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Abstract

Extensible query optimization requires that the "repertowre’ of
alternative strategies for executing queries be represented as data,
not embedded m the optimizer code Recogmizing that query op-
timizers are essentially expert systems, several researchers have
suggested using strategy rules to transform query execution plans
nto alternative or better plans Though extremely flexible, these
systems can be very inefficient at any step in the processing, many
rules may be ehgible for application and complicated conditions
must be tested to determine that eligibiity during unification We
present a constructive, "building blocks" approach to defining al-
ternative plans, in which the rules defimng alternatives are an
extension of the productions of a grammar to resemble the defimtion
of a function n mathematics The extensions permit each token
of the grammar to be parametnized and each of its alternative
definitions to have a complex condition The termunals of the
grammar are base-level database operations on tables that are
interpreted at run-time The non-termunals are defined declarauvely
by production rules that combine those operations into meammngful
plans for execution Each production produces a set of alternative
plans, each having a vector of properties, including the estimated
cost of producing that plan Productions can require certain prop-
erties of thewr mputs, such as tuple order and location, and we
descnibe a "glue" mechamism for augmenting plans to achieve the
required properties We give detalled examples to illustrate the
power and robustness of our rules and to contrast them with related
1deas

1. Introduction

Ever since the first query optimizers [WONG 76, SELI 79] were
built for relational databases, revising the ''repertowe" of ways to
construct a procedural execution plan from a non-procedural query
has required complicated and costly changes to the optimizer code
itself This has limited the repertowre of any one optimizer by
discouraging or slowing experimentation with — and implementation
of — all the new advances n relational technology, such as im-
proved join methods [BABB 79, BRAT 84, DEWI 85], distnibuted
query optimization [EPST 78, CHU 82, DANI 82, LOHM 85],
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semyjomns [BERN 811], Bloomjomns [BABB 79, MACK 861, parailel
joins on fragments [WONG 831, jomn indexes [HAER 78, VALD
871, dynamic creation of indexes [MACK 86], and many other
vanations of traditional processing strategies The recent surge in
mnterest in extensible database systems [STON 86, CARE 86,
SCHW 86, BATO 86] has only exacerbated the burden on opt-
muzers, adding the need to customuze a database system for a
particular class of apphications, such as geograpmic [LOHM 831],
CAD/CAM, or expert systems Now optimizers must adapt to
new access methods, storage managers, data types, user-defined
functions, etc, all combined in novel ways Clearly the traditional
specification of all feasible strategies in the optmzer code cannot
support such fludity

Perhaps the most challenging aspect of extensible query optimization
1s the representation of alternative execution strategies Ideally,
this representation should be readily understood and modified by
the Database Custormzer (DBC)! Recognizing that query optimiz-
ers are expert systems, several authors have observed that rules
show great promuse for this purpose [ULLM 85, FREY 87, GRAE
87a] Rules provide a high-level, declaranive (1€, non-procedural),
and compact specification of legal alternatives, which may be input
as data to the optimizer and traced to explan the ongin of any
execution plan This makes 1t easy to modify the strategies without
mpacting the optimizer, and to encapsulate the strategies executable
by a particular processor n a heterogeneous network But how
should rules represent alternative strategies? The EXODUS project
[GRAE 87a, GRAE 87b] and Freytag [FREY 87) use rules to
transform a given execution plan into other feasible plans The
NAIL! project [ULLM 85, MORR 861 employs "capture rules"
to determine which of a set of available plans can be used to
execute a query

In this paper, we use rules to describe how to construct — rather
than to alter or to match — plans Our rules "compose” low-level
database operations on tables (such as ACCESS, JOIN, and SORT)
mto higher-level operations that can be re-used in other defimtions
These constructive, "building blocks" rules, which resemble the
productions of a grammar, have two major advantages over plan
transformation rules

« They are more readily understood, because they enable the DBC
to build increasingly complex plans from common building blocks,
the details of which may be transparent to hum, and

» They can be processed more efficiently dunng optimization, by
simply finding the definition of any building block that 1s refer-
enced, using a simple dictionary search, much as is done 1n macro
expanders By contrast, plan transformation rules usually must

1 We feel this term more accurately describes the role of adapting an implemented
but extensible database system than does the term Database Implementor (DBI),
comed by Carey et al [CARE 86]



examine a large set of rules and apply comphcated conditions on
each of a large set of plans generated thus far, mm order to
determine if that plan matches the pattern to which that rule
applies As new rules create new patterns, existing rules may
have to add conditions that deal with those new patterns

Our grammar-like approach 1s founded upon a few fundamental
observations about query optumzation

« All database vperators consume and produce a common object —
a table, viewed as a stream of tuples that 1s generated by accessing
a table [BATO 87a] The output of one operation becomes the
nput of the next Streams from individual tables are merged by
joins, eventually into a single stream [FREY 87, GRAE 87al

» Opthmzers construct legal sequences of such operators that are
understood by an mterpreter, the query evaluator In other words,
the repertoire of lega!l plans 1s a language that might well be
defined by a grammar

« Decisions made by the optimzer have an mherent sequence depen-
dency that hmts the scope of subsequent decisions [BATO 87a,
FREY 87] For example, for a given plan, the order in which
a given set of tables are joined must be determmed before the
access path for any of those tables 1s chosen, because the table
order determines which predicates are eligible and hence mught
be applied by the access path of any table (commonly referred
to as "pushing down the selection") Thus, for any set of tables,
the rules for ordering table accesses must precede those for
choosing the access path of each table, and the former serve to
hmut significantly which of the latter rules are applicable

Alternative plans may mcorporate the same plan fragment, whose
alternatives need be evaluated only once This further hmuts the
rules generating alternatives to just the new portions of the plan

Unlike the simple pattern-matching of tokens to determine the
apphcability of productions in grammars, 1n query optimization
specifymg the conditions under which a rule is apphcable is usually
harder than specifying the rule’s fransformation For example, 2
multi-column 1ndex can apply one or more predicates only if the
columns referenced m the predicates form a prefix of the columns
mn the ndex Assigmng the predicates to be applied by the index
1s far easier to express than the condition that permuts that
assignment

These observations prompted us to use "strategy” rules to construct
legal nestings of database operators declaratively, much as the
productions of a grammar construct legal sequences of tokens
However, our rules resemble more the defimtion of a function in
mathematics or a rule i Prolog, n that the "tokens" of our
grammar may be parametrized and their definition alternatives may
have complex conditions The reader is cautioned that the apphication
— not the representation — 1s our claim to novelty Logic pro-
grammung uses rules to construct new relations from base relations
[ULLM 851, whereas we are using rules to construct new operators
from base operators that operate on tables

Our approach 1s a general one, but we will present 1t n the context
of its intended use the Starburst prototype extensible database
system, which 1s under development at the IBM Almaden Research
Center [SCHW 86, LIND 87)

The paper 1s orgamzed as follows Section 2 first defines the
end-product of optimization — plans We describe what they’re
made of, what they look like, how our rules are used to construct
all of them for a query In Section 3, we associate properties with
plans, and allow rules to impose requirements on the properties of
therr mput plans A set of possible rules for joins 15 given in
Section 4 to illustrate the power of our rules to specify some of
the most complicated strategies of existing systems, including several
not addressed by other authors Section 5 outlines how the DBC
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can make extensions to rules, properties, and database operators
Having thoroughly described our approach, we contrast it with
related work in Section 6, and conclude 1n Section 7

2. Plan Generation

In this section, we describe the form of our rules We must first
define what we want to produce with these rules, namely a query
evaluation plan, and 1ts constituents

2.1. Plans

The basic object to be mampulated — and the class of "termnals"
m our grammar — 1S a LOw-LEvel Plan OPerator (LOLEPOP) that
will be interpreted by the query evaluator at run-ime LOLEPOPs
are a vanation of the relational algrebra (e g , JOIN, UNION, etc ),
supplemented with low-level operators such as ACCESS, SORT,
SHIP, etc [FREY 87] Each LOLEPOP is viewed as a function
that operates on 1 or 2 tables?, which are parameters to that
function, and produces a single table as output A table can be
either a table stored on disk or a "stream of tuples”" 1 memory
or a communication pipe The ACCESS LOLEPOP converts a
stored table to a stream of tuples, and the STORE LOLEPOP
does the reverse In addition to mput tables, a LOLEPOP may
have other parameters that control its operation For example, one
parameter of the SORT LOLEPOP 1s the set of columns on which
to sort Parameters may also specify a flavor of LOLEPOP For
example, different jon methods having the same input parameter
structure are represented by different flavors of the JOIN
LOLEPOP, differences mn mput parameters would necessitate a
distinct LOLEPOP Parameters may be optional, for example, the
ACCESS LOLEPOP may optionally apply a set of predicates

A query evaluation plan (QEP, or plan) 1s a directed graph of
LOLEPOPs An example plan i1s shown in Figure 1 Note that
arrows point toward the source of the stream, not the direction in
which tuples flow This plan shows a sort-merge JOIN of DEPT
as the outer table and EMP as the nner table The DEPT stream
1s generated by an ACCESS to the stored table DEPT, then
SORTed mto the order of column DNO for the merge-jom The
EMP stream 1s generated by an ACCESS to the stored index on
column EMP DNO3 that includes as one "column' the fuple sdentifier
(TID) For each tuple mn the stream, the GET LOLEPOP then
uses the TID to get additional columns from 1its stored table
columns NAME and ADDRESS from EMP 1n this example

Another way of representing this plan is as a nesting of functions
[BATO 87a, FREY 87]

JOIN (sort merge, DEPT DNO=EMP DNO,
SORT(ACCESS(DEPT, {DNO, MCR}, {MGR='Haas'}), DNO),
GET( ACCESS(Index on EMP DNO, {TID,DNO}, ¢),
EMP, {NAME, ADDRESS} , ¢ ) )

This representation would be a lot more readable, and easier to
construct, 1f we were to define intermediate functions D and E for
the last two parameters to JOIN

JOIN (sort merge, D DNO=E DNO, D, E)

where

2 Nothing 1 the structure of our rules prevents LOLEPOPs from operating on
any number of tables

3 Actually, ACCESSes to base tables and to access methods such as this index
use different flavors of ACCESS



JOIN

Method sort-merge
Pred. DEPT DNO = EMFP DNO

Cuter
N\

SORT (GET
Cols DNO Table. EMP
Input Cols* NAME, ADDRESS
Llnpuf. N
ACCESS [ ACCESS
Table DEPT Table. Index on EMP DNO
Cols. DNO, MGR Cols* 7ID, DNO
Pred. MGR = 'Haas' kPnd.

Figure 1 One potential query evaluation plan for the SQL
query

SELECT NAME, ADDRESS
FROM EMP E, DEPT D
WHERE E DNO = D DNO AND MGR='Haas'

D = SORT(ACCESS(DEPT, {DNO, MCR}, {MGR='Haas'} ), DNO)

and

E = GET ( ACCESS(Index onEMP DNO,{TID,DNO}, ¢),
EMP, {NAME, ADDRESS}, ¢ )

If properly parametnzed, these intermediate functions could be
re-used for creating an ordered stream for any table, e g

OrderedStreaml(T, C, P, order) = SORT(ACCESS(T, C, P), order)
and

OrderedStream2(T, C, P, order) =

GET (ACCESS(s, {TID}, $),T,C,P) IF orderCa

where T 1s the stored table (base table or base tables represented
n a stored mtermediate result) to be accessed, C 1s the set of
columns to be accessed, P 1s the set of predicates to be appled,
and "orderC a" means "the ordered hst of columns of order are a
prefix of those of access path a of 7' Now it becomes apparent
that OrderedStream1 and OrderedStream2 provide two alternative
defimitions for a single concept, an OrderedStream, mn which the
second definition depends upon the existence of a suitable access
path

OrderedStream(T, C, P, order) =

[SORT( ACCESS(T, C, P), order)

GET(ACCESS(a,{TID}, %), T,C,P) IF orderCa

This higher-level construct can now be nested withun other functions
needing an ordered stream, without having to worry about the
details of how the ordered stream was created [BATO 87a] It s
precisely this train of reasomung that mspired the grammar-hke
design of our rules for constructing plans
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22 Rules

Executable plans are defined using a grammar-hke set of
parametnized production rules called STrategy Alternative Rules
(STARs) that define higher-level constructs from lower-level con-
structs, 1n a way resembhng common mathematical functions or a
functional programmung language [BACK 78] A STAR defines
a named, parametrized object (the "nontermunals" in our grammar)
in terms of one or more alternative definitions, each of which

« may have a condifion of applicability, and

« defines a plan by referencing one or more LOLEPOPs or other
STARs, specifying arguments for their parameters

Arguments and conditions of apphcability may reference constants,
parameters of the STAR bemng defined, or other LOLEPOPs or
STARs For example, the intermediate functions OrderedStream1
and OrderedStream?2, defined above, are examples of STARs with
only one alternative defimition, but OrderedStream has two alter-
native defimtions The first of these references the SORT
LOLEPOP, whose first argument 1s a reference to the ACCESS
LOLEPOP and whose second argument is the parameter order
The conditions of applicability for all the alternatives may eisther
overlap or be exclusive If they overlap, as they do for
OrderedStream, then the STAR may return more than one plan

In addition, we may wish to apply the function to every element
of a set For example, in OrderedStream?2 above, any other index
on EMP having DNO as 1ts major column could achieve the desired
order So we need a STAR to generate an ACCESS plan for each
index 1 in that set 1

IndexAccess(T) = vi el ACCESS(1, {TID}, ¢)

Using rule IndexAccess 1n rule OrderedStream2 as the first argument
should apply the GET LOLEPOP to each such plan, 1¢e, for each
alternative plan returned by IndexAccess, the GET function will
be referenced with that plan as its first argument So
GET (IndexAccess(EMP), C, P) will also return multiple plans
Therefore any STAR having overlapping conditions or referencing
a multi-valued STAR will itself be multi-valued It is easiest to
treat all STARs as operations on the abstract data type Sef of
Alternative Plans for a stream (SAP), which consume one or two
SAPs and are mapped (in the LISP sense [FREY 871]) onto each
element of those SAPs to produce an output SAP Set-valued
parameters other than SAPs (such as the sets of columns C and
predicates P above) are treated as a single parameter unless oth-
erwise designated by the V clause, as was done in the defimtion
of IndexAccess

2.3. Use and Implementation

As our functional notation suggests, the rule mechanism starts with
the root STAR, which 1s the "staring state" of our grammar The
root STAR has one or more alternative defimitions, each of which
may reference other STARs, which 1n turn may reference other
STARs, and so on top down until a STAR 1s defined totally n
terms of "terminals", 1 e LOLEPOPs operating on constants Each
reference of a STAR 1s evaluated by replacing the reference with
its alternative defimitions that satisfy the condition of apphcability,
and replacing the parameters of those defimtions with the arguments
of the reference Unlike transformational rules, this substitution
process 1s remarkably simple and fast, the fanout of any reference
of a STAR 1s hmited to just those STARs referenced 1n its defi-
nition, and alternative definitions may be evaluated in parallel
Therein hes the real advantage of STARs over transformational
rules The implementation of a prototype interpreter for STARs,
mcluding a very general mechanism for controling the order in
which STARs are evaluated, 1s described in [LEE 88]



Thus far in Starburst, we have sets of STARs for accessing windi-
vidual tables and jomns, but STARs may be defined for any new
operation, ¢ g outer join, and may reference any other STAR The
root STAR for jomns 1s called JomRoot, a possible definition of
which appears in Section “4 Example Join STARs”, along with
the STARs that 1t references Simplified definitions of the single-
table access STARs are given in [LEE 881 For any given SQL
query, we buld plans bottom up, first referencing the AccessRoot
STAR to build plans to access individual tables, and then repeatedly
referencing the JoinRoot STAR to join plans that were generated
earher, until all tables have been joined What constitutes a jomable
pair of streams depends upon a compile-time parameter The
default 1s to give preference to those streams having an ehgible
Join predicate linking them, as did System R and R*, but this can
be overndden to also consider Cartesian products between two
streams of small estimated cardinality In addition, 1n Starburst we
exploit all predicates that reference more than one table as join
predicates This generahzation of System R’s and R*’s "coll =
col2"” jon predicates, plus allowing plans to have composite mners
(e g, (A*B)*(C*D)) and Cartesian products (when the appropriate
parameters are specified), sigmficantly complicates the generation
of legal join pairs and increases theirr number However, a cheaper
plan 1s more likely to be discovered among this expanded repertoire!
We will address this aspect of query optimization mn a forthcoming
paper on jomn enumeration

3. Properties of Plans

The concept of cost has been generalized to inciude all properties
a plan might have We next present how properties are defined
and changed, and how they interact with STARs

3.1. Description

Every table (either base table or result of a plan) has a set of
properties that summanize the work done on the table thus far (as
n [GRAE 87b], [BATO 87al,and [ROSE 87]) and hence are
mmportant to the cost model These properties are of three types

relational the relational content of the plan, e g due to jomns,
projections, and selections

physical the physical aspects of the tuples, which affect the
cost but not the relational content, e g the order
of the tuples

estimated properties derived from the previous two as part

of the cost model, e g estimated cardinality of the
result and cost to produce 1t

Examples of these properties are summanzed i Figure 2 All
properties are handled uniformly as elements of a property vector,
which can easily be extended to add more properties (see section
5)

Imtially, the properties of stored objects such as tables and access
methods are determmed from the system catalogs For example,
for a table, the catalogs contain 1ts constituent columns (COLS),
the SITE at which 1t 1s stored [LOHM 851, and the access PATHS
defined on it No predicates (PREDS) have been apphled yet, 1t
1s not a TEMPorary table, and no COST has been incurred n the
query The ORDER i1s "unknown'" unless the table i1s known to
store tuples 1n some order, in which case the order 1s defmed by
the ordered set of columns on which the tuples are ordered

Each LOLEPOP changes selected properties, ncluding adding cost,
mn a way determined by the arguments of its reference and the
properties of any arguments that are plans For example, SORT
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* Relational (WHAT)
TABLES Set of tables accessed
coLS Set of columns accessed
PREDS Set of predicates applied

e Physical (HOW)

ORDER Ordering of tuples
(an ordered 1ist of columns)
SITE Site to which tuples delivered
TEMP "True" 1f materialized 1n a tempo-
rary table
PATHS Set of available access paths on

(set of) tables, each element an
ordered 1ist of columns

e Estimated (HOW MUCH)

CARD Estimated number of tuples result-
ng
CosT Estimated cost (total resources, a

11near combination of 1/0, CPU, and
communications costs [LOHM 851)

Figure 2 Example properties of a plan.

changes the ORDER of tuples to the order specified in a parameter
SHIP changes the SITE property to the specified site Both
LOLEPOPs add to the COST property of their input stream ad-
ditional cost that depends upon the size of that stream, which 1s a
function of its properties CARD and COLS ACCESS changes a
stored table to a memory-resident stream of tuples, but optionally
can also subset columns (relational project) and apply predicates
(relational select) that may be enumerated as arguments The
latter option will of course change the CARD property as well
These changes, including the appropnate cost and cardmality esti-
mates, are defined i Starburst by a property function for each
LOLEPOP Each property function 1s passed the arguments of the
LOLEPOP, including the property vector for arguments that are
STARs or LOLEPOPs, and returns the revised property vector
Thus, once STARs are reduced to LOLEPOPs, the cost of any
plan can be assessed by invoking the property function for successive
LOLEPOPs These cost functions are well established and vahdated
[MACK 861, so will not be discussed further here

3.2. Required vs. Available
Properties

A reference of a STAR or LOLEPOP, especially for certain join
methods, may require certain properties for its arguments For
example, the merge-join requires its mnput table streams to be
ordered by the join columns, and the nested-loop jomn requires the
inner table’s access method to apply the jomn predicate as though
it were a single-table predicate ("pushes the selection down")
Dyadic LOLEPOPs such as GET, JOIN, and UNION require that
the SITE of both mput streams be the same

In the previous section, we constructed a STAR for an
OrderedStream, where the desired order was a parameter of that
STAR Clearly we could requre a particular order by referencing
OrderedStream with the required order as the corresponding argu-
ment The problem is that we may simultaneously require values
for any of the 2" combinations of n properties, and hence would
have to have a differently-named STAR for each combination For
example, if the sort-merge JOIN m the example 1s to take place




< SITE =x then we need to define a SitedOrderedStream that has
pwmeters for SITE and ORDER and references 1n 1ts defimtion
SHIP LOLEPOPs to send any stream to SITE x, as well as a
SitedStream, an OrderedStream, and a STREAM  Actually,
SitedOrderedStream subsumes the others, since we can pass nulls
for the properties not requred But in general, every STAR will
need this same capability to specify some or all of the properties
that might be required by referencing STARs as parameters Much
of the deftmtion of each of these STARs would be redundant,
because these properties really are orthogonal to what the stream
produces In addition, we often want to find the cheapest plan
that sausfies the required properties, even if there 1s a plan that
naturally produces the required properties For example, even
though there 1s an index EMP DNO by which we can access EMP

in the f%q‘ﬂ“»d DNO vldﬁl, it uuslu be »heape.’, if EMP were not

ordered by DNO, to access EMP sequentially and sort it into DNO
order

We therefore factor out a separate mechamsm called Gilue, which
can be referenced by any STAR and which

1 checks if any plans exist for the requred relational properties
(TABLES, COLS, and PREDS), referencing the top-most
STAR with those parameters if not,

demvee mlam M Lea!! ncacatace e Mernnns LU

adds to any CXiSULE Piali Ui Operators as a  venesr 1o

achieve the required properties (for example, a SORT
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LOLEPOP can be added to change the tuple ORDER, or a
SHIP L.OLEPOP to change the SITE), and

3 either returns the cheapest plan satusfying the requrments or
(optionally) all plans satisfying the requirements

In fact, Glue can be specified using STARs, and Glue operators

can be STARs as well as LOLEPOPs, as descnbed in {LEE 88]

Required properties 1n the STAR reference are enclosed in square
brackets next to the affected SAP argument, to associate the re-
quired properties with the stream on which they are imposing
requrements Different properties may be required by references
in different STARs, the requirements are accumulated untidl Glue
1s referenced This will be illustrated in the next section.

An example of this Glue mechanism 1s shown m Figure 3 In this
example, we assume that table DEPT 1s stored at SITE=N Y, but
the STAR requres DEPT to be delivered to SITE=L.A 1 DNO
order None of the available plans meets those requrements The
fiest available plan must be augmented with a SHIP LOLEPOP to
change the SITE property from NY to LA The second plan, a
simple ACCESS of DEPT, must be both SORTed and SHIPped
The third plan, perhaps created by an earher reference of Glue
that didn’t have the ORDER requirement, has already added a

PP Py bt otadl mands -~ AN o0 ~olooon
Dl'lll' lUlll‘l.IL LU 56;1\ I.ULH, U“l;lﬂlmdw‘l W aviucve

the ORDER requirement

STAR

Requiring
Properties
HGlueH
SORT
Cols: DNO
Inpuf:: \
— DNO|N Y [none[N Y] ‘
; GET
Available |3 oeer ACCESS
Cols: MGR Cols: ONO, MGR
Plans Pred: MGR - *Haas'* Pred: MGR = * Haas'

Unpu'h N

for

DEPT [ ACCESS

Cols: 7ID, DNO

\

Table: Index on DEPT DNO

Figure 3 Example of "Glue" wmechanism injecting "Glue" operators to match plans to required properties, and choosing the cheapest.
Only two properties, order and site, are shown here, as "ears" on top of the top-most LOLEPOP for each pian.




4. Example: Join STARs

To illustrate the power of STARs in this section we discuss one
possible set of STARs for generating the join strategies of the R*
optumizer (in Sections 4 1 - 4 4), plus several additional strategies
such as

« composite nners (Sections 4 1 and 4 3),

« new access methods (Section 4 5 2),

new jJoin methods (Section 4 4),

dynamic creation of indexes on intermediate resuits (Section

453),

« materiahzation of mner streams of nested-ioop joins to force
projection (Secuon 4 5 2)

Although there may be better ways within our STAR structure to
express the same set of strategies, the purpose of this section 1s to
illustrate the full power of STARs Some of the strategies (e g,
hash joins) have not yet been implemented in Starburst, they are
cluded merely for illustrating what 1s imvolved i adding these
strategies to the optimzer

These STARs are by no means complete we have ntentionally
simphfied them by removing parameters and STARs that deal with
subqueries treated as joins, for example The reader 1s cautioned
against construing this onmssion as an ability to handle other
cases, on the contrary, 1t illustrates the flexibility of STARs' We
can construct, but have omitted for brevity, additional STARs for

« sorting TIDs taken from an unordered mdex in order to order
I/O accesses to data pages,

« ANDmng and ORing of multiple indexes for a singie table,

treating subqueries as joins having different quantifier types 1e,

generahzing the predicate calculus quantifiers of ALL and EXISTS

to include the FOR EACH quantifier for joins and the UNIQUE

quantifier for scalar ("=") subqueries),

filtration methods such as semt-joins and Bloom-joins

We believe that any desired strategy for non-recursive queries will
be expressible using STARs, and are currently investigating what
difficulties, 1f any, arise with recursive queries and multiple execution
streams resulting from table partitioning [BATO 87al

In these defimtions, for readability we denote exclusive alternative
definitions by a left curly brace and inclusive alternative defimtions by
a left square bracket In practice, no distinction 1s necessary In
all examples, we will wrte non-termmals (STAR names) 1n
RegularMixedCase, parameters in italics (those which may be sets
are denoted by capital letters), and termumals i bold, with
LOLEPOPs distingmished by BOLD CAPITAL LETTERS Re-
quired properties are written in small bold letters and surrounded
by a par of [square brackets] For brevity, we have had to
shorten names, € g, "JMeth" should read "JonMethod" The
function "x(s+)" denotes "columns of ()", where « can be a set
of tables, an index, etc We assume the existence of the basic set
functions of €,N,c, — (set dufference), etc

STARs are defined here top down (1e, a STAR referenced by any
STAR 1s defined after its reference), which is also the order
which they will be referenced We start with the root STAR,
JomRoot, which 1s referenced for a given set of parameters

« table (quantifier) sets 7/ and 72 (with no order implied)
« the set of (newly) eligible predicates, P

Suppose, for example, that plans for joining tables X and Y and
for accessing table Z had aiready been generated, so we were ready
to construct plans for jomng X*Y with Z Then JoinRoot would
be referenced with T1={XY}, T2 ={Z}, and
P={Xg=Zm Yh = Zn}
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4.1. Join Pemutation Alternatives

PermutedJoin(TI1, T2, P)

JoinRoot(T1, T2, P) =
Permuteddoin(Tz, TI, P)

The meaning of thuis STAR should be obvious either table-set T1
or table-set T2 can be the outer stream, with the other table-set
as the mner stream Both are possible alternatives, denoted by an
inclusive (square) bracket Note that we have no conditions on
either alternative, to exclude a composite inner (1€, an nner that
1s itself the result of a jomn), we could add a condition restricting
the nner table-set to be one table

This simple STAR fails to adequately tax the power of STARs,
and thus resembles the comparable rule of transformational ap-
proaches However, note that since none of the STARs referenced
by JommRoot or any of its descendants will reference JoinRoot,
there 1s no danger of this STAR being mvoked agamn and "undoing"
its effect, as there 1s in transformational rules [GRAE 87a]

4.2. Join-Site Alternatives

PermutedJdown(T1, T2, P) =

IF local query

SitedJoin(T!, T2, P)
OTHERWISE

¥seo Remotedoin(Ti, T2,P,S)
Remotedoin(T1, 72, P, 5) =
Si1tedJoin(Ti[site =S}, I2[site=s], P)
where

o= set of sites at which tables of the query
are stored, plus the query site

This STAR generates the same jomn-site alternatives as R* [LOHM
84], and illustrates the specification of a required property Note
that Glue 1s not referenced yet, so the required site property
accumulates on each alternative until 1t 1s The interpretation 1s

1 If all tables (of the query) are located at the query site, go
on to SitedJoin, 1e, bypass the RemoteJoin STAR which
dictates the jomn site

2 Otherwise, require that the join take place at one of the sites
at which tables are stored or the query ongmated

If a site with a particularly efficient join engine were available,
then that site could easily be added to the defiition of o

4.3 Store Inner Stream?

IF C1
OTHERWISE

JMeth(T1, T2 (temp) , P)

Stited T1,T2,P) =
1teddoin( ) {JMeth(T},TZ,P)

where

Cl = IF iT2i >1 OR T2[site] » T2 ' [srte)

Again, this simple STAR has an obvious interpretation, although
the condition C1 1s a bit comphcated

1 IF the inner stream (72) is a composite, or its sie 1s not the
same as 1ts requred site (!{site]), then dictate that it be
stored as a temp and call IMeth

2 OTHERWISE, reference JMeth with no additional require-
ments

Note that if the second disjunct of condition C1 were absent, there
would be no reason that this STAR couldn’t be the parent



(referencer) of the previous STAR, instead of vice versa As
writien, SitedJoin exploits decisions made in its parent STAR,
PermutedJom A transformational rule would either have to test
if the site decision were made yet, or else mnject the temp requure-

ment redundantly 1n every transformation that dictated a site

4.4. Alternative Join Methods

JMeth(T1, T2, P) =
JOIN (NL, Glue(T1, ¢), Glue(T2,JPUIP), JP, P=(JPUIP))
rJOIN( MG, Glue(TIlorder= x(SP) N x(T1)], ¢),

I_ Slue(Tzlordsr = x(SP} N x(TD)], IP),

SP, P—(IPUSP) ) IF SP¥¢
W] PPy
wiere

P = all eligible predmates
dP =  join predicates (multi-table, no

subqueries, etc , but expressions
SP = sortable predicates

= { 52JP of form c0ll on 012!, whara
vpevy O7 YOV (02 0P L8, WhASEHC

collex(T1) & col2ex(T2) or vice versa }

IP = predicates eligible on the inner only,
1 e , predicates p such that x(p) € x(T2)

This STAR references two alternative join methods, both represented
ae rafaransac af tha TINTN T AT EDNOD unth diffarant naramatars

as rIiTnes O Ul ewaly LuLmywr wiul GIiISITht paranmieis

the jom method (flavor of JOIN),

the outer stream and any required properties on that stream,
the mnner stream and any required properties on that stream,
the join predicate(s) applicable by that jomn method (needed
for the cost equations),

any residual predicates to apply after the jon

bW e

The two join methods here are

1 Nested-Loop (NL) Join, which can always be done For each
outer tuple mstance, columns of the jomn predicates (JP) mn
the outer are instantiated to convert each JP to a single-table
predicate on the mnner stream? These and any predicates on
just the mner (IP) are "pushed down" to be applied by the
inner stream, if possible Any multi-table predicates that don't
qualfy as join predicates must be apphed as residual predicates
Note that the predicates to be apphed by the inner stream are
parameters, not required attnbutes This forces Glue to re-
reference the single-table STARs to generate plans that exploit
the converted JP predicates rather than retrofitting a FILTER
LOLEPOP to existing plans that apphed only the IP predicates

o IRASY Wo_o thncn nwa snwtabhly ;mondiantao IODY e nbom b
Merge (MG) Join If there are sortable predicates (SP), dictate

that both mner and outer be sorted on therr columns of SP
Note that the merge join, unlike the nested-loop join, apphes
the sortable predicates as part of the join itself, pushing down
to the mner stream only the single-table predicates on the
mner (IP) The JOIN LOLEPOP i Figure 1, for example,
would be generated by this alternative As before, remaining
multi-table predicates must be apphed by JOIN as residuals
after the join

[

Glue will first reference the STARs for accessing the given table(s),
applying the given predicate(s), if no plans exst for those param-
eters In Starburst, a data structure hashed on the tables and
predicates facilitates finding all such plans, if they exist Glue then
adds the necessary operators to each of these plans, as described
in the prewous section Sumplified STARs for Glue, which this
QT AN wnfocncmnnn Fro nmmsnaciso ad tohlan  whinh Ihia

J1ARN lcxcwm.ca, and for accessing storea tavics, wnicn Giuc
references, are given in [LEE 88]

n
o

4.5. Additional Join Methods

Suppose now we wanted to augment the above alternatives with
additional join methods All of the following alternative defimtions

would be added to the right-hand side of the above STAR (JMeth)

4 5 1 Hash Join Alternative

The hash join has shown promusing performance [BABB 79, BRAT
84, DEWI 85] We assume here a hash-jomn flavor (HA) that

atomically bucketizes hoth innut streams and does the 101n on the

atomcally ducx 20ih 1Inpul sire. ang coes e join on

buckets

JOIN (H4, Glue(T!, ¢), Glue(Tz, IP), HP, P-1IP) IF HPwe¢
where
HP = hashable predicates

= { peJP of form ‘expr(x(TI)) = expr(x(T2))}

As mn the merge join, only single-table predicates can be pushed
down to the inner Note that all multi-table predicates (P-IP) —

avan tha hachahla neadinatas (LID) __ samnie oo sacidual seadinntas
CVCh i NaSnaviv proGiCalds (nr' ) — IUiiain as iSsiGua preGiCass,

since there may be hash colisions Also note that the set of
hashable predicates HP contamns some predicates not m the set of
sortable predicates SP (expressions on any number of columns in
the same table), and vice versa (inequalities)

An alternate (and probably preferable) approach would be to add
a bucketized property to the property vector and a LOLEPOP to

anhinera that smoanmacter on tlnt nmer smier senthad cc tha Thfash OTAD
aLaiCye wiatl propeny, 50 ulat ailly joiil meuitu in uik JmMilul i AN

could perform the join 1n parallel on each of the bucketized streams,
with appropniate adjustments to 1ts cost

4.5 2, Forcing Projection Alternative

<

To avoid expensive in-memory copying, tupies are normaily retamned
as pages 1n the buffer just as they were ACCESSed, unti] they are
materialized as a temp or SHIPped to another site Therefore, 1n
nested-loop joms it may be advantageous to matenalize (STORE)
the selected and projected inner and re-ACCESS 1t before jomng,

whenever a verv small percentage of the mmner table recunlte l| e,

vacnever a2 very small peoercenia Of e 1Inner (30l results

when the predicates on the inner table are quite selective and/ or
only a few columns are referenced) Batory suggests the same
strategy whenever the inner "is generated by a compiex expression”
[BATO 87a] The following forces that alternative

JOIN ( NL, Glue(Tl,¢),
TabieAccess (Glue (T2[temp], IP), *, JP),
JpP, P~ (IPUJIP) )

Thic TMath altarnative accaccec tha innar ctraam (T)  annluing
415 sivalul QanlImauyvye QiS85 Uil INNCT SUTaIn \id ), appuyiig

only the single-table predicates (IP), and forcing Glue to STORE
the result in a temp (permanently stored tables are not considered
temps mmtially) All columns (*) of the temp are then re-accessed,
re-using the STAR for accessing any stored table, TableAccess
Note that the STAR structure allows us to specify that the jon
predicates (JP) can be pushed down only to this access, to prevent
the temp from being re-materialized for each outer tuple!

4 Ullman has comned the term "sideways information passng” [ULLM 85] for
thus conversion of join predicaies io singie-iabie predicaies by instaniiaiing one
side of the predicate which was done in System R [SELI 79]




TableAccess (T, C, P) =

IF StMgr(T) = 'heap’

ACCESS(Heap, T, C, P)
IF StMgr(T) = 'B-tree'

ACCESS ( BTree, T, C, P)

A TableAccess can be one (and only one) of the following flavors
of ACCESS, depending upon the type of storage manager (StMgr)
used, as described m [LIND 87]

1 A physically-sequential ACCESS of the pages of table T, if
the storage manager type of T is ’heap’, or

2 A B-Tree type ACCESS of table T, if the storage manager
type of T 1s ’B-tree’,

retrieving columns C and applying predicates P By now 1t should
be apparent how easily alternatives for additional storage manager
types could be added to this STAR alone, and affect all STARs
that reference TableAccess

4 5 3 Dynamic Indexes Alternative

The nested-loop join works best when an index on the inner table
can be used to limit the search of the mner to only those tuples
satisfying the join and/or single-table predicates on the inner Such
an index may not have been created by the user, or the inner may
be an intermediate result, m which case no auxiliary access paths
such as an index are normally created However, we can force
Glue to create the index as another alternative Although this
sounds more expensive than sorting for a merge jomn, it saves
sorting the outer for a merge join, and will pay for itself when the
join predicate 1s selecive [MACK 86]

JOIN ( NL, Glue(Tl, ¢),

Glue(T2(paths21X], XPUIP), XP-IP, P—(XPUIP))
where

XP = 1ndexable multi-table predicates
= { peJP of form ‘expr(x(T1))op T2col’}
IX = columns of 1ndexable predicates

= (x(IP)U x(XP)) N x(T2), '=' predicates first

This alternative forces Glue to make sure that the access paths
property of the inner contains an index on the columns that have
either single-table (IP) or indexable (XP) predicates, ordered so
that those involved in equality predicates are applied fust If this
index needs to be created, the STARs implementing Giue will add
[order} and [temp] requirements to ensure the creation of a
compact idex on a stored table As in the nested-loop alternative,
the indexable multu-table predicates "pushed down" to the inner
are effectively converted to single-table predicates that change for
each outer tuple

5. Extensibility —
What's Really Involved

Here we discuss briefly the steps required to change various aspects
of the optimizer strategies, in order to demonstrate the extensibility
and modulanty of our STAR mechanism

Easiest to change are the STARs themselves, when an existing set
of LOLEPOPs suffices If the STARs are treated as input data
to a rule mterpreter, then new STARs can be added to that file
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without impacting the Starburst system code at all [LEE 881 If
STARs are compiled to generate an optimizer (as in [GRAE 87a,
GRAE 87b]), then updates of the STARs would be followed by
a re-generation of the optimizer In either case, any STAR having
a condition not yet defined would require defining a C function
for that condition, compiling that function, and relinking that part
of the optumizer to Starburst Note that we assume that the DBC
spectfies the STARs correctly, 1e without mfinite cycles or mean-
mngless sequences of LOLEPOPs An open 1ssue 18 how to venfy
that any given set of STARSs is correct

Less frequently, we may wish to add a new LOLEPOP, eg
OUTERJOIN This necessitates defimng and compiling two C
functions a run-tume execution routine that will be immvoked by the
query evaluator, and a property function for the optumzer to specify
the changes to plan properties (including cost) made by that
LOLEPOP In addition, STARs must be added and/or modified,
as described above, to reference the LOLEPOP under the appro-
priate circumstances

Probably the least likely and most serious alterations occur when
a property 1s added (or changed 1n any way) 1n the property vector
Since the default action of any LOLEPOP on any property 1s to
leave the mput property unchanged, only those property functions
that reference the new property would have to be updated, re-
compiled, and relinked to Starburst By representing the property
vector as a self-defining record having a vanable number of fields,
each of which 1s a property, we can msulate unaffected property
functions from any changes to the structure of the property vector
STARs would be affected only if the new property were required
or produced by that STAR

6. Related Work

Some aspects of our STARs resemble features of earlier work, but
there are some important differences As we mentioned earher,
our STARs are insprred by functional programming concepts
[BACK 78] A major difference 1s that our "functions" (STARs)
can be multi-valued, 1e a set of alternative objects (plans) The
other major nspiration, a production of a grammar, does not permmt
a condition upon alternative expansions of a non-terminal 1t either
matches or it doesn’t (and the alternatives must be exclusive)
Hoping to use a standard compiler generator to compile our STARs,
we investigated the use of partially context-sensitive W-grammars
{CLEA 77] for enforcing the "context" of required properties,
but were discouraged by the same combinatonal explosion of pro-
ductions described above when many properties are possible Koster
[KOST 71] has solved this using a techmque smmlar to ours, m
which a predicate called an "affix" (comparable to our condition
of applicability) may be associated with each alternative defimtion
He has shown affix grammars to be Turing complete In addition,
grammars are typically used in a parser to find just one expansion
to termnals, whereas our goal is to construct a/l such expansions
Although a grammar can be used to construct all legal sequences,
this set may be infimte [ULLM 851

The transformational approach of the EXODUS optimizer (GRAE
87a, GRAE 87b] uses C functions for the IF conditions and
expresses the alternatives 1n rules, as do we, but then compiles
those rules and conditions using an "optimzer generator" mto
executable code Given one mtial plan, this code generates all
legal vartations of that plan using two kinds of rules transformation
rules to define alternative transformations of a plan, and mple-
mentation rules to define alternative methods for implementing an
operator (e g, nested-loop and sort-merge algonithms for imple-
menting the JOIN operator) Our approach does not requre an
mtial plan, and has only one type of rule, which permits us to
express interactions between transformations and methods Our
property functions are indistinguishable from Graefe’s property and



~« fucuons, although we have idenufied more properties then
any other author to date Graefe does not deal with the need of
some rules (e g merge jomn) to require certain properties, as dis-
cussed 1n Section 3 2 and ilustrated n Sections 42 - 44, 452,
and 4 53 Although Graefe re-uses common subplans in alternative
plans, transformational rules may subsequently generate alternatives
and pick a new optimal plan for the subplan, forcing re-estimation
of the cost of every plan that has already incorporated that subplan
Our building blocks approach avoids this problem by generating ali
plans for the subplan before incorporaung that subplan in other
plans, although Glue may generate some new plans having different
preperties and/or parameters And while the structure of our
STARs does not preclude compilation by an optimizer generator,
it also permuts interpreting the STARs by a sumple yet efficient
interpreter durning optumzation, as was done m our prototype
Interpretation saves re-compiling the optimizer component every
time a strategy 1s added or changed, and also allows greater control
of the order of evaluation For example, depending upon the value
of a STAR’s parameter, we may never have to construct entire
subtrees within the decision tree, but a compiled optimizer must
contain a completely general decision tree for all quernies

Freytag [FREY 87] proposes a more LISP-like set of transforma-
tional rules that starts from a non-procedural set of parameters
from the query, as do we, and transforms them into all alternative
plans He pomts to the EXODUS optimizer generator as a possible
implementation, but does not address several key implementation
issues such as hus ellipsis (" ') operator, which denotes any number
of expressions, € g

(JOIN T ( T, )) - (JOIN T, ( )Ty ))

And the ORDER and SITE properties (only) are expressed as
functions, which presumably would have to be re-denved each time
they were referenced in the condittons Freytag does not exploit
the structure of query optimization to hmit what rules are apphcable
at any time and to prevent re-application of the same rules to
common subplans shared by two alternative plans, although he
suggests the need to do so

Rosenthal and Helman [ROSE 871 suggest specifications for "well-
formed" plans, so that transformational rules can be verified as
valild f they transform well-formed plans to weil-formed plans
Like Graefe, they associate properties with plans, viewed as pred-
icates that are true about the plan Alternative plans producing the
same intermediate result with the same properties converge on
"data nodes", on which 'transformations that insert unary
operators are more naturally apphed” An operator 1s then well-
formed if any mput plan satisfying the requuwed input properties
produces an output plan that satisfies the output properties The
paper emphasizes representations for verifiabihity and search issues,
rather than detailing mechamsms (1) to construct well-formed trans-
formations, (2) to match mput data nodes to output data nodes
(corresponding to our Glue), and (3) to recalculate the cost of all
plans that share (through a common data node) a common subplan
that 1s altered by a transformation

Probably the closest work to ours 1s Batory’s 'synthetic"" architecture
for the entire GENESIS extensible database system (not just the
query optimizer [BATO 87b]), in which "atoms" of "prumtive
algonthms'' are composed by functions mto "molecules”, in layers
that successively add implementation details [BATO 87a] Devel-
oped concurrently and independently, Batory’s functional notation
closely resembles STARs, but 1s presented and implemented as
rewrite (transformational) rules that are used to construct and
compile the complete set of alternatives a prior: for a given opti-
muzer, after first selecting from a catalog of available algornithms
those desired to implement operators for each layer At the highest
layer, for example, the DBC chooses from many optimization al-
gorithms (e g depth-furst vs breadth-first), while the choices at
the lowest layers correspond to our flavors of LOLEPOPs or
Graefe’s methods The functions that compose these operations do
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not explicitly permut conditions on the alternative defimitions, as do
we Batory considers them unnecessary wvhen rules are constructed
preperly but alludes to them 1n comments next to some aliernatives
and mn a footnote Inclusive alternatives automatically become
arguments ot a CHOOSE__ CHEAPEST function dunag the com-
posttion process The rewnte rules include rales to match properties
{which he calls charactenistics) even if they are unneeded eg a
SORT may be applied to a stream that 15 aiready ordered appro-
pnately by an index, as well as rules to sunplify the resulting
composiiions and elimuinate any such unnecessary operations By
treating the stored vs in-memory distinction as a property of
streams, and by having a general-purpose Glue mechanism, we
manage to factor out most of these redundances in our STARs
Although clearly relevant to query optumzation, Batorys larger
goal was to incorporate an encyclopedic array of known gquery
processing algonthms within his framework, ncluding operators for
splitting, processing in parallel, and assembhng honzontal partitions
of tables

7. Conclusions

We have presented a grammar for specifying the set of legal strat-
egles that can be executed by the query evaluator The grammar
composes low-level database operators (LOLEPOPs) nto hugher-
level constructs using rules (STARs) that resemble the defimition
of functions they may have alternative definitions that have IF
conditions, and these alternative defimtions may, 1n turn, reference
other functions that have aiready been defined The functions are
parametinzed objects that produce one or more alternative plans
Each plan has a vector of properties, including the cost to produce
that plan, which may be altered only by LOLEPOPs When an
alternative definition requires certain properties of an wnput, "Glue"
can be referenced to do "mmpedance matching" between the plans
created thus far and the required properties by mnjecting a veneer
of Glue operators

We have shown the power of STARs by specifying some of the
strategies considered by the R* system and several additional ones,
and believe that any desired extension can be represented using
STARs We find our constructive, "building-blocks" grammar to
be a more natural paradigm for specifying the "language” of legal
sequences of database operators than plan transformational rules,
because they allow the DBC to build higher levels of abstraction
from lower-level constructs, without having to be aware of how
those lower-level constructs are defined And uniike plan trans-
formational rules, which consider all rules apphcable at every iter-
atton and which must do complicated umification to determine
applicability, referencing a STAR trniggers in an obvious way only
those STARs referenced in 1ts defimition, just hke a macro expander
This hmited fanout of STARs should make 1t possible to achieve
our goal of expressing alternative optimizer strategies as data and
still use these rules to generate and evaluate the cost of a large
number of plans within a reasonable amount of time
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