m
Section 4 to diustrate the power of our rules to specify some of
the most comphcated strategtes of exrstmg systems, mcludmg several
not addressed by other authors Section 5 outhnes how the DBC

can make extensrons to rules, properttes, and database operators
Havmg thoroughly described our approach, we contrast tt wrth
related work m Sectton 6, and conclude m Sectton 7

2. Plan Generation

In thm sectron, we descnbe the form of our rules We must first
define what we want to produce wrth these rules, namely a query
evaluahon plan, and tts constttuents

2.1. Plans

The basic object to be mampulated - and the class of “tennmais”
m our grammar - is a LOwLEd Plan OPaWor (LOLEPOP) that
wrii be mterpreted by the query evaluator at run-tune LOLEPOPs
are a vanatron of the relattonai aigrebra (e g , JOIN, UNION, etc),
supplemented wtth low-level operators such as ACCESS, SORT,
SHIP, etc [FREY 871 Each LOLEPOP 1s vtewed as a functton
that operates on 1 or 2 tables*, whtch are parameters to that
function, and produces a smgle table as output A && can be
either a table stored on dtsk or a “stream of tupies” m memory
or a commumcatron pope The ACCESS LOLEPOP converts a
stored table to a stream of tuples, and the STORE LOLEPOP
does the reverse In addrtton to mput tables, a LOLEPOP may
have other parameters that control its operatton For example, one
parameter of the SORT LOLEPOP 1s the set of colmnns on whrch
to sort Parameters may also spectfy a j&rue of LOLEPOP For
example, dtfferent JOUI methods havmg the same mput parameter
structure are represented by drfferent flavors of the JOIN
LOLEPOP, drffereoces m mput parameters would necessitate a
dtstmct LOLEPOP Parameters may be opttonal, for example, the
ACCESS LOLEPOP may opttonally apply a set of prerhcates

A quety erwlmtnrn @an (QEP, or p&n) 1s a duected graph of
LOLEPOPs An example plan 1s shown m Frgttre 1 Note that
arrows pomt toward the source of the stream, not the duecttoo m
wluch tuples flow Thts plan shows a sort-merge JOIN of DEPT
as the outer table and EMP as the mner table The DEPT stream
1s generated by an ACCESS to the stored table DEPT. then
SORTed mto the order of column DNO for the merge-Jam The
EMP stream 1s generated by an ACCESS to the stored mdex on
column EMP DN03 that mciudes as one “column” the &p/e dnttfm
(lZD) For each tuple m the stream, the GET LOLEPOP then
uses the TID to get addtttonal columns from its stored table
columns NAME and ADDRESS from EMP m tins example

Another way of representmg thts plan ts as a oestmg of functtons
CBATO 87a, FREY 871

JOIN bortmer~e, DEPT DNO-EMP DNO.

SOWACCESSfDEPT, (DNO,ICRl.~MCR='Ro~)),DNO).

SEl(ACCESS(1nde.s on EMP DNO.(TID.DNO),~),

EMP, (NAJfE.ADDRJJSS),#))

Thts representattoo would be a lot more readable, and caster to
construct, if we were to defme mtermedtate functtoos D and E for
the last two parameters to JOIN

JOIN(aort naerp, D DNO-E DNO, D, E)

2 Nothmg UL the structure of our rules prevents LOLEPOPs from operatmg on
any number of tables

3 Actually, ACCESS% to bass tables and to access methods such as tlus Index
use dtfferent flavors of ACCESS

19

f JOIN
Mathod sort-meqe
pn’ci; DEPT DA0 - EMP Di’N

I

‘SORT
Cols DA0
input \

\

I \
GET
labia. EW
COIS’ hum, ADDRESS

L
input. \

J

, 1

ACCESS ACCESS
Tabio DEPT Tabia. In&x on EMP DM
Coir. Dw, A&R
Pd. h&R - ‘Haas’

Cob- TID. DM
Prod.

Figure 1 One potentmi query evaluahon pian for the SQL
query

SELECT NAME, ADDRESS
FROM EMP E, DEPT D
WHERE E DNO q D DNO AND MGR='Haas'

and

E - QET(ACCESS(M~ WIEMP DNO,(TID.DNO),+).

EMP. (NA~~E.ADDRESS), +)

If properly parametnxed, these mtermedtate functtoos could be
re-used for creatmg an ordered stream for any table, e g

DrderedStreamltT, C, P, ordsr) - SORl(ACCESS(T, C, P), onbr)

and

DrderedStreamZ(T, C, P, order) =

aET(A~ESS(o,(TIDJ,cg).T.C,P) IF ombrco

where T IS the stored table (base table or base tables represented
m a stored mtermedtate result) to be accessed, C IS the set of
columns to be accessed, P 1s the set of predrcates to be applted,
and “er&rK a” means “the ordered hst of columns of order are a
preftx of those of access path u of 7” Now tt becomes apparent
that OrderedStream and OrderedStream provtde two altematrve
deftmhoos for a smgle concept, an OrderedStream, IO which the
second defnuttoo depends upon the exrsteoce of a mutable access
path

OrderedStream(T, C, P, o&r) -

SORT(ACCESS(T. C, P). or&r)
OEl(ACCESS(o,ITIDl, 0). T. C,P) IF ordsrs D

Thts higher-level construct can now be nested wrthm other ftmcttoos
oeedmg an ordered stream, wtthout havmg to worry about the
detads of how the ordered stream was created [BAT0 87al It IS
precisely thts train of reasonmg that mspned the grammar-bke
design of our rules for constructmg plans

2 2 Rules

Executable plans are defmed usmg a grammar-l&e set of
parametrized productron rules tailed STmy~y Altarydta Rub
(STARS) that define higher-level constructs from lower-level con-
structs, m a way resembhng common mathemattcai functtons or a
fuoctrooal programmrog language [BACK 781 A STAR defines
a named, parametnxed object (the ‘~oonternunals” m our grammar)
m terms of one or more u/ternuhw &jinit&m, each of whtch

. may have a amd~tron of a&adtil&v, and

. defines a plan by refereocmg one or more LOLEPOPs or other
STARS, spectfymg cvgrarccnb for theu parameters

Arguments and condrtroos of appltcabtbty may reference constants,
parameters of the STAR bemg defined, or other LOLEPOPs or
STARS For example, the totermedtate functtons OrderedStream
and OrderedStreamZ, defined above, are examples of STARS wtth
only one aitematrve defmttoo, but OrderedStream has two alter-
natrve defrmtrons The first of these references the SORT
LOLEPOP, whose fust argument ts a reference to the ACCESS
LOLEPOP and whose second argument 1s the parameter or&r
The coodrtrons of appltcabtbty for all the aitematrves may either
overlap or be exclusive If they overlap, as they do for
OrderedStream, then the STAR may return more than one plan

In addrttoo, we may wtsh to apply the fun&ton to every element
of a set For example, m Ordered&earn2 above, any other mdex
on EMP havmg DNO as Its malor column could a&eve the destred
order So we need a STAR to generate an ACCESS plan for each
Index 1 in that set I

IndexAccess - vi c I ACCESS(1, (TIDI, 9)

Usmg rule IndexAccess m rule OrderedStream as the first argument
should apply the GET LOLEPOP to each such plan. I e , for each
aitemattve plan returned by IndexAccess, the GET ftmctton wtil
be referenced wtth that plan as 1t.s fust argument So
GET (IndexAccess(EMP), C, P) wtll also return multtple plans
Therefore any STAR havmg overiappmg coodrttons or refereocmg
a multt-valued STAR wrll ttseif be m&t-valued It ts earnest to
treat ali STARS as operattons on the abstract data type Sef of
AM P&m far o stmnm (SAP), whtch consume one or two
SAPS and are mapped (m the LISP sense [PREY 871) onto each
element of those SAPS to produce an output SAP Set-valued
parameters other than SAPS (such as the sets of coiumns C and
p&mates P above) are treated as a smgie parameter unless oth-
erwrse designated by the V clause, as was done IO the defuntroo
of IndexAccess

2.3. Use and Implementation

As our fuocttooal notation suggests, the rule mechamsm starts wrth
the root STAR, whtch IS the “starttng state” of our grammar The
root STAR has one or more alteroattve defnnttoos, each of which
may reference other STARS, whtch m turn may reference other
STARs, and so on top down uotti a STAR IS defined totally IO
terms of “temnoals”, I e LOLEPOPs operatmg oo constants Each
reference of a STAR ts evaluated by replactog the reference wtth
its altemattve defmtttons that sattsfy the coodtt~oo of appbcabthty,
and replacmg the parameters of those defmttrons wrth the arguments
of the reference Unhke transformatrooai rules, thrs substttutton
process IS remarkably stmple and fast, the fanout of any reference
of a STAR IS lumted to lust those STARS referenced IO its deft-
mtroo, and alternative deftmttons may be evaluated m parallel
Therem hes the real advantage of STARS over traosformattonal
rules The rmplementatton of a prototype interpreter for STARS,
tocludmg a very general mechamsm for controlhng the order m
whtch STARS are evaluated. IS described m [LEE 881

20

- -J

Thus far m Starburst, we have sets of STARS for accessmg mdl-
vldual tables and Jams, but STARS may be defmed for any new
operatlon, e g outer Jam, and may reference any other STAR The
root STAR for Jams IS called JomRoot, d possible defmltlon of
which appears III Sectlon “4 Example Jom STARS”, along with
the STARS that it references Sunphfled deflmtlons of the smgle-
table access STARS are gtven m [LEE 881 For any gven SQL
query, we bmld plans bottom up, first referencmg the AccessRoot
STAR to bmld plans to access mdmdual tables, and then repeatedly
referencmg the JomRoot STAR to Jam plans that were generated
earher, untd all tables have been Jomed What constitutes a Jomable
pau of streams depends upon a compde-tune parameter The
default IS to gve preference to those streams havmg an ehable
Jam predtcate hnkmg them, as drd System R and R*, but tb can
be ovemdden to also consider Cartesian products between two
streams of small estnnated cardmabty In adhtion, m Starburst we
exploit all predicates that reference more than one table as JOUI

p&u&es m generahzatlon of System R’s and R*‘s “co11 =
~012” Jam predcates, plus allowmg plans to have composite mners
(e g , (A*B)*(C*D)) and CartesIan products (when the appropnate
parameters are specfiled), slgmftcantly comphcates the generation
of legal JOIII pans and mcreases their number However, a cheaper
plan I more bkely to be &scovered among this expanded repertolrel
We wdl address tti aspect of query optmuxaUon m a forthcommg
paper on Jam enumeration

3. Properties of Plans

The concept of cost has been generahxed to include all propertles
a plan rmght have We next present how propeties are defined
and changed, and how they mteract wtth STARS

3.1. Description

Every table (either base table or result of a plan) has a set of
pmpaha that summanxe the work done on the table thus far (as
m CGRAE 87b1, [BAT0 87a1,and [ROSE 871) and hence are
unportant to the cost model These properttes are of three types

lX?MlOIUll the relational content of the plan, e g due to Jams,
proJecttons, and selections

the physical aspects of the tuples, which affect the
cost but not the relattonal content, e g the order
of the tuples

esuloat4 properttes denved from the previous two as part
of the cost model, e g esmated cardmabty of the
result and cost to produce It

Examples of these properties are summarized m Figure 2 AU
propeties are handled umformly as elements of a m w&r,
which can easdy be extended to add more propertles (see sectton
5)

Imtmlly, the propertles of stored objects such as tables and access
methods are determmed from the system catalogs For example,
for a table, the catalogs contam its constituent columns (COLS),
the SITE at which tt IS stored CLOHM 851, and the access PATHS
defined on it No predcates (PREDS) have been apphed yet, it
IS not a TEMPorary table, and no COST has been Incurred m the
query The ORDER 1s “unknown” unless the table IS known to
store tuples m some order, m whch case the order is defined by
the ordered set of columns on which the tuples are ordered

Each LOLEPOP changes selected properties, mcludmg adding cost,
m a way determmed by the arguments of 1t.s reference and the
properties of any arguments that are plans For example, SORT

21

I I-

' Relational (WHAT)

TABLES Set of tables accessed
COLS Set of columns accessed
PREOS Set of predicates applied

. Physical (HOW)

ORDER Ordering of tuples
(an ordered list of columns)

SITE Site to which tuples delivered
TEMP "True" if materialized in a tempo-

rary table
PATHS Set of available access paths on

(set of) tables, each element an
ordered list of columns

l Estimated (HOW MUCH)

CARD Estimated number of tuples result-
ing

COST Estimated cost (total resources, a
linear combination of I/O, CPU, and
communications costs CLOHM 851)

Flgure 2 Example properties of a plan.

changes the ORDER of tuples to the order speclfled m a parameter
SHIP changes the SITE property to the spectiled site Both
LOLEPOPs add to the COST property of their mput stream ad-
dttional cost that depends upon the stze of that stream, which LS a
function of its propefies CARD and COLS ACCESS changes a
stored table to a memory-restdent stream of tuples, but opttonally
can also subset columns (relattonal propct) and apply predicates
(relattonal select) that may be enumerated as arguments The
latter option wtll of course change the CARD property as well
These changes, mchtdmg the appropnate cost and cardmahty es&
mates, are defined m Starburst by a m fan&on for each
LOLBPOP Each property function 1s passed the arguments of the
LOLEPOP, mcludmg the property vector for arguments that are
STARS or LOLEPOPs, and returns the reused property vector
Thus, once STARS are reduced to LOLEPOPs. the cost of any
plan can be assessed by mvokmg the property function for successtve
LOLEPOPs These cost fun&tons are welJ estabhshed and vahdated
SMACK 861, so ~ILI not be bussed further here

3.2. Required vs. Available
Properties

A reference of a STAB or LOLEPOP, especially for certam Jam
methods, may reqmre certam properues for its arguments For
example, the merge-pm requtres its mput table streams to be
ordered by the Jam columns, and the nested-loop)om reqmres the
mner table’s access method to apply the JOIII predicate as though
d were a smgle-table predicate (“pushes the selection down”)
Dyad~c LOLEPOPs such as GET, JOIN, and UNION reqmre that
the SITE of both mput streams be the same

In the previous section, we constructed a STAR for an
Ordered&ream, where the desved order was a parameter of that
STAR Clearly we could reqmre a particular order by referencmg
OrderedStream w&h the reqmred order as the wrrespondmg argu-
ment The problem IS that we may stmultaneously reqmre values
for any of the 2” wmbmations of n properties, and hence would
have to have a Mferently-named STAR for each wmbmatlon For
example, d the sort-merge JOIN m the example 1s to take place

j \I rl =x then we need to defme a SltedOrderedStream that has
p or umttrs for SITE and ORDER and references m its defnutton
SHIP LOLEPOPs to send any stream to SITE x, as well as a
SItedStream, an OrderedStream, and a STREAM Actually,
SttedOrderedStream subsumes the others, smce we can pass nulls
for the properties not reqmred But m general, every STAR wdl
need this same capabtity to specfiy some or all of the propeNes
that might be requued by referencing STARS as parameters Much
of the defuutlon of each of these STARS would be redundant,
because these properties really are orthogonal to what the stream
produces In addtlon, we often want to find the cheupesr plan
that sausfles the reqmred properties, even d there IS a plan that
naturally produces the requued properties For example, even
though there 1s an mdex EMP DNO by which we can access EMP
m the required DNO order, it nught be cheaper, d EMP were not
ordered by DNO, to access EMP sequenttally and sort it mto DNO
order

We therefore factor out a separate mechamsm called Gk, which
can be referenced by any STAR and whxh

LOLEPOP can be added to change the tuple ORDER, or a
SHIP LOLEPOP to change the SITE), and

3 either returns the cheapest plan sattsfymg the reqmrments or
(optionally) all plans satiymg the requuements

In fact, Glue can be spec&d usmg STARS. and Glue operators
can be STARS as well as LOLEpOPs. as described m [LEE 881

Reqmred properttes m the STAR reference are en&s4 m square
brackets next to the affected SAP argument, to assoaatetheE-
qmred propertms with the stream on wluch they are tmposmg
requuements Dtfferent properhes may be requued by references
m Uferent STARS, the reqmrements are accumulated tmt4 Glue
1s referenced W anal be ~Uustrated m the next se&on.

An example of ttus Glue mechamsm LS shown m Ftgure 3 In tlus
example, we assume that table DEPT IS stored at SlTE=N Y , but
the STAR reqmres DEPT to be dehvered to SlTE=L.A m DNO
order None of the avatlable plans meeta those requuements The
ftrst avatlable plan must be augmented anth a SHIP LOLEPOP to
changetheStipropertyfro&NY toLA Theseamdplaa,o
mmple ACCESS of DEPT. must be both SORTed and SiUPped
The thud plan, perhaps created by an earher reference of Glw
that &ddt have the ORDER reqturement. has already added a
SHIP to plan 2 to get it to L A, but sttll needs a SORT to aclueve
the ORDER requuement

checks d any plans extst for the requued relattonal propem-
(TABLES, COLS, and PREDS), referencmg the topmost
STAR with those parameters d not.
adds to any extstmg plan “Glue” operators as a “veneer” to
achieve the reqmred proper&s (for example, a SORT

STAR
Requiring
Properties

“Glue”

Available
Plans
f or
DEPT

M:hUX-‘Hoqg’

I ACCESS
Table In&x on DEPT DhK)
Cols: TID. DND 1

rwne NY
P .

4. Example: Join STARS 4.1. Join Permutation Alternatives

To dlustrate the power of STARs m this secUon we dtscuss one
possible set of STARS for generatmg the jam strategies of the R*
optlmt7er (m SectIons 4 1 - 4 4). plus several adcbtlonal strategies
such as

9 composite mners (Sections 4 1 and 4 3),
l new access methods (Sectlon 4 5 2),
. new Jam methods (SectIon 4 4),
l dynamic creation of indexes on mtermediate results (Section

4 5 3),
l matenahzatlon of inner streams of nested-loop jams to force

projection (Section 4 5 2)

Although there may be better ways within our STAR structure to
express the same set of strateBes, the purpose of this section IS to
dlustrate the full power of STARS Some of the strategies (e g ,
hash Joins) have not yet been Implemented m Starburst, they are
mcluded merely for dlustratmg what IS involved m adding these
strate@es to the optmuzer

These STARS are by no means complete we have mtenttonally
snnphfled them by removmg parameters and STARs that deal with
subquenes treated as Joms, for example The reader 1s cautioned
against construmg this omsnon as an mabdity to handle other
cases, on the contrary, It Illustrates the flexltnhty of STARS! We
can construct, but have onutted for brevrty, addltlonal STARS for

l sortmg TIDs taken from an unordered mdex m order to order
I/O accesses to data pages,

. ANDmg and ORmg of multIpIe indexes for a single table,

. treatmg subquenes as Joins havmg different quantifier types (1 e ,
generahzmg the pre&cate calcuIus quant&ers of ALL and EXISTS
to include the FOR EACH quantifier for Joins and the UNIQUE
quantifier for scalar (“=“) subquenes),

. f&ration methods such as serm-Joins and Bloom-Jams

We believe that any desired strategy for non-recurstve quenes wdl
be expressible usmg STARS, and are currently mvestigatmg what
&fflcultles, tf any, anse with recursive quenes and multiple execution
streams resulting from table partitionmg CBATO 87al

In these defmtlmor readabtity we denote adurrw a/tematnw
&fmiriorrc by a left curly brace and rrrlrarlr a&am&~ defmtiom by
a left square bracket In practice, no dutmction IS necessary In
all examples, we wdl wnte non-termmals (STAR names) m
RegularmedCase. parameters m rlabcs (those which may be sets
are denoted by capital letters), and termmals m bold, Hrlth
LOLEPOPs Qstmgmshed by BOLD CAPITAL LElTERB Re-
quued propertIes are wntten m small bold letters and surrounded
by a pau of [square brackets] For brevity, we have had to
shorten names, e g , “JMeth” should read “JomMethod” The
function “x(.)” denotes “columns of (.)‘I, where . can be a set
of tables, an index, etc We assume the existence of the basic set
functions of E ,fl,E, - (set dfference), etc

STARS are defined here top down (1 e , a STAR referenced by any
STAR IS defined after its reference), whch IS also the order m
w&h they ti be referenced We start with the root STAR,
JomRoot, whtch IS referenced for a given set of parameters

. table (quantlher) sets TI and 72 (with no order Impbed)

. the set of (newly) ehgble predicates, P

Suppose, for example, that plans for Joming tables X and Y and
for accessing table Z had already been generated, so we were ready
to construct plans for Jommg X*Y with Z Then JomRoot would
be referenced with 72 = (X,Y], T2 = {Z), and
P=(Xg = Zm, Yh = Znl

JolnRoot(T!,Tz,P) =
PermutedJoln(T1, TL, P)
PermutedJoln(Tz, TI, P)

The meamng of this STAR should be obvious either table-set Tl
or table-set T2 can be the outer stream, with the other tabie-set
as the inner stream Both are possible alternatives, denoted by an
inclusive (square) bracket Note that we have no conditions on
either alternative, to exclude a composife mner (I e , an mer that
IS itself the result of a Mom), we could add a conchtlon restnctmg
the inner table-set to be one table

This sunple STAR fads to adequately tax the power of STARS,
and thus resembles the comparable rule of transformatIona ap-
proaches However, note that smce none of the STARS referenced
by JomRoot or any of its descendants WIU reference JomRoot,
there IS no danger of tb STAR bemg mvoked agam and “undomg”
tts effect, as there IS m transformational rules CGRAE 87al

4.2. Join-Site Alternatives

PermutedJorn(n, Tz, P) =

i

SltedJoin(T1, TZ,P) IF local query

Vsro RemoteJo~n(Ti,Tz,P,s) OTHERWISE

RemoteJOin(T!, Tz,P.s)=

SitedJoin(n[srfe=s], rz[srte=sl,P)

o E set of sites at which tables of the query
are stored, plus the query Sita

Thrs STAR generates the same Jam-site altematlves as R* CLOHM
841, and dustrates the spectflcatlon of a reqmred property Note
that Glue IS not referenced yet, so the reqmred site property
accumulates on each alternative untd It LS The mterpretation 1s

1 If all tables (of the query) are located at the query site, go
on to SitedJom, 1 e, bypass the RemoteJom STAR wluch
&ctates the Jam site

2 Other, reqmre that the Mom take place at one of the Sites
at which tables are stored or the query ongmated

If a site wtth a particularly efficient horn engme were avadable,
then that site could easily be added to the defuution of 0

4.3 Store Inner Stream?

I JMeth (TI , T2 hwv~pl , P) IF Cl
SitedJoin(TI,Tz,P) =

JMeth(TI,Tz,P) OTHERWISE

J

Agam, thus simple STAR has an obvtous interpretation, although
the condition Cl 1s a bit comphcated

1 IF the inner stream (Z’2) 1s a composite, or its Site IS not the
same as tts reqmred Site (1 [site]), then dictate that It be
stored as a temp and call JMeth

2 OTHERWISE, reference JMeth with no dd&tlonal reqmre-
ments

Note that If the second disjunct of condttlon Cl were absent, there
would be no reason that this STAR couldn’t be the parent

23

\trttrrnLer) of the previous STAB, instead of vice versa As
wntten, SItedJoin exploits deaslons made m its parent STAR,
PermutedJoin A transformational rule would either have to test
If the site declslon were made yet, or else inject the temp reqmre-
ment redundantly m every transformation that dictated a site

4.4. Alternative Join Methods

JMeth(TI, TZ. P) =

[

JOIN (NL, Glue(n, 0). Glue(Tz. JPU IP), JP, P-(JPu IP))
JOIN(MC, GlUe(TJIorder-x(SP)nx(TJ)l,9),

Glue(Tz[orde~-x(SP)nx(Tz)I,IP),

SP. P-(IPUSP)) IF SPzo

where

P * all eligible predicates
JP E loin predicates (multi-table, no ORs or

subqueries, etc , but expressions OK)
SP * sortable predicates

i (prJP of form 'collop col2', where
collrx(n) (I col24,7(Tz) or vice versa 1

IP E predicates eligible on the inner only,
1 e , predicates p such that x(p) Cx(T2)

Tti STAR references two alternative Jam methods, both represented
as references of the JOIN LOLBPOP mth tiferent parameters

1 the Mom method (flavor of JOIN),
2 the outer stream and any reqmred properties on that stream,
3 the mner stream and any reqmred propemes on that stream,
4 the Join predtcate(s) apphcable by that Jam method (needed

for the cost equations),
5 any residual pre&cates to apply afrer the Jam

The two Jam methods here are

1 Nested-Loop (NL) Join, which can always be done For each
outer tuple instance, columns of the Jam pticates (JP) m
the outer are mstantlated to convert each JP to a single-table
pre&cate on the mner stream4 These and any pre&cate.s on
Just the mner (IP) are “pushed down” to be apphed by the
mner stream, If possible Any multi-table predcates that don’t
quahfy as Jam predcates must be apphed as residual pre&cates
Note that the prehcates to be apphed by the mner stream are
parameters, not required attributes T~JS forces Glue to re-
reference the smgle-table STARS to generate plans that explort
the converted JP pre&cates rather than retrofinrng a FILTRR
LOLEPOP to exlstmg plans that apphed only the IP predcates

2 Merge (MG) Jam If there are sortable predcates (SP), &ctate
that both mner and outer be sorted on their columns of SP
Note that the merge Jam, unhke the nested-loop join, apphes
the sortable pre&cates as part of the JOT Itself, pusbmg down
to the mner stream only the single-table pre&cates on the
inner (IF’) The JOIN LOLEPOP m Figure 1, for example,
would be generated by this alternative As before, remmmng
multi-table predicates must be appbed by JOIN as residuals
after the Jam

Glue wdl first reference the STARS for accessmg the gven table(s),
applymg the gven pre&cate(s), d no plans exist for those param-
eters In Starburst, a data structure hashed on the tables and
predicates facfitates fmdmg all such plans, $ they exM Glue then
adds the necessary operators to each of these plans, as described
m the previous sectlon Smphfled STARS for Glue, which ti
STAR references, and for accessmg stored tables, which Glue
references, are gven m [LEE 881

4.5. Additional Join Methods

Suppose now we wanted to augment the above alternatives wnh
addmonal Join methods All of the folJowmg alternative defuntlons
would be added to the ngbt-hand side of the above STAR (Jlvfeth)

4 5 1 Hash Join Alternative

Tbe hash Mom has shown pronnsmg performance CBABB 79, BRAT
84, DEWl 851 We assume here a hash-)om flavor (HA) that
atonucally bucketies both mput streams and does the Mom on the
buckets

JOIN (H.4, Glue(TJ, +). Glue(Tz,IP).tlP,~-IP)

1 2 1 hashable predicates IF "'*' 1

m (PcJP of form'expr(x(TJ)) - expr(x(Ts))'l

As m the merge Jam, only smgle-table prdcates can be pushed
down to the mner Note that all multi-table predicates (P-IP) -
even the hashable predicates (HP) - remam as residual predicates.
smce there may be hash colbruons AJso note tbat the set of
hashable pre&cates HP contams some predicates not m the set of
sortable pre&cates SP (expressions on any number of c&mns m
the same table), and vice versa (mequahties)

An alternate (and probably preferable) approach would be to add
a bueketixed property to the property vector and a LOLEPOP to
a&eve that property, so that any Jam method m the JMeth !%TAR
could perform the pm m parallel on each of the bucketlzed streams,
wrth appropnate adjustments to its cost

4.5 2. Forcing Projectmn Alternatwe

To avoid expensive m-memory copymg, tuples are normally retamed
as pages m the buffer Just as they were ACcEssed, untd they are
matenahxed as a temp or SHIPped to another site Therefore, m
nested-loop moms it may be advantageous to matenahze (SMIRE)
the selected and projected mner and re-ACCESS tt before pmmg,
whenever a very small percentage of the mner table results (1 e ,
when the pre&cates on the mner table are quite selective and/or
only a few columns are referenced) Batory suggests the same
strategy whenever the mner “IS generated by a complex expression”
[BAT0 87aI The followmg forces that alternative

VI TableAccess(Glue(T2[fempl IP)

m Jh4eth alternative accesses the mner stream (7’2). applymg
only the smgle-table pre&cates (IP), and forcmg G~w to STORE
the result m a temp (permanently stored tables are not considered
temps uutmlly) All columns (*) of the temp are then re-accessed.
re-usmg the STAR for accessmg any stored table, TableAccess
Note that the STAR structure allows us to spenfy that the Jam
pre&cates (JP) can be pushed down only to th access, to prevent
the temp from bemg re-matenabzed for each outer tuplef

4 USman has coined the term "sIdeways ~nformatlon pass&' [ULLM 851 for
thts convenmn of ,om predicates to smgle-table predtcates by mstantlaung one
ade of the predtcate which was done m System R [SELI 791

24

j

A TableAccess can be one (and only one) of the followmg flavors
of ACCESS, dependmg upon the type of storage manager (StMgr)
used, as described m CLIND 871

1 A physlcally-sequential ACCESS of the pages of table T, d
the storage manager type of T 1s ‘heap’, or

2 A B-Tree type ACCESS of table 7’. If the storage manager
type of T IS ‘B-tree’,

retnevmg columns C and applymg prehcates P By now It should
be apparent how easdy alternatives for addmonal storage manager
types could be added to this STAR alone, and affect all STARS
that reference TableAccess

4 5 3 Dynamic Indexes Alternative

The nested-loop lam works best when an mdex on the mner table
can be used to lmnt the search of the mner to only those tuples
satlsfymg the]om and/or smgle-table predicates on the mner Such
an index may not have been created by the user, or the mner may
be an mtermedlate result, m which case no auxdmry access paths
such as an mdex are normally created However, we can force
Glue to create the mdex as another alternative Although tis
sounds more expensive than sortmg for a merge JOT, It saves
sortmg the outer for a merge JOT, and wdl pay for Itself when the
jam predtcate IS selective SMACK 861

JOIN(NL, Glue(T!,+).

G~~~(~~[~~~~IX),XPUIP),XP-IP,P-(XP~IP))
where

XP r indexable multi-table predicates

= {pfJP of form 'expr(x(n))opTzmI')

IX E columns of Indexable predicates

- (x(IP)ux(XP))n x(T.2). I=' predicates first

This alternative forces Glue to make sure that the access paths
property of the mner contams an mdex on the columns that have
either single-table (IP) or mdexable (XP) predicates, ordered so
that those mvolved m equahty pre&cates are apphed first If ths
mdex needs to be created, the STARS unplementmg Glue wdl add
[order] and [temp] requements to ensure the creation of a
compact mdex on a stored table As m the nested-loop altematlve,
the mdexable multi-table predicates “pushed down” to the mner
are effectively converted to smgle-table predicates that change for
each outer tuple

5. Extensibility -
What’s Really Involved

Here we discuss bnefly the steps reqmred to change various aspects
of the optmuzer strateges, m order to demonstrate the extenslbtity
and modulanty of our STAR mechamsm

Easiest to change are the STARS themselves, when an exlstmg set
of LOLEPOPs suffices If the STARS are treated as mput data
to a rule mterpreter, then new STARS can be added to that frle

wlthout unpactlng the Starburst system code at all [LEE 881 If
STARS are compded to generate an optmuzer (as m CGRAE 87a,
GRAB 87bl), then updates of the STARS would be followed by
a re-generation of the optmuzer In either case, any STAR havmg
a con&hon not yet defined would reqmre defmmg a C function
for that comhtion, comptig that function, and rehnkmg that part
of the optumzer to Starburst Note that we assume that the DBC
specifies the STARs correctly, I e Hnthout mfuute cycles or mean-
mgless sequences of LOLBPOPs An open ~3.9~3 Is how to venfy
that any uven set of STARS 19 correct

Less frequently, we may mh to add a new LOLBPOP, e g
OUTERJOIN Thn necessttates defmmg and compdmg two C
functmns a mn-tune execution routme that wdl be mvoked by the
query evaluator, and a property function for the optmuzer to spectiy
the changes to plan propefies (mcludmg cost) made by that
LOLEPOP In ad&tion, STARs must be added and/or m&led,
as described above, to reference the LOLBPOP under the appro-
pnate circumstances

Probably the least hkely and most serious alterattons occur when
a property IS added (or changed m any way) m the property vector
Smce the default action of any LOLEPOP on any property 1s to
leave the mput property unchanged, only those property functions
that reference the new property would have to be updated, re-
compded, and rehnked to Starburst By representmg the property
vector as a self-defmmg record havmg a vanable number of fields,
each of which IS a property, we can msulate unaffected property
functions from any changes to the structure of the property vector
STARS would be affected only If the new property were reqmred
or produced by that STAR

6. Related Work

Some aspects of our STARS resemble features of earher work, but
there are some unportant tiferences As we mentioned earher,
our STARs are msplred by functional programmmg concepts
[BACK 781 A major dtfference IS that our “functions” (STARS)
can be multi-valued, 1 e a set of alternative ObJects (plans) The
other maJor mspnation, a producuon of a grammar, does not pemnt
a con&Qon upon alternative expansions of a non-termmal It either
matches or it doesn’t (and the alternatives must be excluave)
Hopmg to use a standard compder generator to compile our STARS,
we mvestigated the use of partmlly context-sensitive W-grammars
CCLBA 771 for enforcmg the “context” of reqmred propertres.
but were ticouraged by the same combmatonal explosion of pro-
ductions described above when many properttes are possible Koster
CKOST 711 has solved thm usmg a techmque slrmlar to ours, m
whch a pre&cate called an “affix” (comparable to our condition
of appbcabtity) may be associated mth each alternative defmfion
He has shown affu grammars to be Turmg complete In ad&tlon,
grammars are typuxilly used m a parser to find Ju?t one expansion
to termmals, whereas our goal IS to construct UN such expansions
Although a grammar can be used to construct all legal sequences,
tlus set may be mflmte CULLM 851

The transformational approach of the EXODUS optmuzer [GRAB
87a, GRAB 87bl uses C functions for the IF condmons and
expresses the alternatives m rules, as do we, but then compdes
those rules and con&tions usmg an “optlrmzer generator” mto
executable code Given one n&al plan, tlus code generates all
legal vanations of that plan usmg two kmds of rules transformation
rules to define alternative transformatlons of a plan, and unple-
mentation rules to define alternative methods for Implementmg an
operator (e g , nested-loop and sort-merge algonthms for Imple-
mentmg the JOIN operator) Our approach does not reqmre an
lmtlal plan, and has only one type. of rule, which pemuts us to
express mteractlons between transformations and methods Our
property functions are m&stmgmshable from Graefe’s property and

25

.I I 11 ‘c[ions, although we have Idennfled more propertles thdn
any ot!lLr author to date Graefe does not deal with the need of
some rules ie g merge jam) to reqmre certam propertles, as dls-
cussed m Section 3 2 and dustrated m Sections 4 2 - 4 4, 4 5 2,
and 4 5 3 Although Graefe re-uses common subplans m alternatlve
pldns, transformational rules may subsequently generate alternatives
and pick a new opnmrl plan for the subplan, forcmg re-estunatlon
of the cost of every plan that has already mcorporated that subplan
Our bmldmg blocks approach avoids tlus problem by generating aLI
plans for the subplan before incorporating that subplan m other
plans, although Glue may generate some new plans having different
properties and/or parameters And whde the structure of our
STARS does not preclude compdatlon by an optmuxer generator,
it also pernuts Interpreting the STARS by a simple yet efficient
interpreter durmg optmuzatlon, as was done m our prototype
Interpretauon saves re-compdmg the optmuzer component every
time a strategy 1s added or changed, and also allows greater control
of the order of evaluation For example, dependmg upon the value
of a STAR’s parameter, we may never have to construct entire
subtrees wthm the decision tree, but a compded optumxer must
contam a completely general declslon tree for all quenes

Freytag [FREY 871 proposes a more LISP-hke set of transforma-
tional rules that starts from a non-procedural set of parameters
from the query, as do we, and transforms them into all alternative
plans He pomts to the EXODUS optmuzer generator as a possible
Implementation, but does not address several key lmplementatlon
issues such as lus elhpsls (” “) operator, whch denotes any number
of expressions, e g

((JOIN T, (Tz)) * (JOIN Tl()Tz))

And the ORDER and SITE propeties (only) are expressed as
functions, which presumably would have to be re-derived each time
they were referenced m the con&hons Freytag does not exploit
the structure of query optlrmzatlon to hnut what rules are apphcable
at any tlllle and to prevent re-apphcatlon of the same rules to
common subplans shared by two alternative plans, although he
suggests the need to do so

Rosenthal and Helman [ROSE 871 suggest spectiications for “well-
formed” plans, so that transfonnabonal rules can be venfled as
valid If they transform well-formed plans to well-formed plans
Like Graefe, they associate properties wth plans, viewed as pred-
icates that are tme about the plan Alternative plans producing the
same mtermedlate result mth the same properties converge on
“data nodes”, on wluch “transformations that msert unary
operators are more naturally appbed” An operator 1s then well-
formed If any input plan satisfymg the requued mput propeties
produces an output plan that satisfies the output properties The
paper emphasizes representations for venflablhty and search issues,
rather than detadmg mechamsms (1) to construct well-formed trans-
formations, (2) to match mput data nodes to output data nodes
(correspondmg to our Glue), and (3) to recalculate the cost of all
plans that share (through a common data node) a common subplan
that IS altered by a transformation

Probably the closest work to ours IS Batory’s “synthets” architecture
for the entue GENESIS extensible database system (not Just the
query optmnzer [BAT0 87bl), m which “atoms” of “pnnutwe
algonthms” are composed by functions mto “molecules”, m layers
that successively add unplementation detads [BAT0 87al Devel-
oped concurrently and independently, Batory’s functional notation
closely resembles STARS, but 1s presented and unplemented as
rewnte (transformational) rules that are used to construct and
compde the complete set of alternatives 4 przorr for a gwen opts-
mlzer, after first selecting from a catalog of avadable algonthms
those desired to unplement operators for each layer At the highest
layer, for example, the DBC chooses from many optlrmzanon al-
gonthms (e g depth-fust vs breadth-first), whde the choices at
the lowest layers correspond to our flavors of LOLEPOPs or
Graefe’s methods The functions that compose these operations do

not exphcltly pernut Condruons on the alternative defmmons, as do
we Batory considers them unnecessary uhen rules are constructed
properly but alludes to them m comments nexr to some aitematlves
and m a footnote Incluslva alrernatlves automatlcally become
arguments ot a CHOOSE-CHEAPEST function dur,ng the com-
position process The rewnte rules Include rules to match propertIes
(which he calls charactenstlcs) even if they are unneeded e g a
SORT may be applied to a stream that 15 already ordered appro-
pnatelj by a? index, as well as rule5 to slmphfy the resultmg
compositions and ehmmate any such unnecessary operations By
treating the stored vs m-memory dlstmctlon as a property of
streams, and by havmg a general-purpose Glue mechamsm, we
manage to factor out most of these redundamles m our STARS
Although clearly relevant to query optmuzatlon, Batory s larger
goal was to incorporate an encyclope&c array of known query
processing algonthms wnhm his framework, mcludmg operators for
sphttmg, processing m parallel, and assembhng honzontal partltlons
of tables

7. Conclusions

We have presented a grammar for spectiymg the set of legal strat-
eges that can be executed by the query evaluator The grammar
composes low-level database operators (LOLEPOPs) mto h@er-
level constmcts using rules (STARS) that resemble the defm&on
of functions they may have altemattve defuutlons that have IF
condmons, and these altematrve defnutlons may, m turn, reference
other functions that have already been defined The functions are
parametrized objects that produce one or more alternative plans
Each plan has a vector of properties, mcludmg the cost to produce
that plan, whch may be altered only by LOLEPOPs When dn
altemauve defnution reqmres certam properties of an mput, “Glue”
can be referenced to do ‘impedance matchmg” between the plans
created thus far and the reqmred propeties by mjectmg a veneer
of Glue operators

We have shown the power of STARS by speclrylng some of the
strateges considered by the R* system and several addnlonal ones,
and beheve that any desired extension can be represented usmg
STARS We fmd our constructive, “bmldmg-blocks” grammar to
be a more natural para&gm for spectfymg the “language” of legal
sequences of database operators than plan transformatlonal rules,
because they allow the DBC to bmld h&er levels of abstractlon
from lower-level constructs, wthout havmg to be aware of how
those lower-level constmcts are defined And unhke plan trans-
formational rules, whch consider all rules apphcable at every Iter-
ation and which must do comphcated umfication to determme
apphcablltty, referencmg a STAR tnggers m an obvious way only
those STARs referenced m Its defnution, JIM hke a macro expander
Tlus hnuted fanout of STARS should make d possible to a&eve
our goal of expressmg alternative optmuzer strateBes as data and
stall use these rules to generate and evaluate the cost of a large
number of plans wthm a reasonable amount of tune

8. Acknowledgements

We unsh to acknowledge the contnbutlons to tlus work by several
colleagues, especmlly the Starburst project team We pdrtlcularly
benefitted from lengthy dlscussrons with - and suggesttons by -
Johann Chnstoph Freytag (now at the European Commumty Re-
search Center m Muruch), Laura Haas, and K~yosh~ Ono (vlsltmg
from the IBM Tokyo Research Laboratory) Laura Haas, Bruce
Lindsay, Tun Malkemus (IBM Entrv Systems Dlvlslon m Austin,
TX), John McPherson, K~yosti Ono, Hanud Plrahesh, Irv Tralger,
and Paul Wdms constructively cntlqued an earher draft of tb
paper, lmprovmg its readabtity slgmflcantly We also thank the
referees for then helpful suggestIons

26

Bibliography

[BABB 791

[BAT0 861

[BAT0 87a]

[BAT0 87b]

[BACK 781

[BERN 811

[BRAT 841

[CARE 861

[CHU 821

[CLEA 771

[DANI 821

[DEWI 851

[EPST 781

[FREY 871

E Babb, Implementmg a Relatlonal Database by
Means of SpecIalned Hardware, ACM Trans on Da-
tabase Sysrems 4,l (1979) pp l-29
D S Batorv et al , GENESIS An Extensible Database
Management System, Tech Report TR-86-07 (Dept
of Comp SCI , Umv of Texas at To appear III IEEE
Trans on Software Engmeermg
D S Batory, A Molecular Database Systems Tech-
nology, Tech Report TR-87-23 (Dept of Comp SCI ,
Umv of Texas at
D Batory, Extensible Cost Models and Query Op-
tlmlzatlon m GENESIS, IEEE Database Engmeermg
10,4 (Nov 1987)
J Backus, Can programming be hberated from the
von Neumann style? A functional style and Its
algebra of programs”, Comm ACM 21,s (Aug
1978)
P Bernstem and D-H Chm, Usmg Senu-Joms to
Solve RelatIonal Queries, Journal ACM 28,l (Jan
1981) pp 25-40
K Bratbergsengen, Hashmg Methods and Relational
Algebra Operations, Procs of the Tenth Intematronal
Conf on Very Large Data Bases (Smgapore), Morgan
Kaufmann Fubbshen (Los Altos, CA, 1984) pp
323-333
M J Carey, D J Dewitt, D Frank, G Graefe, J E
hchardson, E J Sheluta, and M Murahknshna, The
Architecture of the EXODUS Extensible DBMS a
Prehmmary Report, Procs of the Intematlonal Work-
shop on Object-Orrenled Database Systems (Asdomar,
CA, Sept 1986)
W W Chu and P Hurley, Optunal Query Processing
for Dlstnbuted Database Systems, IEEE Truns on
Computers C-31.9 (Sept 1982) pp 835-850
J C Cleaveland and R C Uzgahs, Grammars for
Programmmg Languages, Elsener North-HoIland
(New York, 1977)
D Damels, P G Sehnger, L M Haas, B G Lindsay,
C Mohan, A Walker, and P Wdms, An Introduction
to Dlstnbuted Query Compdatlon m R*, Procs Sec-
ond Internatronal Conf on Dtstrrbuted Databares (Ber-
hn, September 1982) Also avadable as IBM Re-
search Report RJ3497, San Jose, CA, June 1982
D J Dewitt and R Gerber, Multtprocessor Hash-
Based Jom Algonthms, Procs of the Elewnth Inter-
natronal Conf on Very Large Data Bases (Stockholm,
Sweden), Morgan Kaufmann Publishers (Los Altos,
CA, September 1985) pp 151-164
R Epstein, M Stonebraker, and E Wong, Dlstnbuted
Query Processmg m a Relational Data Base System,
Procs of ACM-SIGMOD (Austm, TX, May 1978)
pp 169-180
J C Freytag, A Rule-Based View of Query Optum-
zatlon, Procs of ACM-SIGMOD (San Francisco,
CA, May 1987) pp 173-180

[GRAE 87a] G Graefe and D J DeWltt, The EXODUS Optumzer
Generator, Procs of ACM-SIGMOD (San Francisco,
CA, May 1987) pp 160-172

[GRAE 87b] G Graefe, Software Modulanzatlon with the EXO-
DUS Optmuzer Generator, IEEE Database Engmeer-
mng 10,4 (Nov 1987)

[HAER 781 T Haerder, Implementing a Generahzed Access Path
Structure for a Relational Database System, ACM
Truns on Database Systems 3,3 (Sept 1978) pp
258-298

[KOST 711

[LEE 881

[LIND 871

[LOHM 831

[LOHM 841

[LOHM 851

[MACK 861

[MORR 861

[ROSE 871

[SCHW 861

[SELI 791

[STON 861

[ULLM 851

[VALD 871

[WONG 761

[WONG 831

C H A Koster, Affix Grammars, ALGOL 68 Imple-
ment&on Elsener North-Holland (J E L Peck (ed),
Amsterdam, 1971) pp 95-109
M K Lee, J C Freytag, and GM L&man, Imple-
mentmg an Interpreter for Functional Rules m a
Query Optmuzer, IBM Research Report RJ6125 IBM
Almaden Research Center (San Jose, CA, March
1988)
B Lindsay, J McPherson, and H Plrahesh, A Data
Management Extension Architecture, Procs of ACM-
SIGMOD (San Francisco, CA, May 1987) pp
220-226 Also avadable as IBM Res Report RJ5436,
San Jose, CA, Dee 1986
GM Lohman, J C Stoltzfus, AN Benson, MD
Martm, and AF Cardenas, Remotely-Sensed Geo-
physical Databases Expenence and Imphcations for
Generahzed DBMS, Procs of ACM-SIGMOD (San
Jose, CA, May 1983) pp 146-160
GM Lohman, D Damels, LM Haas, R mtler,
P G Sehnger, Optumzation of Nested Quenes m a
Dlstnbuted Relational Database, Procs of the Tenth
Intematconal Conf on Very Lurge Data Bases (Smg-
apore), Morgan Kaufmatm Fubkbers (Los Altos, CA,
1984) pp 403-415 Also avadable as IBM Research
Report RJ4260, San Jose, CA, Aprd 1984
GM Lohman, C Mohan, LM Haas, B G Lmdaay,
P G Selmger, P F Whns, and D DameIs, Query
Processmg m R*, Qwy Processrng m Database Sys-
tems, Sprmger-Verkzg (m, Batory, & Remer (eds),
1985) pp 31-47 Also avadable as IBM Research
Report RJ4272, San Jose, CA, Apnl 1984
L F Mackert and G M L&man, R* Optmuzer Val-
idation and Performance Evaluation for Dlstnbuted
Queries, Procs of the i%lfth Internatronal Conference
on Vq Large Data Bares (Kyoo) Morgan Kmdmam
Pubhshers (Los Altos, CA, August 1986) pp
149-159 Also avadable as IBM Research Report
RJ5050, San Jose, CA, Apnl 1986
K Moms, J D Ulhnan, and A Van Gelder, Design
Overmew of the NAIL! System, Report No STAN-
CS-86-I IO8 Stanford Umvemly (Stanford, CA, May
1986)
A Rosenthal and P Hehnan, Understandmg and
Extendmg Transfommbon-Based Optmuzers, IEEE
Database Engmeermg 10,4 (Nov 1987)
PM Schwarz, W Chang, J C Freytag, GM
Lohman, J McPherson, C Mohan, and H Puahesh,
Extenstbdtty m the Starburst Database System, Pmcs
of the Intematlonal Workshop on ObJect-Onented Da-
tabuse Systems (Asdomur, CA), IEEE (Sept 1986)
P G Sehnger, MM Astrahan, D D Chamberhn,
R A Lone, and T G Price, Access Path Selection
m a Relational Database Management System Procs
of ACM-SIGMOD (May 1979) pp 23-34
M Stonebraker and L Rowe, The Design of Postgrrs
Procs of ACM-SIGMOD (May 1986) pp 740-355
J D UlIman. Implementatton of Logcal Qurn Lan-
guages for Databases, ACM Trons on Dorolrcw S\c
tems 10,3 (September 1985) pp 289-721
P Valdunez, Jom In&ces, ACM Trons on Dowhrw
Systems 12,2 (June 1987) pp 219-246
E Wong and K Youssefl, Decomposttlon - 1 Stnt-
egy for Query Processmg, ACM Tram on Dcmrbase
Systems 1,3 (Sept 1976) pp 223-241
E Wong and R Katz, Dlstnbutmg a Database for
ParalIehsm, Procs of ACM-SIGMOD (San Jose CA
May 1983) pp 23-29

27

