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Abstract 
Extensible query optmuxahon reqmres that the “repertoue” of 
alternatIve strate@es for executmg quenes be represented as data, 
not embedded m the optumzer code Recogmzmg that query op- 
tmuzers are essentlaliy expert systems, several researchers have 
suggested usmg strategy rules to transform query execution plans 
into alternatlve or better plans Though extremely flexrble, these 
systems can be very mefflclent at any step m the processmg, many 
rules may be ehable for apphcatlon and comphcated cond&ons 
must be tested to detemune that ehgbtity dunng umfuzatlon We 
present a constructwe, “buddmg blocks” approach to defmmg al- 
ternative plans, m which the rules defmmg alternatives are an 
extension of the productlons of a grammar to resemble the defuution 
of a funcuon m mathematics The extensions pernut each token 
of the grammar to be parametnzed and each of its alternative 
deflmtlons to have a complex con&tlon The termmals of the 
grammar are base-level database operations on tables that are 
mterpreted at run-me The non-termmals are defined declaratively 
by productlon rules that combme those operauons mto meamngful 
plans for executton Each producuon produces a set of alternative 
plans, each havmg a vector of propeties, mcludmg the estunated 
cost of producmg that plan Producttons can reqmre certam prop- 
ertles of theu mputs, such as tuple order and location, and we 
descnbe a “sue” mechamsm for augmentmg plans to a&eve the 
reqmred propertles We @ve detaded examples to dustrate the 
power and robustness of our rules and to contrast them Hnth related 
Ideas 

I. Introduction 

Ever smce the fast query optumzers [WONG 76, SELI 791 were 
budt for relational databases, revlsmg the “repertoue” of ways to 
construct a procedural executton plan from a non-procedural query 
has reqmred comphcated and costly changes to the optmuzer code 
Itself ms has hted the repertoire of any one optmuzer by 
dlscouragmg or slowmg expenmentation wth - and lmplementatlon 
of - all the new advances m relational technology, such as un- 
proved loin methods CBABB 79, BRAT 84, DEWI 851, drstnbuted 
query optmzation CEPST 78, CHU 82, DANI 82, LOHM 851, 
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S~IIUJOUIS [BERN 811, BloomJoms [BABB 79, MACK 861, parallel 
JOUB on fragments CWONG 831, Jam mdexes CHAER 78, VALD 
871, dynanuc creauon of mdexes h4ACK 861, and many other 
vanatlons of tradmonal processmg strateges The recent surge m 
mterest 111 extensible database systems CSTON 86, CARE 86, 
SCHW 86, BAT0 861 has only exacerbated the burden on optl- 
nuzers, addmg the need to custonuze a database system for a 
part~cuhu class of appbcations. such as geograptuc CLOHM 83 1, 
CAD/CAM, or expert systems Now optmuzen must adapt to 
new access methods, storage managers, data types, user-defmed 
functions, etc. all combmed m novel ways Clearly the titlonal 
speclficatlon of aU feasible strateges m the optmuzer code cannot 
support such flu&y 

Perhaps the most challengmg aspect of extensible query optmuzatlon 
is the representation of alternative execution strateges Ideally, 
this representation should be ready understood and mod&d by 
the Database Custormzer (DBC)’ Recogmzmg that query optumx- 
ers are expert systems, several authors have observed that rules 
show great prormse for t& purpose CULLM 85, FREY 87, GRAE 
87al Rules provide a high-level, declamt~ve (I e , non-procedural), 
and compact speclftcatlon of legal altematwes, wluch may be mput 
as dota to the optmuzer and traced to explam the ongm of any 
execution plan Thus makes tt easy to m&y the strate@es wthout 
unpactlng the optmuzer, and to encapsulate the strate@es executable 
by a particular processor m a heterogeneous network But how 
should rules represent alternative strate@es? The EXODUS project 
CGRAE 87a, GRAE 87bl and Freytag [FREY 871 use rules to 
transform a gwen execution plan mto other feasible plans The 
NAIL! project CULLM 85, MORR 861 employs “capture rules” 
to determme whch of a set of avadable plans can be used to 
execute a query 

In ti paper, we use rules to descnbe how to construct - rather 
than to alter or to match - plans Our rules “compose” low-level 
database operations on tables (such as ACCESS, JOIN, and SORT) 
mto higher-level operations that can be re-used m other defuutions 
These constructive, “bmldmg blocks” rules, which resemble the 
productions of a grammar, have two major advantages over plan 
transformation rules 

. ‘l&?y are more readily understood, because they enable the DBC 
to budd mcreasmgly complex plans from common buddmg blocks, 
the detads of which may be transparent to bun, and 

. They can be processed more efliereatly dunng optlmlzatron, by 
simply fmdmg the deflmtlon of any buddmg block that IS refer- 
enced, usmg a sunple dnztlonary search, much as ts done m macro 
expanders By contrast, plan transformation rules usually must 

I We feel ths term more accurately describes the role of adaptmg an uaplemented 
bat extensible database system than does the term Dorobclre Impkmntw (DBI), 
WIT by cmy et at [CARE 861 
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examme a large set of rules and apply comphcated condtttons on 
each of a large set of plans generated thus far, m order to 
detemune tf that plan matches the pattern to which that rule 
apphes As new rules create new patterns, extstmg rules may 
have to add condrtrons that deal wtth those new patterns 

Our grammar-hke approach IS founded upon a few fundamental 
observatrons about query opttmrxatton 

l Ail database operators cunsome and produce a common object - 
a table, viewed as a stream of tuples that IS generated by accessmg 
a table [BAT0 87al The output of one operatton becomes the 
input of the next Streams from mdrvrdual tables are merged by 
Jorns, eventually mto a single stream [FREY 87, GRAB 87al 

l Optumxers construct iegai sequences of such operators that are 
understood by an mterpreter, the ovary ews/n&u In other words, 
the repertoue of legal plans IS a language that mrght weii be 
defined by a grammar 

Decuaons made by the optmuzer have an mherent sequence depen- 
dency that hnnts the scope of subsequent dectsrons [BAT0 87a, 
FREY 871 For example, for a gtven plan, the order m whtch 
a gtven set of tables are Jomed must be determmed before the 
access path for any of those tables IS chosen, because the table 
order determmes whtch predtcates are ehgrble and hence nught 
be applied by the access path of any table (commonly referred 
to as “pushmg down the selectton”) Thus, for any set of tables, 
the rules for ordering table accesses must precede those for 
choosing the access path of each table, and the former serve to 
hmtt stgmftcantly whtch of the latter rules are apphcable 

Akernahve plans may mcorporate the same pian fragment, whose 
alternatives need be evaluated only once Thts further hmtts the 
rules generating altemattves to Just the new portions of the plan 

Unhke the sunple pattern-matchmg of tokens to determme the 
apphcabthty of productions tn grammars, m query opttmtxatron 
specifymg the crmdtknm under whwh a rule is appbcabie Is usualiy 
barder thm spedfying the rule’s tnmsfmmn For example, a 
muib-column mdex can apply one or more preQcates only tf the 
columns referenced m the predtcates form a prefix of the columns 
m the index Asstgnmg the predrcates to be apphed by the mdex 
IS far easier to express than the condrhon that pemuts that 
asstgnment 

These observattons prompted us to use “strategy” rules to construct 
legal nestmgs of database operators declaratrveiy, much as the 
producttons of a grammar construct legal sequences of tokens 
However, our rules resemble more the defmrtton of a functton m 
mathemattcs or a rule in Prolog, m that the “tokens” of our 
grammar may be parametnxed and theu defrmtron altematrves may 
have complex conrhttons The reader IS cautioned that the upp/rcatron 
- not the representatton - IS our ciarm to novelty Logtc pro- 
grammmg uses rules to construct new relatrons from base reiattons 
CULLM 851, whereas we are using rules to construct new operators 
from base operators that operate on tables 

Our approach 1s a general one, but we wtll present It m the context 
of tts mtended use the Starburst prototype extenstbie database 
system, which IS under development at the IBM Ahnaden Research 
Center CSCHW 86, LIND 871 

The paper IS orgamxed as follows Section 2 first defines the 
end-product of optuntzatton - plans We descnbe what they’re 
made of, what they look hke, how our rules are used to construct 
all of them for a query In Sectton 3, we associate properties wtth 
plans, and allow rules to impose requrrements on the properties of 
theu mput plans A set of possible rules for Joins IS gtven m 
Section 4 to diustrate the power of our rules to specify some of 
the most comphcated strategtes of exrstmg systems, mcludmg several 
not addressed by other authors Section 5 outhnes how the DBC 

can make extensrons to rules, properttes, and database operators 
Havmg thoroughly described our approach, we contrast tt wrth 
related work m Sectton 6, and conclude m Sectton 7 

2. Plan Generation 

In thm sectron, we descnbe the form of our rules We must first 
define what we want to produce wrth these rules, namely a query 
evaluahon plan, and tts constttuents 

2.1. Plans 

The basic object to be mampulated - and the class of “tennmais” 
m our grammar - is a LOwLEd Plan OPaWor (LOLEPOP) that 
wrii be mterpreted by the query evaluator at run-tune LOLEPOPs 
are a vanatron of the relattonai aigrebra (e g , JOIN, UNION, etc ), 
supplemented wtth low-level operators such as ACCESS, SORT, 
SHIP, etc [FREY 871 Each LOLEPOP 1s vtewed as a functton 
that operates on 1 or 2 tables*, whtch are parameters to that 
function, and produces a smgle table as output A && can be 
either a table stored on dtsk or a “stream of tupies” m memory 
or a commumcatron pope The ACCESS LOLEPOP converts a 
stored table to a stream of tuples, and the STORE LOLEPOP 
does the reverse In addrtton to mput tables, a LOLEPOP may 
have other parameters that control its operatton For example, one 
parameter of the SORT LOLEPOP 1s the set of colmnns on whrch 
to sort Parameters may also spectfy a j&rue of LOLEPOP For 
example, dtfferent JOUI methods havmg the same mput parameter 
structure are represented by drfferent flavors of the JOIN 
LOLEPOP, drffereoces m mput parameters would necessitate a 
dtstmct LOLEPOP Parameters may be opttonal, for example, the 
ACCESS LOLEPOP may opttonally apply a set of prerhcates 

A quety erwlmtnrn @an (QEP, or p&n) 1s a duected graph of 
LOLEPOPs An example plan 1s shown m Frgttre 1 Note that 
arrows pomt toward the source of the stream, not the duecttoo m 
wluch tuples flow Thts plan shows a sort-merge JOIN of DEPT 
as the outer table and EMP as the mner table The DEPT stream 
1s generated by an ACCESS to the stored table DEPT. then 
SORTed mto the order of column DNO for the merge-Jam The 
EMP stream 1s generated by an ACCESS to the stored mdex on 
column EMP DN03 that mciudes as one “column” the &p/e dnttfm 
(lZD) For each tuple m the stream, the GET LOLEPOP then 
uses the TID to get addtttonal columns from its stored table 
columns NAME and ADDRESS from EMP m tins example 

Another way of representmg thts plan ts as a oestmg of functtons 
CBATO 87a, FREY 871 

JOIN bortmer~e, DEPT DNO-EMP DNO. 

SOWACCESSfDEPT, (DNO,ICRl.~MCR='Ro~)),DNO). 

SEl(ACCESS(1nde.s on EMP DNO.(TID.DNO),~), 

EMP, (NAJfE.ADDRJJSS),# ) ) 

Thts representattoo would be a lot more readable, and caster to 
construct, if we were to defme mtermedtate functtoos D and E for 
the last two parameters to JOIN 

JOIN(aort naerp, D DNO-E DNO, D, E ) 

2 Nothmg UL the structure of our rules prevents LOLEPOPs from operatmg on 
any number of tables 

3 Actually, ACCESS% to bass tables and to access methods such as tlus Index 
use dtfferent flavors of ACCESS 
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Figure 1 One potentmi query evaluahon pian for the SQL 
query 

SELECT NAME, ADDRESS 
FROM EMP E, DEPT D 
WHERE E DNO q D DNO AND MGR='Haas' 

and 

E - QET(ACCESS(M~ WIEMP DNO,(TID.DNO),+). 

EMP. (NA~~E.ADDRESS), + ) 

If properly parametnxed, these mtermedtate functtoos could be 
re-used for creatmg an ordered stream for any table, e g 

DrderedStreamltT, C, P, ordsr) - SORl(ACCESS(T, C, P), onbr) 

and 

DrderedStreamZ(T, C, P, order) = 

aET(A~ESS(o,(TIDJ,cg).T.C,P) IF ombrco 

where T IS the stored table (base table or base tables represented 
m a stored mtermedtate result) to be accessed, C IS the set of 
columns to be accessed, P 1s the set of predrcates to be applted, 
and “er&rK a” means “the ordered hst of columns of order are a 
preftx of those of access path u of 7” Now tt becomes apparent 
that OrderedStream and OrderedStream provtde two altematrve 
deftmhoos for a smgle concept, an OrderedStream, IO which the 
second defnuttoo depends upon the exrsteoce of a mutable access 
path 

OrderedStream( T, C, P, o&r) - 

SORT(ACCESS(T. C, P). or&r) 
OEl(ACCESS(o,ITIDl, 0). T. C,P) IF ordsrs D 

Thts higher-level construct can now be nested wrthm other ftmcttoos 
oeedmg an ordered stream, wtthout havmg to worry about the 
detads of how the ordered stream was created [BAT0 87al It IS 
precisely thts train of reasonmg that mspned the grammar-bke 
design of our rules for constructmg plans 

2 2 Rules 

Executable plans are defmed usmg a grammar-l&e set of 
parametrized productron rules tailed STmy~y Altarydta Rub 
(STARS) that define higher-level constructs from lower-level con- 
structs, m a way resembhng common mathemattcai functtons or a 
fuoctrooal programmrog language [BACK 781 A STAR defines 
a named, parametnxed object (the ‘~oonternunals” m our grammar) 
m terms of one or more u/ternuhw &jinit&m, each of whtch 

. may have a amd~tron of a&adtil&v, and 

. defines a plan by refereocmg one or more LOLEPOPs or other 
STARS, spectfymg cvgrarccnb for theu parameters 

Arguments and condrtroos of appltcabtbty may reference constants, 
parameters of the STAR bemg defined, or other LOLEPOPs or 
STARS For example, the totermedtate functtons OrderedStream 
and OrderedStreamZ, defined above, are examples of STARS wtth 
only one aitematrve defmttoo, but OrderedStream has two alter- 
natrve defrmtrons The first of these references the SORT 
LOLEPOP, whose fust argument ts a reference to the ACCESS 
LOLEPOP and whose second argument 1s the parameter or&r 
The coodrtrons of appltcabtbty for all the aitematrves may either 
overlap or be exclusive If they overlap, as they do for 
OrderedStream, then the STAR may return more than one plan 

In addrttoo, we may wtsh to apply the fun&ton to every element 
of a set For example, m Ordered&earn2 above, any other mdex 
on EMP havmg DNO as Its malor column could a&eve the destred 
order So we need a STAR to generate an ACCESS plan for each 
Index 1 in that set I 

IndexAccess - vi c I ACCESS( 1, (TIDI, 9) 

Usmg rule IndexAccess m rule OrderedStream as the first argument 
should apply the GET LOLEPOP to each such plan. I e , for each 
aitemattve plan returned by IndexAccess, the GET ftmctton wtil 
be referenced wtth that plan as 1t.s fust argument So 
GET ( IndexAccess(EMP), C, P) wtll also return multtple plans 
Therefore any STAR havmg overiappmg coodrttons or refereocmg 
a multt-valued STAR wrll ttseif be m&t-valued It ts earnest to 
treat ali STARS as operattons on the abstract data type Sef of 
AM P&m far o stmnm (SAP), whtch consume one or two 
SAPS and are mapped (m the LISP sense [PREY 871) onto each 
element of those SAPS to produce an output SAP Set-valued 
parameters other than SAPS (such as the sets of coiumns C and 
p&mates P above) are treated as a smgie parameter unless oth- 
erwrse designated by the V clause, as was done IO the defuntroo 
of IndexAccess 

2.3. Use and Implementation 

As our fuocttooal notation suggests, the rule mechamsm starts wrth 
the root STAR, whtch IS the “starttng state” of our grammar The 
root STAR has one or more alteroattve defnnttoos, each of which 
may reference other STARS, whtch m turn may reference other 
STARs, and so on top down uotti a STAR IS defined totally IO 
terms of “temnoals”, I e LOLEPOPs operatmg oo constants Each 
reference of a STAR ts evaluated by replactog the reference wtth 
its altemattve defmtttons that sattsfy the coodtt~oo of appbcabthty, 
and replacmg the parameters of those defmttrons wrth the arguments 
of the reference Unhke transformatrooai rules, thrs substttutton 
process IS remarkably stmple and fast, the fanout of any reference 
of a STAR IS lumted to lust those STARS referenced IO its deft- 
mtroo, and alternative deftmttons may be evaluated m parallel 
Therem hes the real advantage of STARS over traosformattonal 
rules The rmplementatton of a prototype interpreter for STARS, 
tocludmg a very general mechamsm for controlhng the order m 
whtch STARS are evaluated. IS described m [LEE 881 
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Thus far m Starburst, we have sets of STARS for accessmg mdl- 
vldual tables and Jams, but STARS may be defmed for any new 
operatlon, e g outer Jam, and may reference any other STAR The 
root STAR for Jams IS called JomRoot, d possible defmltlon of 
which appears III Sectlon “4 Example Jom STARS”, along with 
the STARS that it references Sunphfled deflmtlons of the smgle- 
table access STARS are gtven m [LEE 881 For any gven SQL 
query, we bmld plans bottom up, first referencmg the AccessRoot 
STAR to bmld plans to access mdmdual tables, and then repeatedly 
referencmg the JomRoot STAR to Jam plans that were generated 
earher, untd all tables have been Jomed What constitutes a Jomable 
pau of streams depends upon a compde-tune parameter The 
default IS to gve preference to those streams havmg an ehable 
Jam predtcate hnkmg them, as drd System R and R*, but tb can 
be ovemdden to also consider Cartesian products between two 
streams of small estnnated cardmabty In adhtion, m Starburst we 
exploit all predicates that reference more than one table as JOUI 

p&u&es m generahzatlon of System R’s and R*‘s “co11 = 
~012” Jam predcates, plus allowmg plans to have composite mners 
(e g , (A*B)*(C*D)) and CartesIan products (when the appropnate 
parameters are specfiled), slgmftcantly comphcates the generation 
of legal JOIII pans and mcreases their number However, a cheaper 
plan I more bkely to be &scovered among this expanded repertolrel 
We wdl address tti aspect of query optmuxaUon m a forthcommg 
paper on Jam enumeration 

3. Properties of Plans 

The concept of cost has been generahxed to include all propertles 
a plan rmght have We next present how propeties are defined 
and changed, and how they mteract wtth STARS 

3.1. Description 

Every table (either base table or result of a plan) has a set of 
pmpaha that summanxe the work done on the table thus far (as 
m CGRAE 87b1, [BAT0 87a1,and [ROSE 871) and hence are 
unportant to the cost model These properttes are of three types 

lX?MlOIUll the relational content of the plan, e g due to Jams, 
proJecttons, and selections 

the physical aspects of the tuples, which affect the 
cost but not the relattonal content, e g the order 
of the tuples 

esuloat4 properttes denved from the previous two as part 
of the cost model, e g esmated cardmabty of the 
result and cost to produce It 

Examples of these properties are summarized m Figure 2 AU 
propeties are handled umformly as elements of a m w&r, 
which can easdy be extended to add more propertles (see sectton 
5) 

Imtmlly, the propertles of stored objects such as tables and access 
methods are determmed from the system catalogs For example, 
for a table, the catalogs contam its constituent columns (COLS), 
the SITE at which tt IS stored CLOHM 851, and the access PATHS 
defined on it No predcates (PREDS) have been apphed yet, it 
IS not a TEMPorary table, and no COST has been Incurred m the 
query The ORDER 1s “unknown” unless the table IS known to 
store tuples m some order, m whch case the order is defined by 
the ordered set of columns on which the tuples are ordered 

Each LOLEPOP changes selected properties, mcludmg adding cost, 
m a way determmed by the arguments of 1t.s reference and the 
properties of any arguments that are plans For example, SORT 
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' Relational (WHAT) 

TABLES Set of tables accessed 
COLS Set of columns accessed 
PREOS Set of predicates applied 

. Physical (HOW) 

ORDER Ordering of tuples 
(an ordered list of columns) 

SITE Site to which tuples delivered 
TEMP "True" if materialized in a tempo- 

rary table 
PATHS Set of available access paths on 

(set of) tables, each element an 
ordered list of columns 

l Estimated (HOW MUCH) 

CARD Estimated number of tuples result- 
ing 

COST Estimated cost (total resources, a 
linear combination of I/O, CPU, and 
communications costs CLOHM 851) 

Flgure 2 Example properties of a plan. 

changes the ORDER of tuples to the order speclfled m a parameter 
SHIP changes the SITE property to the spectiled site Both 
LOLEPOPs add to the COST property of their mput stream ad- 
dttional cost that depends upon the stze of that stream, which LS a 
function of its propefies CARD and COLS ACCESS changes a 
stored table to a memory-restdent stream of tuples, but opttonally 
can also subset columns (relattonal propct) and apply predicates 
(relattonal select) that may be enumerated as arguments The 
latter option wtll of course change the CARD property as well 
These changes, mchtdmg the appropnate cost and cardmahty es& 
mates, are defined m Starburst by a m fan&on for each 
LOLBPOP Each property function 1s passed the arguments of the 
LOLEPOP, mcludmg the property vector for arguments that are 
STARS or LOLEPOPs, and returns the reused property vector 
Thus, once STARS are reduced to LOLEPOPs. the cost of any 
plan can be assessed by mvokmg the property function for successtve 
LOLEPOPs These cost fun&tons are welJ estabhshed and vahdated 
SMACK 861, so ~ILI not be bussed further here 

3.2. Required vs. Available 
Properties 

A reference of a STAB or LOLEPOP, especially for certam Jam 
methods, may reqmre certam properues for its arguments For 
example, the merge-pm requtres its mput table streams to be 
ordered by the Jam columns, and the nested-loop )om reqmres the 
mner table’s access method to apply the JOIII predicate as though 
d were a smgle-table predicate (“pushes the selection down”) 
Dyad~c LOLEPOPs such as GET, JOIN, and UNION reqmre that 
the SITE of both mput streams be the same 

In the previous section, we constructed a STAR for an 
Ordered&ream, where the desved order was a parameter of that 
STAR Clearly we could reqmre a particular order by referencmg 
OrderedStream w&h the reqmred order as the wrrespondmg argu- 
ment The problem IS that we may stmultaneously reqmre values 
for any of the 2” wmbmations of n properties, and hence would 
have to have a Mferently-named STAR for each wmbmatlon For 
example, d the sort-merge JOIN m the example 1s to take place 



j \I rl =x then we need to defme a SltedOrderedStream that has 
p or umttrs for SITE and ORDER and references m its defnutton 
SHIP LOLEPOPs to send any stream to SITE x, as well as a 
SItedStream, an OrderedStream, and a STREAM Actually, 
SttedOrderedStream subsumes the others, smce we can pass nulls 
for the properties not reqmred But m general, every STAR wdl 
need this same capabtity to specfiy some or all of the propeNes 
that might be requued by referencing STARS as parameters Much 
of the defuutlon of each of these STARS would be redundant, 
because these properties really are orthogonal to what the stream 
produces In addtlon, we often want to find the cheupesr plan 
that sausfles the reqmred properties, even d there IS a plan that 
naturally produces the requued properties For example, even 
though there 1s an mdex EMP DNO by which we can access EMP 
m the required DNO order, it nught be cheaper, d EMP were not 
ordered by DNO, to access EMP sequenttally and sort it mto DNO 
order 

We therefore factor out a separate mechamsm called Gk, which 
can be referenced by any STAR and whxh 

LOLEPOP can be added to change the tuple ORDER, or a 
SHIP LOLEPOP to change the SITE), and 

3 either returns the cheapest plan sattsfymg the reqmrments or 
(optionally) all plans satiymg the requuements 

In fact, Glue can be spec&d usmg STARS. and Glue operators 
can be STARS as well as LOLEpOPs. as described m [LEE 881 

Reqmred properttes m the STAR reference are en&s4 m square 
brackets next to the affected SAP argument, to assoaatetheE- 
qmred propertms with the stream on wluch they are tmposmg 
requuements Dtfferent properhes may be requued by references 
m Uferent STARS, the reqmrements are accumulated tmt4 Glue 
1s referenced W anal be ~Uustrated m the next se&on. 

An example of ttus Glue mechamsm LS shown m Ftgure 3 In tlus 
example, we assume that table DEPT IS stored at SlTE=N Y , but 
the STAR reqmres DEPT to be dehvered to SlTE=L.A m DNO 
order None of the avatlable plans meeta those requuements The 
ftrst avatlable plan must be augmented anth a SHIP LOLEPOP to 
changetheStipropertyfro&NY toLA Theseamdplaa,o 
mmple ACCESS of DEPT. must be both SORTed and SiUPped 
The thud plan, perhaps created by an earher reference of Glw 
that &ddt have the ORDER reqturement. has already added a 
SHIP to plan 2 to get it to L A, but sttll needs a SORT to aclueve 
the ORDER requuement 

checks d any plans extst for the requued relattonal propem- 
(TABLES, COLS, and PREDS), referencmg the topmost 
STAR with those parameters d not. 
adds to any extstmg plan “Glue” operators as a “veneer” to 
achieve the reqmred proper&s (for example, a SORT 

STAR 
Requiring 
Properties 

“Glue” 

Available 
Plans 
f or 
DEPT 

M:hUX-‘Hoqg’ 

I ACCESS 
Table In&x on DEPT DhK) 
Cols: TID. DND 1 

rwne NY 
P . 



4. Example: Join STARS 4.1. Join Permutation Alternatives 

To dlustrate the power of STARs m this secUon we dtscuss one 
possible set of STARS for generatmg the jam strategies of the R* 
optlmt7er (m SectIons 4 1 - 4 4). plus several adcbtlonal strategies 
such as 

9 composite mners (Sections 4 1 and 4 3), 
l new access methods (Sectlon 4 5 2), 
. new Jam methods (SectIon 4 4), 
l dynamic creation of indexes on mtermediate results (Section 

4 5 3), 
l matenahzatlon of inner streams of nested-loop jams to force 

projection (Section 4 5 2) 

Although there may be better ways within our STAR structure to 
express the same set of strateBes, the purpose of this section IS to 
dlustrate the full power of STARS Some of the strategies (e g , 
hash Joins) have not yet been Implemented m Starburst, they are 
mcluded merely for dlustratmg what IS involved m adding these 
strate@es to the optmuzer 

These STARS are by no means complete we have mtenttonally 
snnphfled them by removmg parameters and STARs that deal with 
subquenes treated as Joms, for example The reader 1s cautioned 
against construmg this omsnon as an mabdity to handle other 
cases, on the contrary, It Illustrates the flexltnhty of STARS! We 
can construct, but have onutted for brevrty, addltlonal STARS for 

l sortmg TIDs taken from an unordered mdex m order to order 
I/O accesses to data pages, 

. ANDmg and ORmg of multIpIe indexes for a single table, 

. treatmg subquenes as Joins havmg different quantifier types (1 e , 
generahzmg the pre&cate calcuIus quant&ers of ALL and EXISTS 
to include the FOR EACH quantifier for Joins and the UNIQUE 
quantifier for scalar (“=“) subquenes), 

. f&ration methods such as serm-Joins and Bloom-Jams 

We believe that any desired strategy for non-recurstve quenes wdl 
be expressible usmg STARS, and are currently mvestigatmg what 
&fflcultles, tf any, anse with recursive quenes and multiple execution 
streams resulting from table partitionmg CBATO 87al 

In these defmtlmor readabtity we denote adurrw a/tematnw 
&fmiriorrc by a left curly brace and rrrlrarlr a&am&~ defmtiom by 
a left square bracket In practice, no dutmction IS necessary In 
all examples, we wdl wnte non-termmals (STAR names) m 
RegularmedCase. parameters m rlabcs (those which may be sets 
are denoted by capital letters), and termmals m bold, Hrlth 
LOLEPOPs Qstmgmshed by BOLD CAPITAL LElTERB Re- 
quued propertIes are wntten m small bold letters and surrounded 
by a pau of [square brackets] For brevity, we have had to 
shorten names, e g , “JMeth” should read “JomMethod” The 
function “x(.)” denotes “columns of (.)‘I, where . can be a set 
of tables, an index, etc We assume the existence of the basic set 
functions of E ,fl,E, - (set dfference), etc 

STARS are defined here top down (1 e , a STAR referenced by any 
STAR IS defined after its reference), whch IS also the order m 
w&h they ti be referenced We start with the root STAR, 
JomRoot, whtch IS referenced for a given set of parameters 

. table (quantlher) sets TI and 72 (with no order Impbed) 

. the set of (newly) ehgble predicates, P 

Suppose, for example, that plans for Joming tables X and Y and 
for accessing table Z had already been generated, so we were ready 
to construct plans for Jommg X*Y with Z Then JomRoot would 
be referenced with 72 = (X,Y], T2 = {Z), and 
P=(Xg = Zm, Yh = Znl 

JolnRoot(T!,Tz,P) = 
PermutedJoln(T1, TL, P) 
PermutedJoln(Tz, TI, P) 

The meamng of this STAR should be obvious either table-set Tl 
or table-set T2 can be the outer stream, with the other tabie-set 
as the inner stream Both are possible alternatives, denoted by an 
inclusive (square) bracket Note that we have no conditions on 
either alternative, to exclude a composife mner (I e , an mer that 
IS itself the result of a Mom), we could add a conchtlon restnctmg 
the inner table-set to be one table 

This sunple STAR fads to adequately tax the power of STARS, 
and thus resembles the comparable rule of transformatIona ap- 
proaches However, note that smce none of the STARS referenced 
by JomRoot or any of its descendants WIU reference JomRoot, 
there IS no danger of tb STAR bemg mvoked agam and “undomg” 
tts effect, as there IS m transformational rules CGRAE 87al 

4.2. Join-Site Alternatives 

PermutedJorn(n, Tz, P) = 

i 

SltedJoin(T1, TZ,P) IF local query 

Vsro RemoteJo~n(Ti,Tz,P,s) OTHERWISE 

RemoteJOin(T!, Tz,P.s)= 

SitedJoin(n[srfe=s], rz[srte=sl,P) 

o E set of sites at which tables of the query 
are stored, plus the query Sita 

Thrs STAR generates the same Jam-site altematlves as R* CLOHM 
841, and dustrates the spectflcatlon of a reqmred property Note 
that Glue IS not referenced yet, so the reqmred site property 
accumulates on each alternative untd It LS The mterpretation 1s 

1 If all tables (of the query) are located at the query site, go 
on to SitedJom, 1 e, bypass the RemoteJom STAR wluch 
&ctates the Jam site 

2 Other, reqmre that the Mom take place at one of the Sites 
at which tables are stored or the query ongmated 

If a site wtth a particularly efficient horn engme were avadable, 
then that site could easily be added to the defuution of 0 

4.3 Store Inner Stream? 

I JMeth ( TI , T2 hwv~pl , P ) IF Cl 
SitedJoin(TI,Tz,P) = 

JMeth(TI,Tz,P) OTHERWISE 

J 

Agam, thus simple STAR has an obvtous interpretation, although 
the condition Cl 1s a bit comphcated 

1 IF the inner stream (Z’2) 1s a composite, or its Site IS not the 
same as tts reqmred Site (1 [site]), then dictate that It be 
stored as a temp and call JMeth 

2 OTHERWISE, reference JMeth with no dd&tlonal reqmre- 
ments 

Note that If the second disjunct of condttlon Cl were absent, there 
would be no reason that this STAR couldn’t be the parent 
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\trttrrnLer) of the previous STAB, instead of vice versa As 
wntten, SItedJoin exploits deaslons made m its parent STAR, 
PermutedJoin A transformational rule would either have to test 
If the site declslon were made yet, or else inject the temp reqmre- 
ment redundantly m every transformation that dictated a site 

4.4. Alternative Join Methods 

JMeth(TI, TZ. P) = 

[ 

JOIN (NL, Glue(n, 0). Glue(Tz. JPU IP), JP, P-(JPu IP)) 
JOIN( MC, GlUe(TJIorder-x(SP)nx(TJ)l,9), 

Glue(Tz[orde~-x(SP)nx(Tz)I,IP), 

SP. P-(IPUSP) ) IF SPzo 

where 

P * all eligible predicates 
JP E loin predicates (multi-table, no ORs or 

subqueries, etc , but expressions OK) 
SP * sortable predicates 

i (prJP of form 'collop col2', where 
collrx(n) (I col24,7(Tz) or vice versa 1 

IP E predicates eligible on the inner only, 
1 e , predicates p such that x(p) Cx(T2) 

Tti STAR references two alternative Jam methods, both represented 
as references of the JOIN LOLBPOP mth tiferent parameters 

1 the Mom method (flavor of JOIN), 
2 the outer stream and any reqmred properties on that stream, 
3 the mner stream and any reqmred propemes on that stream, 
4 the Join predtcate(s) apphcable by that Jam method (needed 

for the cost equations), 
5 any residual pre&cates to apply afrer the Jam 

The two Jam methods here are 

1 Nested-Loop (NL) Join, which can always be done For each 
outer tuple instance, columns of the Jam pticates (JP) m 
the outer are mstantlated to convert each JP to a single-table 
pre&cate on the mner stream4 These and any pre&cate.s on 
Just the mner (IP) are “pushed down” to be apphed by the 
mner stream, If possible Any multi-table predcates that don’t 
quahfy as Jam predcates must be apphed as residual pre&cates 
Note that the prehcates to be apphed by the mner stream are 
parameters, not required attributes T~JS forces Glue to re- 
reference the smgle-table STARS to generate plans that explort 
the converted JP pre&cates rather than retrofinrng a FILTRR 
LOLEPOP to exlstmg plans that apphed only the IP predcates 

2 Merge (MG) Jam If there are sortable predcates (SP), &ctate 
that both mner and outer be sorted on their columns of SP 
Note that the merge Jam, unhke the nested-loop join, apphes 
the sortable pre&cates as part of the JOT Itself, pusbmg down 
to the mner stream only the single-table pre&cates on the 
inner (IF’) The JOIN LOLEPOP m Figure 1, for example, 
would be generated by this alternative As before, remmmng 
multi-table predicates must be appbed by JOIN as residuals 
after the Jam 

Glue wdl first reference the STARS for accessmg the gven table(s), 
applymg the gven pre&cate(s), d no plans exist for those param- 
eters In Starburst, a data structure hashed on the tables and 
predicates facfitates fmdmg all such plans, $ they exM Glue then 
adds the necessary operators to each of these plans, as described 
m the previous sectlon Smphfled STARS for Glue, which ti 
STAR references, and for accessmg stored tables, which Glue 
references, are gven m [LEE 881 

4.5. Additional Join Methods 

Suppose now we wanted to augment the above alternatives wnh 
addmonal Join methods All of the folJowmg alternative defuntlons 
would be added to the ngbt-hand side of the above STAR (Jlvfeth) 

4 5 1 Hash Join Alternative 

Tbe hash Mom has shown pronnsmg performance CBABB 79, BRAT 
84, DEWl 851 We assume here a hash-)om flavor (HA) that 
atonucally bucketies both mput streams and does the Mom on the 
buckets 

JOIN (H.4, Glue(TJ, +). Glue(Tz,IP).tlP,~-IP) 

1 2 1 hashable predicates IF "'*' 1 

m (PcJP of form'expr(x(TJ)) - expr(x(Ts))'l 

As m the merge Jam, only smgle-table prdcates can be pushed 
down to the mner Note that all multi-table predicates (P-IP) - 
even the hashable predicates (HP) - remam as residual predicates. 
smce there may be hash colbruons AJso note tbat the set of 
hashable pre&cates HP contams some predicates not m the set of 
sortable pre&cates SP (expressions on any number of c&mns m 
the same table), and vice versa (mequahties) 

An alternate (and probably preferable) approach would be to add 
a bueketixed property to the property vector and a LOLEPOP to 
a&eve that property, so that any Jam method m the JMeth !%TAR 
could perform the pm m parallel on each of the bucketlzed streams, 
wrth appropnate adjustments to its cost 

4.5 2. Forcing Projectmn Alternatwe 

To avoid expensive m-memory copymg, tuples are normally retamed 
as pages m the buffer Just as they were ACcEssed, untd they are 
matenahxed as a temp or SHIPped to another site Therefore, m 
nested-loop moms it may be advantageous to matenahze (SMIRE) 
the selected and projected mner and re-ACCESS tt before pmmg, 
whenever a very small percentage of the mner table results (1 e , 
when the pre&cates on the mner table are quite selective and/or 
only a few columns are referenced) Batory suggests the same 
strategy whenever the mner “IS generated by a complex expression” 
[BAT0 87aI The followmg forces that alternative 

VI TableAccess(Glue(T2[fempl IP) 

m Jh4eth alternative accesses the mner stream (7’2). applymg 
only the smgle-table pre&cates (IP), and forcmg G~w to STORE 
the result m a temp (permanently stored tables are not considered 
temps uutmlly) All columns (*) of the temp are then re-accessed. 
re-usmg the STAR for accessmg any stored table, TableAccess 
Note that the STAR structure allows us to spenfy that the Jam 
pre&cates (JP) can be pushed down only to th access, to prevent 
the temp from bemg re-matenabzed for each outer tuplef 

4 USman has coined the term "sIdeways ~nformatlon pass&' [ULLM 851 for 
thts convenmn of ,om predicates to smgle-table predtcates by mstantlaung one 
ade of the predtcate which was done m System R [SELI 791 
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A TableAccess can be one (and only one) of the followmg flavors 
of ACCESS, dependmg upon the type of storage manager (StMgr) 
used, as described m CLIND 871 

1 A physlcally-sequential ACCESS of the pages of table T, d 
the storage manager type of T 1s ‘heap’, or 

2 A B-Tree type ACCESS of table 7’. If the storage manager 
type of T IS ‘B-tree’, 

retnevmg columns C and applymg prehcates P By now It should 
be apparent how easdy alternatives for addmonal storage manager 
types could be added to this STAR alone, and affect all STARS 
that reference TableAccess 

4 5 3 Dynamic Indexes Alternative 

The nested-loop lam works best when an mdex on the mner table 
can be used to lmnt the search of the mner to only those tuples 
satlsfymg the ]om and/or smgle-table predicates on the mner Such 
an index may not have been created by the user, or the mner may 
be an mtermedlate result, m which case no auxdmry access paths 
such as an mdex are normally created However, we can force 
Glue to create the mdex as another alternative Although tis 
sounds more expensive than sortmg for a merge JOT, It saves 
sortmg the outer for a merge JOT, and wdl pay for Itself when the 
jam predtcate IS selective SMACK 861 

JOIN( NL, Glue(T!,+). 

G~~~(~~[~~~~IX),XPUIP),XP-IP,P-(XP~IP)) 
where 

XP r indexable multi-table predicates 

= {pfJP of form 'expr(x(n))opTzmI') 

IX E columns of Indexable predicates 

- (x(IP)ux(XP))n x(T.2). I=' predicates first 

This alternative forces Glue to make sure that the access paths 
property of the mner contams an mdex on the columns that have 
either single-table (IP) or mdexable (XP) predicates, ordered so 
that those mvolved m equahty pre&cates are apphed first If ths 
mdex needs to be created, the STARS unplementmg Glue wdl add 
[order] and [temp] requements to ensure the creation of a 
compact mdex on a stored table As m the nested-loop altematlve, 
the mdexable multi-table predicates “pushed down” to the mner 
are effectively converted to smgle-table predicates that change for 
each outer tuple 

5. Extensibility - 
What’s Really Involved 

Here we discuss bnefly the steps reqmred to change various aspects 
of the optmuzer strateges, m order to demonstrate the extenslbtity 
and modulanty of our STAR mechamsm 

Easiest to change are the STARS themselves, when an exlstmg set 
of LOLEPOPs suffices If the STARS are treated as mput data 
to a rule mterpreter, then new STARS can be added to that frle 

wlthout unpactlng the Starburst system code at all [LEE 881 If 
STARS are compded to generate an optmuzer (as m CGRAE 87a, 
GRAB 87bl), then updates of the STARS would be followed by 
a re-generation of the optmuzer In either case, any STAR havmg 
a con&hon not yet defined would reqmre defmmg a C function 
for that comhtion, comptig that function, and rehnkmg that part 
of the optumzer to Starburst Note that we assume that the DBC 
specifies the STARs correctly, I e Hnthout mfuute cycles or mean- 
mgless sequences of LOLBPOPs An open ~3.9~3 Is how to venfy 
that any uven set of STARS 19 correct 

Less frequently, we may mh to add a new LOLBPOP, e g 
OUTERJOIN Thn necessttates defmmg and compdmg two C 
functmns a mn-tune execution routme that wdl be mvoked by the 
query evaluator, and a property function for the optmuzer to spectiy 
the changes to plan propefies (mcludmg cost) made by that 
LOLEPOP In ad&tion, STARs must be added and/or m&led, 
as described above, to reference the LOLBPOP under the appro- 
pnate circumstances 

Probably the least hkely and most serious alterattons occur when 
a property IS added (or changed m any way) m the property vector 
Smce the default action of any LOLEPOP on any property 1s to 
leave the mput property unchanged, only those property functions 
that reference the new property would have to be updated, re- 
compded, and rehnked to Starburst By representmg the property 
vector as a self-defmmg record havmg a vanable number of fields, 
each of which IS a property, we can msulate unaffected property 
functions from any changes to the structure of the property vector 
STARS would be affected only If the new property were reqmred 
or produced by that STAR 

6. Related Work 

Some aspects of our STARS resemble features of earher work, but 
there are some unportant tiferences As we mentioned earher, 
our STARs are msplred by functional programmmg concepts 
[BACK 781 A major dtfference IS that our “functions” (STARS) 
can be multi-valued, 1 e a set of alternative ObJects (plans) The 
other maJor mspnation, a producuon of a grammar, does not pemnt 
a con&Qon upon alternative expansions of a non-termmal It either 
matches or it doesn’t (and the alternatives must be excluave) 
Hopmg to use a standard compder generator to compile our STARS, 
we mvestigated the use of partmlly context-sensitive W-grammars 
CCLBA 771 for enforcmg the “context” of reqmred propertres. 
but were ticouraged by the same combmatonal explosion of pro- 
ductions described above when many properttes are possible Koster 
CKOST 711 has solved thm usmg a techmque slrmlar to ours, m 
whch a pre&cate called an “affix” (comparable to our condition 
of appbcabtity) may be associated mth each alternative defmfion 
He has shown affu grammars to be Turmg complete In ad&tlon, 
grammars are typuxilly used m a parser to find Ju?t one expansion 
to termmals, whereas our goal IS to construct UN such expansions 
Although a grammar can be used to construct all legal sequences, 
tlus set may be mflmte CULLM 851 

The transformational approach of the EXODUS optmuzer [GRAB 
87a, GRAB 87bl uses C functions for the IF condmons and 
expresses the alternatives m rules, as do we, but then compdes 
those rules and con&tions usmg an “optlrmzer generator” mto 
executable code Given one n&al plan, tlus code generates all 
legal vanations of that plan usmg two kmds of rules transformation 
rules to define alternative transformatlons of a plan, and unple- 
mentation rules to define alternative methods for Implementmg an 
operator (e g , nested-loop and sort-merge algonthms for Imple- 
mentmg the JOIN operator) Our approach does not reqmre an 
lmtlal plan, and has only one type. of rule, which pemuts us to 
express mteractlons between transformations and methods Our 
property functions are m&stmgmshable from Graefe’s property and 
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.I I 11 ‘c[ions, although we have Idennfled more propertles thdn 
any ot!lLr author to date Graefe does not deal with the need of 
some rules ie g merge jam) to reqmre certam propertles, as dls- 
cussed m Section 3 2 and dustrated m Sections 4 2 - 4 4, 4 5 2, 
and 4 5 3 Although Graefe re-uses common subplans m alternatlve 
pldns, transformational rules may subsequently generate alternatives 
and pick a new opnmrl plan for the subplan, forcmg re-estunatlon 
of the cost of every plan that has already mcorporated that subplan 
Our bmldmg blocks approach avoids tlus problem by generating aLI 
plans for the subplan before incorporating that subplan m other 
plans, although Glue may generate some new plans having different 
properties and/or parameters And whde the structure of our 
STARS does not preclude compdatlon by an optmuxer generator, 
it also pernuts Interpreting the STARS by a simple yet efficient 
interpreter durmg optmuzatlon, as was done m our prototype 
Interpretauon saves re-compdmg the optmuzer component every 
time a strategy 1s added or changed, and also allows greater control 
of the order of evaluation For example, dependmg upon the value 
of a STAR’s parameter, we may never have to construct entire 
subtrees wthm the decision tree, but a compded optumxer must 
contam a completely general declslon tree for all quenes 

Freytag [FREY 871 proposes a more LISP-hke set of transforma- 
tional rules that starts from a non-procedural set of parameters 
from the query, as do we, and transforms them into all alternative 
plans He pomts to the EXODUS optmuzer generator as a possible 
Implementation, but does not address several key lmplementatlon 
issues such as lus elhpsls ( ” “) operator, whch denotes any number 
of expressions, e g 

((JOIN T, ( Tz )) * (JOIN Tl( )Tz)) 

And the ORDER and SITE propeties (only) are expressed as 
functions, which presumably would have to be re-derived each time 
they were referenced m the con&hons Freytag does not exploit 
the structure of query optlrmzatlon to hnut what rules are apphcable 
at any tlllle and to prevent re-apphcatlon of the same rules to 
common subplans shared by two alternative plans, although he 
suggests the need to do so 

Rosenthal and Helman [ROSE 871 suggest spectiications for “well- 
formed” plans, so that transfonnabonal rules can be venfled as 
valid If they transform well-formed plans to well-formed plans 
Like Graefe, they associate properties wth plans, viewed as pred- 
icates that are tme about the plan Alternative plans producing the 
same mtermedlate result mth the same properties converge on 
“data nodes”, on wluch “transformations that msert unary 
operators are more naturally appbed” An operator 1s then well- 
formed If any input plan satisfymg the requued mput propeties 
produces an output plan that satisfies the output properties The 
paper emphasizes representations for venflablhty and search issues, 
rather than detadmg mechamsms (1) to construct well-formed trans- 
formations, (2) to match mput data nodes to output data nodes 
(correspondmg to our Glue), and (3) to recalculate the cost of all 
plans that share (through a common data node) a common subplan 
that IS altered by a transformation 

Probably the closest work to ours IS Batory’s “synthets” architecture 
for the entue GENESIS extensible database system (not Just the 
query optmnzer [BAT0 87bl), m which “atoms” of “pnnutwe 
algonthms” are composed by functions mto “molecules”, m layers 
that successively add unplementation detads [BAT0 87al Devel- 
oped concurrently and independently, Batory’s functional notation 
closely resembles STARS, but 1s presented and unplemented as 
rewnte (transformational) rules that are used to construct and 
compde the complete set of alternatives 4 przorr for a gwen opts- 
mlzer, after first selecting from a catalog of avadable algonthms 
those desired to unplement operators for each layer At the highest 
layer, for example, the DBC chooses from many optlrmzanon al- 
gonthms (e g depth-fust vs breadth-first), whde the choices at 
the lowest layers correspond to our flavors of LOLEPOPs or 
Graefe’s methods The functions that compose these operations do 

not exphcltly pernut Condruons on the alternative defmmons, as do 
we Batory considers them unnecessary uhen rules are constructed 
properly but alludes to them m comments nexr to some aitematlves 
and m a footnote Incluslva alrernatlves automatlcally become 
arguments ot a CHOOSE-CHEAPEST function dur,ng the com- 
position process The rewnte rules Include rules to match propertIes 
(which he calls charactenstlcs) even if they are unneeded e g a 
SORT may be applied to a stream that 15 already ordered appro- 
pnatelj by a? index, as well as rule5 to slmphfy the resultmg 
compositions and ehmmate any such unnecessary operations By 
treating the stored vs m-memory dlstmctlon as a property of 
streams, and by havmg a general-purpose Glue mechamsm, we 
manage to factor out most of these redundamles m our STARS 
Although clearly relevant to query optmuzatlon, Batory s larger 
goal was to incorporate an encyclope&c array of known query 
processing algonthms wnhm his framework, mcludmg operators for 
sphttmg, processing m parallel, and assembhng honzontal partltlons 
of tables 

7. Conclusions 

We have presented a grammar for spectiymg the set of legal strat- 
eges that can be executed by the query evaluator The grammar 
composes low-level database operators (LOLEPOPs) mto h@er- 
level constmcts using rules (STARS) that resemble the defm&on 
of functions they may have altemattve defuutlons that have IF 
condmons, and these altematrve defnutlons may, m turn, reference 
other functions that have already been defined The functions are 
parametrized objects that produce one or more alternative plans 
Each plan has a vector of properties, mcludmg the cost to produce 
that plan, whch may be altered only by LOLEPOPs When dn 
altemauve defnution reqmres certam properties of an mput, “Glue” 
can be referenced to do ‘impedance matchmg” between the plans 
created thus far and the reqmred propeties by mjectmg a veneer 
of Glue operators 

We have shown the power of STARS by speclrylng some of the 
strateges considered by the R* system and several addnlonal ones, 
and beheve that any desired extension can be represented usmg 
STARS We fmd our constructive, “bmldmg-blocks” grammar to 
be a more natural para&gm for spectfymg the “language” of legal 
sequences of database operators than plan transformatlonal rules, 
because they allow the DBC to bmld h&er levels of abstractlon 
from lower-level constructs, wthout havmg to be aware of how 
those lower-level constmcts are defined And unhke plan trans- 
formational rules, whch consider all rules apphcable at every Iter- 
ation and which must do comphcated umfication to determme 
apphcablltty, referencmg a STAR tnggers m an obvious way only 
those STARs referenced m Its defnution, JIM hke a macro expander 
Tlus hnuted fanout of STARS should make d possible to a&eve 
our goal of expressmg alternative optmuzer strateBes as data and 
stall use these rules to generate and evaluate the cost of a large 
number of plans wthm a reasonable amount of tune 
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