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Concurrency control has been thoroughly studied in the context of traditional database

applications such as banking and airline reservations systems. There are relatively
few studies, however, that address the concurrency control issues of advanced database

applications such as CAD/CAM and software development environments. The

concurrency control requirements in such applications are different from those in

conventional database applications; in particular, there is a need to support

nonserializable cooperation among users whose transactions are long-lived and

interactive and to integrate concurrency control mechanisms with version and

configuration control. This paper outlines the characteristics of data and operations in

some advanced database applications, discusses their concurrency control requirements,

and surveys the mechanisms proposed to address these requirements.
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INTRODUCTION

Many advanced computer-based applica-
tions, such as computer-aided design and
manufacturing (CAD/CAM), network
management, financial instruments
trading, medical in formatics, office au-
tomation, and software development en-
vironments (SDES), are data intensive in
the sense that they generate and manip-
ulate large amounts of data (e. g., all the
software artifacts in an SDE). It is desir-
able to base these kinds of application
systems on data management capabili-
ties similar to those provided by database
management systems (DBMSS) for tradi-
tional data processing. These capabilities
include adding, removing, retrieving, and
updating data from on-line storage and

maintaining the consistency of the infor-
mation stored in a database. Consistency
in a database is maintained if every data
item satisfies specific consistency con-
straints. These are typically implicit in
data processing in the sense they are
known to the implementors of the appli-
cations and programmed into atomic
units called transactions that transform
the database from one consistent state
to another. Consistency can be violated
by concurrent access to the same data
item by multiple transactions. A DBMS
solves this problem by enforcing a con-
currency control policy that allows only
consistency-preserving schedules of con-
current transactions to be executed.

We use the term advanced database
applications to describe application
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svstems, such as the ones mentioned
above, that use DBMS capabilities. They
are termed advancedt odistinguisht hem
from traditional database applications
such as banking and airline reservations
systems. In traditional applications, the
nature of the data and the operations
performed on the data are amenable to
concurrency control mechanisms that en-
force the classical transaction model .Ad-
vanced applications, in contrast, have
different kinds of consistency con-
straints, and, in general, the classical
transaction model is not applicable. For
example, applications like network man-
agement and medical informatics may
require real-time processing. Others like

CAD ICAM and office automation in-
volve long, interactive database sessions
and cooperation among multiple database
users. Conventional concurrence control.
mechanisms are not applicable “as is” in
these new domains. This paper is con-
cerned with the latter class of advanced
applications, which involve computer-
supported cooperative work. The re-
quirements of these applications are
elaborated in Section 5.

Some researchers and practitioners
question the adoption of terminology and
concepts from on-line transaction pro-
cessing (OLTP) systems for advanced
applications. In particular, these re-
searchers feel the terms long transac-
tions and cooperating transactions are an
inappropriate and misleading use of the
term transaction since they do not carry
the atomicity and serializability proper-
ties of OLTP transactions. We agree that
atomicity, serializability, and the corre-
sponding OLTP implementation tech-
niques are not appropriate for advanced
applications. The term transaction, how-
ever, provides a nice intuition regarding
the need for consistency, concurrency
control, and fault recovery. Basic OLTP
concepts such as locks, versions, and val-
idation provide a good starting point for
the implementation of long transactions
and cooperating transactions. In any
case, nearly all the relevant literature
uses the term transaction. We do like-
wise in our survey.

The goals of this paper are to provide a
basic understanding of the difference be-
tween concurrency control in advanced
database applications and in traditional
data processing applications, to outline
mechanisms used to control concurrent
access in these advanced applications,
and to point out some problems with
these mechanisms. We assume the reader
is familiar with database concepts but do
not assume an in-depth understanding of
transactions and concurrence control is-.
sues. Throughout the paper we define
the concepts we use and give practical
examples of them. We explain the mech-
anisms at an intuitive level rather than
at a detailed technical level.
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The paper is organized as follows. Sec-
tion 1 presents an example to motivate
the need for new concurrency control
mechanisms. Section 2 describes the data
handling requirements of advanced
database applications and shows why
there is a need for capabilities like those
provided by 1313MSS. Section 3 gives a
brief overview of the consistency problem
in traditional database applications
and explains the concept of serializ-
ability. Section 4 presents the main
serializability-based concurrency control
mechanisms. Readers who are familiar
with conventional concurrency control
schemes may wish to skip Sections 3 and
4. Section 5 enumerates the concurrency
control requirements of advanced
database applications. It focuses on soft-
ware development environments, al-
though many of the problems of
CA13/CAM and office automation sys-
tems are similar. Sections 6, 7, and 8
survey the various concurrency control
mechanisms proposed for this class of ad-
vanced database applications. Section 9
discusses some of the shortcomings of
these mechanisms and concludes with a
summary of the mechanisms.

1. MOTIVATING EXAMPLE

We motivate the need for extended con-
currency control policies by a simple ex-
ample from the software development
domain. Variants of the following exam-
ple are used throughout the paper to
demonstrate the various concurrency
control models.

Two programmers, John and Mary, are
working on the same software project.
The project consists of four modules A, B,
C, and D. Modules A, B, and C consist of
procedures and declarations that com-
prise the main code of the project; mod-
ule D is a library of procedures called by
the procedures in modules A, B, and C.
Figure 1 depicts the organization of the
project.

When testing the project, two bugs are
discovered. John is assigned the task of
fixing one bug that is suspected to be in
module A. He “reserves” A and starts

Project

AmA B c D

@
plp2p9flp3p4p5p6p7 p8dld2ti

Figure t. Organization of example project,

working on it. Mary’s task is to explore a
possible bug in the code of module B, so
she starts browsing B after “reserving”
it. After a while. John finds there is a
bug in A caused by bugs in some of the
procedures in the library module, so he
“reserves” module D. After modifying a
few procedures in D, John proceeds to
compile and test the modified code.

Mary finds a bug in the code of module
B and modifies various parts of the mod-
ule to fix it. Mary then wants to test the
new code of B. She is not concerned with
the modifications John made in A be-
cause module A is unrelated to module
B. She does, however, want to access the
modifications John made in module D
because the procedures in D are called in
module B. The modifications John made
to D might have introduced inconsisten-
cies to the code of module B. But since
John is still working on modules A and
D, Mary will either have to access mod-
ule D at the same time John is modifying
it or wait until he is done,

In the above example, if the traditional
concurrency control scheme of two-phase
locking was used, for example, John and
Mary would not have been able to access
the modules in the manner described
above. Thev would be allowed to concur-.
rently lock module B and module A, re -
spectively, since they work in isolation
on these modules. Both of them, how-
ever, need to work cooperatively on mod-
ule D and thus neither of them can lock
it. Even if the locks were at the granu-
larity of procedures, they would still have
a problem because both John and Mary
might need to access the same proce-
dures in order, for example, to recompile
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D. The locks are released only after
reaching a satisfactory stage of modifica-
tion of the code, such as the completion of
unit testing. Other traditional concur-
rency control schemes would not solve
the problem because they would also re-
quire the serialization of Mary’s work
with John’s.

The problem might be solved by sup-
porting parallel versions of module D.
Mary would access the last compiled ver-
sion of module D while John works on a
new version. This requires Mary to retest
her code after the new version of D is
released, which is really unnecessary.
What is needed is a flexible concurrency
control scheme that allows cooperation
between John and Mary. In the rest of
this paper we explain the basic concepts
behind traditional concurrency control
mechanisms, show how these mecha-
nisms do not support the needs of ad-
vanced applications, and describe several
concurrency control mechanisms that
provide some of the necessary support.

2. ADVANCED DATABASE APPLICATIONS

Many large multiuser software systems,
such as software development environ-
ments, generate and manipulate large
amounts of data. SDES, for example, gen-
erate and manipulate source code, object
code, documentation, test suites, and so
on. Traditionally, users of such systems
manage the data they generate either
manually or by the use of special-purpose
tools. For example, programmers work-
ing on a large-scale software project use
system configuration management tools
such as Make [Feldman 19791 and RCS
[Tichy 1985] to manage the configura-
tions and versions of the programs they
are developing. Releases of the finished
project are stored in different directories
manually. The only common interface
among all these tools is the file system,
which stores project components in text
or binary files regardless of their inter-
nal structures. This significantly limits
the ability to manipulate these objects in
desirable ways. It also causes inefficien-
cies in the storage of collections of objects

and leaves data, stored as a collection of
related files, susceptible to corruption due
to incompatible concurrent access.

Recently, researchers have attempted
to use database technology to manage
the objects belonging to a system uni-
formly. Design environments, for exam-
ple, need to store the objects they
manipulate (design documents, circuit
layouts, programs, etc.) in a database
and have it managed by a DBMS for
several reasons [Bernstein 1987; Dittrich
et al. 1987; Nestor 1986; Rowe and
Wensel 1989]:

(1)

(2)

(3)

(4)

Data integration. Providing a single
data management and retrieval in-
terface for all tools accessing the data.

Application orientation. Organizing
data items into structures that cap-
ture much of the semantics of the
intended applications.

Data integrity. Preserving consist-
ency and recovery to ensure all the
data satisfy the integrity constraints
required by the application.

Convenient access. Providing a pow-
erful query language to access multi-
ple sets of data items at a time.

(5) Data independence. Hiding the inter-
nal structure of data from tools so
that if the structure is changed, it
will have a minimal impact on the
applications using the data.

Since there are numerous commercial
DBMSS available, several projects have
tried to use them in advanced applica-
tions. Researchers discovered quite
rapidly, however, that even the most
sophisticated of today’s DBMSS are in-
adequate for advanced applications
[Bernstein 1987; Korth and Silberschatz
1986]. One of the shortcomings of tradi-
tional general-purpose DBMSS is their
inability to provide flexible concurrency
control mechanisms. To understand the
reasons behind this, we need to explain
the concepts of transactions and serializ-
ability. These two concepts are central to
all conventional concurrency control
mechanisms.
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3. CONSISTENCY PROBLEMS IN
CONVENTIONAL DBMS%

Database consistency is maintained if
every data item in the database satisfies
the application-specific consistency con-
straints. For example, in an airline
reservations system, one consistency con-
straint might be that each seat on a flight
can be reserved by only one passenger.
It is often the case, however, that the
consistency constraints are not known
beforehand to the designers of’ general-
purpose DBMSS. This is due to the lack
of information about the computations in
potential applications and the semantics
of database operations in these applica-
tions. Thus, the best a DBMS can do is
abstract each database operation to be
either a read operation or a write opera-
tion, irrespective of the particular corn.
putation. Then it can guarantee the
database is always in a consistent state
with respect to reads and writes, inde-
pendent of the semantics of the particu-
lar application.

Ignoring the possibility of bugs in the
DBMS program and the application pro-
gram, inconsistent data result from two
main sources: software or hardware fail-
ures such as bugs in the operating sys-
tem or a disk crash in the middle of
operations and concurrent access of the
same data item by multiple users or
programs.

3.1 The Transaction Concept

To solve these problems, the operations
performed by a program accessing the
database are grouped into sequences
called transactions [Eswaran et al. 1976].
Users interact with a DBMS by execut -
ing transactions. In traditional DBMSS,
transactions serve three distinct pur-
poses [Lynch 1983]: (1) They are logical
units that group together operations
comprising a complete task; (2) they are
atomicity units whose execution pre-
serves the consistency of the database;
and (3) they are recovery units that en-
sure that either all the steps enclosed
within them are executed or none are. It
is thus by definition that if the database

is in a consistent state before a trans-
action starts executing, it will be in a
consistent state when the transaction
terminates.

In a multiuser system, users execute
their transactions concurrently. The
DBMS must provide a concurrency con-
trol mechanism to guarantee that consist-
ency of data is maintained in spite of
concurrent accesses by different users.
From the user’s viewpoint, a concurrency
control mechanism maintains the consist-
ency of data if it can guarantee that each
of the transactions submitted to the
DBMS by a user eventually gets exe-
cuted and that the results of the com-
putations performed by each transaction
are the same whether it is executed
on a dedicated system or concurrently
with other transactions in a multipro -
grammed system [Bernstein et al. 1987;
Papadimitriou 1986].

Let us follow up our previous example
to demonstrate the transaction concept.
John and Mary are now assigned the
task of fixing two bugs that were sus-
pected to be in modules A and B. The
first bug is caused by an error in proce-
dure pl in module A, which is called by
procedure p3 in module B. Thus, fixing
the bug might affect both pl and p3.
The second bug is caused by an error in
the interface of procedure p2 in module
A, which is called by procedure p4 in B.
John and Mary agree that John will fix
the first bug and Mary will fix the sec-
ond. John starts a transaction ~J+n and
proceeds to modify procedure pl m mod-
ule A. After completing the modification
to PI, he starts modifying procedure p3
in module B. At the same time, Mary
starts a transaction T~~,Y to modify pro-
cedure p2 in module A and procedure p4
in module B.

Although TJOh. and T~.,Y are execut -
ing concurrently, their outcomes are ex-
pected to be the same as they would have
been had each of them been executed on
a dedicated system. The overlap between
T M,,y and TJOh. results in a sequence of
actions from both transactions, called
a schedule. Figure 2 shows an example
of a schedule made up by interleaving
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T John T Mary

reserve(A)
modify(pl)
write(A)

reserve(A)
modify(p2)

write(A)

reserve(B)
modify(p3)

write(B)
reserve(B)
modify(p4)

v write(B)

Time

Figure 2. Serializable schedule,

operations from T~O~. and T~,rY. A
schedule that gives each transaction a
consistent view of the state of the
database is considered a consistent
schedule. Consistent schedules are a re-
sult of synchronizing the concurrent op -
erations of transactions by allowing only
those operations that maintain consis-
tency to be interleaved.

3.2 Serializability

Let us give a more formal definition of a
consistent schedule. A schedule is con-
sistent if the transactions comprising the
schedule are executed serially. In other
words, a schedule consisting of transac-
tions Tl, Tz, . . . . T. is consistent if for
every i = 1 to n – 1, transaction T, is
executed to completion before transac-
tion T,+ ~ begins. We can then establish
that a serializable execution, one that is
equivalent to a serial execution, is also
consistent. From the perspective of a
DBMS, all computations in a transaction
either read or write a data item from the
database. Thus, two schedules S1 and S2
are said to be computationally equiva-
lent if [Korth and Silberschatz 1986]:

(1)

(2)

(3)

The set of transactions that partici-
pates in S1 and Sz is the same.

For each data item Q in Sl, if trans-
action T, executes read(Q), and the
value of Q read by T, is written by
T~, the same will hold in Sz (i.e.,
read– write synchronization).

For each data item Q in S1, if
transaction T, executes write(Q) be-

fore T~ executes write(Q), the same
will hold in S’z (i. e., write–write
synchronization).

For example, the schedule shown in
Figure 2 is computationally equivalent
to the serial schedule T~Oh~, T~~,Y (ex-
ecute T~O~~ to completion then execute
T ~~,Y) because the set of transactions in
both schedules are the same, both data
items A and B read by T~,,Y are writ-
ten by T~O~~ in both schedules, and T~,,Y
executes both write(A) and write(B)
after T~O~~ in both schedules.

The consistency problem in conven-
tional database systems reduces to that
of testing for serializable schedules be-
cause it is accepted that the consistency
constraints are unknown. Each operation
within a transaction is abstracted into
either reading a data item or writing
one. Achieving serializability in DBMSS
can thus be decomposed into two sub-
problems: read–write synchronization
and write–write synchronization, de-
noted rw and ww synchronization, re-
spectively [Bernstein and Goodman
1981]. Accordingly, concurrency control
algorithms can be categorized into those
that guarantee rw synchronization, those
that are concerned with ww synchroniza-
tion, and those that integrate the two.
The rw synchronization refers to serializ-
ing transactions in such a way that every
read operation reads the same value of a
data item as it would have read in a seri-
al execution. The ww synchronization
refers to serializing transactions so the
last write operation of every trans-
action leaves the database in the same
state as it would have left it in a serial
execution. The rw and ww synchroni-
zations together result in a consistent
schedule.

Thus, even though a DBMS may not
have any information about application-
specific consistency constraints, it can
guarantee consistency by allowing only
serializable executions of concurrent
transactions. This concept of serializabil-
ity is central to all the concurrency con-
trol mechanisms described in the next
section. If more semantic information

ACM Computing Surveys, Vol, 23, No 3, September 1991



Concurrency Control in Advanced Database Applications * 275

about transactions and their operations
is available, schedules that are not seri-
alizable but do maintain can could be
permitted. This is exactly the goal of the
extended transaction mechanisms dis-
cussed later.

4. TRADITIONAL APPROACHES TO

CONCURRENCY CONTROL

To understand why conventional concur-
rency control mechanisms are too restric-
tive for advanced applications, it is
necessary to be familiar with the basic
ideas of the main serializability-based
concurrency control mechanisms in con-
ventional DBMSS. Most of the mecha-
nisms follow one of four main approaches
to concurrency control: two-phase locking
(the most popular example of locking
protocols), timestamp ordering, multiver -
sion timestamp ordering, and optimistic
concurrency control. Some mechanisms
add multiple granularities of locking and
nesting of transactions. In this section,
we briefly describe these approaches.
There have been a few comprehensive
discussions and surveys of traditional
concurrency control mechanisms, includ-
ing Bernstein and Goodman [1981] and
Kohler [1981]; a book has also been writ-
ten on the subject [Bernstein et al. 198’71.

4.1 Locking Mechanisms

4. 1.1 Two-Phase Locking

The two-phase locking mechanism (2PL)
introduced by Eswaran et al. [1976] is
now accepted as the standard solution to
the concurrency control problem in con-
ventional DBMSS. 2PL guarantees seri-
alizability in a centralized database when
transactions are executed concurrently.
The mechanism depends on well-formed
transactions, which do not relock entities
that have been locked earlier in the
transaction and are divided into a grow-
ing phase in which locks are only ac-
quired and a shrinking phase, in which
locks are only released. During the
shrinking phase, a transaction is prohib -
ited from acquiring locks. If a transac-
tion tries during its growing phase to

acquire a lock that has already been ac-
quired by another transaction, it is forced
to wait. This situation might result in
deadlock if transactions are mutually
waiting for each other’s resources.

4. 1.2 Tree Protocol

2PL allows only a subset of serializable
schedules. In the absence of information
about how and when the data items are
accessed, however, 2PL is both necessary
and sufficient to ensure serializability by
locking [Yannakakis 1982]. In advanced
applications, it is often the case that the
DBMS has prior knowledge about the
order of access of data items. The DBMS
can use this information to ensure serial-
izability by using locking protocols that
are not 2PL. One such protocol is the
tree protocol, which can be applied if
there is a partial ordering on the set of
data items accessed by concurrent trans-
actions [Silberschatz and Kedem 1980].
To illustrate this protocol, assume a third
programmer, Bob, joined the program-
ming team of Mary and John and is now
working with them on the same project.
Suppose Bob, Mary, and John want to
modify modules A and B concurrently in
the manner depicted in schedule S1 of
Figure 3. The tree protocol would allow
this schedule because it is serializable
(equivalent to 7’~0~ l“~.~. 7’M,, ) even
though it does not follow the 2P~ proto-
col (because ~John releaSeS the lock on A
before it acquires the lock on B). It is
possible to construct S1 because all of the
transactions in the example access (write)
A before B, This information about the
access patterns of the three transactions
is the basis for allowing the non-2PL
schedule shown in the figure.

4.2 Timestamp Ordering

One of the problems of locking mecha-
nisms is the potential for deadlock.
Deadlock occurs when two or more trans-
actions are mutually waiting for each
other’s resources. This problem can be
solved by assigning each transaction a
unique number, called a time stamp, cho-
sen from a monotonically increasing
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Schedule S1:

him

lock(A)
read(A)
modify(A)

I write(A)
unlock(A)

T Mary

lock(A)
read(A)
modify(A)

write(A)

lock(B)
read(B)
modify(B)

write(B)
unlock(B)

T Bob

lock(B)
read(B)

modify(B)
write(B)

unlock(B)

v
Time

lock(B)

read(B)
modify(B)

write(B)

unlock(A)
unlock(B)

Figure 3. Serializable but not 2PL schedule

sequence. This sequence is often a func-
tion of the time of day [Kohler 19811.
Using timestamps, a concurrency control
mechanism can totally order requests
from transactions according to the trans-
actions’ timestamps [Rosenkrantz et al.
19781. The mechanism forces a transac-
tion TI requesting to access a data item
x that is being held by another transac-
tion Tz to wait until Tz terminates, abort
itself and restart if it cannot be granted
access to x, or preempt Tz and get hold
of x. A scheduling protocol decides which
one of these three actions to take after
comparing the timestamps of TI and Tz.

Two of the possible alternative
scheduling protocols used by timestamp-
based mechanisms are the WAIT-DIE
protocol, which forces a transaction to
wait if it conflicts with a running trans-
action whose timestamp is more recent
or to die (abort and restart) if the run-
ning transaction’s timestamp is older and
the WOUND-WAIT protocol, which al-

lows a transaction to wound (preempt by
suspending) a running one with a more
recent timestamp or forces the request-
ing transaction to wait otherwise. Locks
are used implicitly in both protocols since
some transactions are forced to wait as if
they were locked out. Both protocols
guarantee that a deadlock situation will
not arise.

4.3 Multiversion Timestamp Ordering

The timestamp ordering mechanism
above assumes that only one version of a
data item exists. Consequently, only one
transaction can access a data item at a
time. This restriction can be relaxed by
allowing multiple transactions to read
and write different versions of the same
data item as long as each transaction
sees a consistent set of versions for all
the data items it accesses. This is the
basic idea of the first multiversion time-
stamp ordering scheme introduced by
Reed [1978]. In Reed’s mechanism, each
transaction is assigned a unique time-
stamp when it starts; all operations of
the transaction are assigned the same
timestamp. In addition, each data item x
has a set of transient versions, each of
which is a ( writetimestamp, value) pair,
and a set of read timestamps. If a trans-
action reads a data item, the transaction’s
timestamp is added to the set of read
time stamps of the data item. A write
operation, if permitted by the concur-
rency control protocol, causes the cre-
ation of a new transient version with the
same time-stamp as that of the transac-
tion requesting the write operation. The
concurrency control mechanism operates
as follows:

Let T, be a transaction with time-
stamp TS( i), and let R(x) be a read oper-
ation requested by T, [i. e., R(x) will also
be assigned the timestamp TS( i)]. R(x)
is processed by reading a value of the
version of x whose timestamp is the
largest timestamp smaller than TS( R)
(i.e., the latest value written before T,
started). TS( i) is then added to the set of
read timestamps of x. Read operations
are always permitted. Write operations,
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in contrast, might cause a conflict. Let Tj
be another transaction with timestamp
TS(j), and let W(x) be a write operation
requested by TJ that assigns value u to
item x. W(x) WI1l be permitted only if
other transactions with a more recent
timestamp than TS(j) have not read a
version of x whose timestamp is greater
than TS(j).

A situation like this can occur because
of the delays in executing operations
within a transaction. That is, an opera-
tion 0~ belonging to transaction T~ is
executed a specified period of time after
TJ has started. Meanwhile, other opera-
tions from a transaction with a more
recent time-stamp might have been
performed. In order to detect such
situations, let irzterval( W ) be the interval
from TS(j) to the smallest timestamp of
a version of x greater than TS( j) (i.e., a
version of x that was written by a trans-
action whose timestamp is more recent
than Tj’s timestamp). If any read time-
stamps lie in the interval [i. e., a trans-
action has already read a value of x
written by a more recent write operation
than W( x)], then W(x) is rejected (and
the transaction is aborted). Otherwise,
W(x) is allowed to create a new version
of x with timestamp TS( j).

The existence of multiple versions
eliminates the need for write –write syn-
chronization since each write operation
produces a new version and thus cannot
conflict with another write operation. The
only possible conflicts are those corre-
sponding to read-from relationships
[Bernstein et al. 19871, as demonstrated
by the protocol above.

4A Optimistic hionlocking Mechanisms

In many applications, locking has been
found to constrain concurrency and to
add an unnecessary overhead. The lock-
ing approach has the following disadvan-
tages [Kung and Robinson 19811:

(1) Lock maintenance represents an un-
necessary overhead for read-only
transactions, which do not affect the
integrity of the database.

(2)

(3)

(4)

(5)

There are no locking mechanisms
that provide high concurrency in all
cases. Most of the general-purpose,
deadlock-free locking mechanisms
work well only in some cases but per-
form rather poorly in other cases.

When large parts of the database re-
side on secondary storage, locking of
objects that are accessed frequently
(referred to as congested nodes) while
waiting for secondary memory ac-
cess causes a significant decrease in
concurrency.

Not permitting locks to be released
except at the end of the transaction,
which although not required is al-
ways done in practice to avoid cas-
caded aborts, decreases concurrency.

Most of the time it is not necessary to
use locking to guarantee consistency
since most transactions do not over-
lap; locking may be necessary only in
the worst cases.

To avoid these disadvantages, Kung
and Robinson [19811 presented the con-
cept of “optimistic” concurrency control.
They require each transaction to consist
of two or three phases: a read phase, a
validation phase, and possibly a write
phase. During the read phase, all writes
take place on local copies (also referred
to as transient versions) of the records to
be written. Then, if it can be established
during the validation phase that the
changes the transaction made will not
violate serializability with respect to all
committed transactions, the local copies
are made global. Only then, in the write
phase, do these copies become accessible
to other transactions.

Validation is done by assigning each
transaction a timestamp at the end of the
read phase and synchronizing using
timestamp ordering. The correctness cri-
teria used for validation are based on the
notion of serial equivalence, Any sched-
ule produced by this technique ensures
that if transaction T, has a timestamp
older than the timestarnp of transaction
T~, the schedule is equivalent to the se-
rial schedule T, followed by T]. This can
be ensured if any one of the following
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three conditions holds:

(1)

(2)

(3)

T, completes its write phase before T~
starts its read phase.

The set of data items written by T,
does not intersect with the set of data
items read by Tj, and T, completes
its write phase before T~ starts its
write phase.

The set of data times written by T,
does not intersect with the set of data
items read or written by T, and TL
completes its read phase ~efore ~
completes its read phase.

Although optimistic concurrency con-
trol allows more concurrency under
certain circumstances, it decreases con-
currency when the read and write sets of
concurrent transactions overlap. For ex-
ample, Kung and Robinson’s protocol
would cause one of the transactions in
the simple 2PL schedule in Figure 2 to
be rolled back and restarted. From the
viewpoint of advanced applications, the
use of rollback as the main mechanism
for maintaining consistency is a serious
disadvantage. Since operations in ad-
vanced applications are generally long-
lived (e. g., compiling a module), rolling
them back and restarting them wastes
all the work these operations did (the
object code produced by compilation). The
in-appropriateness of rolling back a long
transaction in advanced applications is
discussed further in Section 5.

4.5 Multiple Granularity Locking

The concurrency control protocols de-
scribed so far operate on individual data
items to synchronize transactions. It is
sometimes desirable, however, to be able
to access a set of data items as a single
unit. Gray et al. [19751 presented a mul-
tiple granularity concurrency control pro-
tocol that aims to minimize the number
of locks used while accessing sets of ob-
jects in a database. In their model, Gray
et al. organize data items in a tree where
small items are nested within larger
ones. Each nonleaf item represents the
data associated with its descendants. This

is different from the tree protocol pre-
sented above in that the nodes of the tree
do not represent the order of access of
individual data items but rather the or-
ganization of data objects. The root of the
tree represents the whole database.
Transactions can lock nodes explicitly,
which in turn locks descendants implic-
itly. Two kinds of locks are defined: ex-
clusive and shared. An exclusive (X) lock
excludes any other transaction from ac-
cessing (reading or writing) the node; a
shared (S) lock permits other transac-
tions to read the same node concurrently
but prevents any updating of the node.

To determine whether to grant a lock
on a node to a transaction, the transac-
tion manager would have to follow the
path from the root to the node to find out
if any other transaction has explicitly
locked any of the ancestors of the node.
This is clearly inefficient. To solve this
problem, a third kind of lock mode called
an intention lock was introduced [Gray
1978]. All the ancestors of a node must
be locked in intention mode before an
explicit lock can be put on the node. In
particular, nodes can be locked in five
different modes. A nonleaf node is locked
in intention-shared (IS) mode to specify
that descendant nodes will be explicitly
locked in shared (S) mode. Similarly, an
intention-exclusive (IX) lock implies that
explicit locking is being done at a lower
level in exclusive (X) mode. A shared
and intention-exclusive (SIX) lock on a
nonleaf node implies that the whole sub-
tree rooted at the node is being locked in
shared mode and that explicit lock-
ing will be done at a lower level with
exclusive-mode locks. A compatibility
matrix for the five kinds of locks is shown

in Figure 4. The matrix is used to deter-

mine when to grant lock requests and
when to deny them.

Gray et al. defined the following multi-
ple granularity protocol based on the
compatibility matrix:

(1)A transaction T, can lock a node in S
or IS mode only if all ancestors of the
node are locked in either IX or IS
mode by T,.
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Is IX s SIX x

IS yes yes yes yes no

IX yes yes no no no

s yes no yes no no

SIX yes no no no no

x no no no no no

Figure 4. Compatibility matrix of granularity

locks

(2) A transaction T, can lock a node in
X, SIX, or IX mode only if all the
ancestors of the node are locked in
either SIX or IX mode by 7’,.

(3) Locks should be released either at the
end of the transaction (in any order)
or in leaf-to-root order. In particular,
if locks are not held to the end of the
transaction, the transaction should
not hold a lock on a node after releas-
ing the locks on its ancestors.

The multiple granularity protocol in-
creases concurrency and decreases over-
head. This is especially true when there
is a combination of short transactions
with a few accesses and transactions that
last for a long time accessing a large
number of objects such as audit transac-
tions that access every item in the
database. The Orion object-oriented
database system provides a concurrency
control mechanism based on the multi-
granularity mechanism described above
[Garza and Kim 1988; Kim et al. 19881.

4.6 Nested Transactions

A transaction, as presented above, is a
set of primitive atomic actions abstracted
as read and write operations. Each trans-
action is independent of all other trans-
actions. In practice, there is a need to
compose several transactions into one
unit (i. e., one transaction) for two rea-
sons: (1) to provide modularity and (2) to
provide finer-grained recovery. The re-
covery issue may be the more important
one, but it is not addressed in detail here
since the focus of this paper is on concur-

rency control. The modularity problem is
concerned with preserving serializability
when composing two or more transac-
tions. One way to compose transactions
is gluing together the primitive actions
of al] the transactions by concatenating
the transactions in order into one big
transaction. This preserves consistency
but decreases concurrency because the
resulting transaction is really a serial
ordering of the subtransactions. Inter-
leaving the actions of the transactions to
provide concurrent behavior, on the other
hand, can result in violation of serializ-
ability and thus consistency. What is
needed is to execute the composition of
transactions as a transaction in its own
right and to provide concurrency control
within the transaction.

The idea of nested spheres of control,
which is the origin of the nested transac-
tions concept, was first introduced by
Davies [1973] and expanded by Bjork
[19731. Reed [19781 presented a compre-
hensive solution to the problem of com-
posing transactions by formulating the
concept of nested transactions. A nested
transaction is a composition of a set of
subtransactions; each subtransaction can
itself be a nested transaction. To other
transactions, only the top-level nested
transaction is visible and appears as a
normal atomic transaction. Internally,
however, subtransactions are run ccmcur -
rently and their actions are synchronized
by an internal concurrency control mech-
anism. The more important point is that
a subtransacticm can fail and be restarted
or replaced by another subtransaction
without causing the whole nested trans-
action to fail or restart. In the case of
gluing the actions of subtransactions to-
gether, on the other hand, the failure of
any action would cause the whole new
composite transaction to fail.

In Reed’s design, timestamp ordering
is used to synchronize the concurrent ac-
tions of subtransactions within a nested
transaction. Moss designed a nested
transaction system that uses locking for
synchronization [Moss 19851.

As far as concurrency is concerned, the
nested transaction model presented above

ACM Computing Surveys, Vol. 23, No 3, September 1991



280 * N. S. Barghouti and G. E. Kaiser

TM . - TMan

uread(A) read(B)
modify(A)

mw?@y)
write(A)

execute concurrently

A “’”””eA
read(A) read(B)

modify(A) modify(B)

write(A) wnte(13)

execute concurrently

Figure 5. Scheduling nested transactions,

does not change the meaning of transac-
tions (in terms of being atomic). It also
does not alter the concept of serializabil-
ity. The only advantage of nesting is per-
formance improvement because of the
possibility of increasing concurrency at
the subtransaction level, especially in a
multiprocessor system. To illustrate this,
consider transactions T~O~~ and T~~,Y of
Figure 2. We can construct each as a
nested transaction as shown in Figure 5.
Using Moss’s algorithm, the concurrent
execution of John’s transaction and
Mary’s transaction will produce the
same schedule presented in Figure 2.
Within each transaction, however, the
two subtransactions can be executed
concurrently, improving the overall
performance.

It should be noted that many of the
concurrency control mechanisms pro-
posed for advanced database applications
are based on combinations of optimistic
concurrency control, multiversion ob -
jects, and nested transactions. To under-
stand the reasons behind this, we must
first address the concurrency control re-
quirements of advanced database appli-
cations. We explore these requirements
in Section 5; in the rest of the paper, we
present several approaches that take
these requirements into consideration.

5. CONCURRENCY CONTROL

REQUIREMENTS IN ADVANCED

DATABASE APPLICATIONS

Traditional llBMSs enforce serializable
executions of transactions with respect to

read and write operations because of the
lack of semanti~ knowledge about the
application-specific operations. This leads
to the inability to specify or check se-
mantic consistency constraints on data.
But there is nothing that makes a nonse-
rializable schedule inherently inconsist-
ent. If enough information is known
about the transactions and operations, a
nonserializable but consistent schedule
can be constructed. In fact, equating the
notions of consistency with serializability
causes a significant loss of concurrency
in advanced applications. In these appli-
cations, it is often possible to define spe-
cific consistency constraints. The DBMS
can use these specifications rather than
serializability as a basis for maintaining
consistency. Several researchers have
studied the nature of concurrent behav-
ior in advanced applications and have
arrived at new requirements for concur-
rency control [13ancilhon et al. 1985; Yeh
et al. 1987]:

(1) Supporting long transactions. Opera-
tions on objects in design environ-
ments (such as compiling source code
or circuit layout) are often long-lived.
If these operations are embedded in
transactions, these transactions, un-
like traditional ones, will also be
long-lived. Long transactions need
different support than traditional
short transactions. In particular,
blocking a transaction until another
commits is rarely acceptable for long
transactions. It is worthwhile noting
that the problem of long transactions
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(2)

has also been addressed in tradi-
tional data processing applications
(e.g., bank audit transactions).

Supporting user control. In order to
support user tasks that are nondeter -
ministic and interactive in nature,
the concurrency control mechanism
should provide the user with the abil-
ity to start a transaction, interac-
tively execute operations within it,
dynamically restructure it, and com-
mit or abort it at any time. The non-
deterministic nature of transactions
implies that the concurrency control
mechanism will not be able to deter-
mine whether or not the execution of
a transaction will violate database
consistency, except by actually exe-
cuting it and validating its results
against the changed database. This
might lead to situations in which the
user might have invested many hours
running a transaction only to find
out later when he or she wants to
commit the work that some of the
operations performed within the
transaction violated some consistency
constraints. The user would defi-
nitely oppose deleting all of the work
(by rolling back the transaction). He
or she might, however, be able to
reverse the effects of some opera-
tions explicitly in order to regain
consistency. Thus, there is a need
to provide more user control over
transactions.

(3) Supporting synergistic cooperation.
Cooperation among programmers to
develop project components has sig-
nificant implications on concurrency
control. In CAD/CAM systems, SDES,
and other design environments, sev-
eral users might have to exchange
knowledge (i.e., share it collectively)
in order to be able to continue their
work. The activities of two or more
users working on shared objects may
not be serializable. The users mwy
pass the shared objects back and forth
in a way that cannot be accomplished
by a serial schedule. Also, two users
might be modifying two parts of the

same object concurrently, with the
intent of integrating these parts to
create a new version of the object. In
this case, they might need to look at
each others’ work to make sure they
are not modifying the two parts in a
way that would make their integra-
tion difficult. This kind of sharing
and exchanging knowledge was
termed synergistic interaction by Yeh
et al. To insist on serializable concur-
rency control in design environments
might thus decrease concurrency or,
more significantly, actually prevent
desirable forms of cooperation among
developers.

There has been a flurry of research to
develop new approaches to transaction
management that meet the requirements
of advanced applications. In the rest of
the paper, we survey the mechanisms
that address the requirements listed
above. We categorize these mechanisms
into three categories according to which
requirement they support best. All the
mechanisms that address only the prob-
lems introduced by long transactions are
grouped in one section. Of the mecha-
nisms that address the issue of coopera-
tion, some achieve only coordination of
the activities of multiple users, whereas
others allow synergistic cooperation. The
two classes of mechanisms are separated
into two sections. Issues related to user
control are briefly addressed by mecha-
nisms in both categories, but we did not
find any mechanism that provides satis-
factory support for user control over
transactions in advanced applications.

In addition to the three requirements
listed above, many advanced applications
require support for complex objects. For
example, objects in a software project
might be organized in a nested object
system (projects consisting of modules
that contain procedures), where individ-
ual objects are accessed hierarchically.
We do not sur~ey mechanifims that sup-
port complex objects because describing
these mechanisms would require ex-
plaining concepts of object-oriented
programming and object-oriented data-
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base systems, both of which are outside
the scope of this paper. It is worthwhile
noting, however, that the complexity of
the structure and the size of objects in
advanced applications strongly suggest
the appropriateness of concurrency
control mechanisms that combine and
extend multiversion and multiple granu-
larity mechanisms.

Many of the ideas implemented in the
mechanisms we survey in the rest of the
paper have been discussed earlier in other
contexts. For instance, some of the ideas
related to multilevel transactions, long
transactions, and cooperative transac-
tions were discussed by Davies [19781.

6. SUPPORTING LONG TRANSACTIONS

Many of the operations performed on data
in advanced database applications are
long-lived. Some, such as compiling code
or printing a complete layout of a VLSI
chip, last for several minutes or hours.
When these operations are part of a
transaction, they result in a long trans-
action (LT), which lasts for an arbitrarily
long period of time (ranging from hours
to weeks). Such transactions occur in tra-
ditional domains (e.g., printing the
monthly account statements at a bank)
as well as in advanced applications, but
they are usually an order of magnitude
longer in advanced applications. LTs are
particularly common in design environ-
ments. The length of their duration
causes serious performance problems if
these transactions are allowed to lock
resources until they commit. Other short
or long transactions wanting to access
the same resources are forced to wait
even though the LT might have finished
using the resources. LTs also increase
the likelihood of automatic aborts
(rollback) to avoid deadlock or in the
case of failing validation in optimistic
concurrency control.

Two main approaches have been pur-
sued to solve these problems: extending
serializability-based mechanisms while
still maintaining serializable schedules
and relaxing serializability of schedules
containing LTs. These alternative ap-

proaches use the application-specific se-
mantics of operations in order to increase
concurrency. Several examples of each
approach are presented in this section.
Some of the schemes were proposed to
support LTs for traditional DBMSS, but
the techniques themselves seem perti-
nent to advanced applications and thus
are discussed in this section.

6.1 Extending Serializability-Based

Techniques

In traditional transaction processing, all
database operations are abstracted into
read and write operations. This abstrac-
tion is necessary for designing general-
purpose concurrency control mechanisms
that do not depend on the particulars of
applications. Two-phase locking (2PL),
for example, can be used to maintain
consistency in any database system, re-
gardless of the intended application. This
is true because 2PL maintains serializ-
ability, and thus consistency, of trans-
action schedules by guaranteeing the
atomicit y of all transactions.

The performance of 2PL, however, is
unacceptable for advanced applications
because it forces LTs to lock resources for
a long time even after they have finished
using these resources. In the meantime,
other transactions that need to access the
same resources are blocked. Optimistic
mechanisms that use time stamp order-
ing also suffer from performance prob
lems when applied to long transactions.
These mechanisms cause repeated roll-
back of transactions when the rate of
conflicts increases significantly, which is
generally the case in the context of long
transactions.

One approach for solving the problems
introduced by LTs is to extract seman-
tic information about transactions and
operations and use that information to
extend traditional techniques. The ex-
tended technique should revert back to
the traditional scheme in case the addi-
tional information is not available (i.e.,
it might be available for some transac-
tions but not for others). This approach is
the basis for extending both two-phase
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locking and optimistic concurrency con-
trol in order to address the requirements
of long transactions.

6.1.1 Altruistic Locking

One piece of information that can be used
to increase concurrency is when re-
sources are no longer needed by a trans-
action so they can be released and used
by other transactions. This information
can be used to allow a long transaction,
which otherwise follows a serializable
mechanism such as two-phase locking, to
release some of its resources condition-
ally. These resources can then be used by
other transactions given that they satisfy
certain requirements.

One formal mechanism that follows
this approach is altruistic locking, which
is an extension of the basic two-phase
locking algorithm [Salem et al. 19871.
Altruistic locking makes use of informa-
tion about access patterns of a trans-
action to decide which resources it can
release. In particular, the technique uses
two types of information: negative access
pattern information, which describes ob-
jects that will not be accessed by the
transaction and positive access pattern
information, which describes which and
in what order objects will be accessed by
the transaction. Taken together, these
two types of information allow long
transactions to release their resources af-
ter they are done with them. The set of
all data items that have been locked and
then released by an LT is called the wake
of the transaction. Releasing a resource
is a conditional unlock operation because
it allows other transactions to access the
released resource as long as they follow
the restrictions stated in the protocol be-
low, which ensures serializability.

A two-phase with release schedule is
then defined as any schedule that ad-
heres to two restrictions:

(1) No two transactions can hold locks on
the same data item simultaneously
unless one of them has locked and
released the object before the other
locks it; the later lock holder is said

to be in the wake of the releasing
transaction.

(2) If a transaction is in the wake of
another transaction, it must be com-
pletely in the wake of that trans-
action. This means that if John’s
transaction locks a data item that
has been released by Mary’s transac-
tion, any data item that is accessed
by both John and Mary and that is
currently locked by John must have
been released by Mary before it was
locked by John.

These two restrictions guarantee seri-
alizability of transactions without alter-
ing their structure. The protocol assumes
transactions are programmed and not
user controlled (i. e., the user cannot
make up the transactions as he or she
goes along). In the following example,
however, we will assume an informal ex-
tension to this mechanism that will
allow user-controlled transactions.

Consider again the example in Figure
1, where each module in the project con-
tains a number of procedures (subobjects).
Suppose Bob, who joined the program-
ming team of Mary and John, wants to
familiarize himself with the code of all
the procedures of the project. Bob starts
a long transaction, Z’~Oh,that accesses all
of the procedures, one procedure at a
time. He needs to access each procedure
only once to read it and add some com-
ments about the code; as he finishes ac-
cessing each procedure he releases it. In
the meantime, John starts a short trans-
action, T~O~~,that accesses only two pro-
cedures, pl then p2, from module A.
Assume T~Ob has already accessed p2
and released it and is currently reading
pl. T~O~. has to wait until T~Ob is fin-
ished with pl and releases it. At that
point T~Oh~ can start accessing pl by
entering the wake of TBOb. TJohn will k
allowed to enter the wake of T~Ob (i. e., to
be able to access pl) because all of the
objects T~O~~needs to access ( pl and p2)
are in the wake of T~Ob. After finishing
with PI, T~O~. can start accessing p2
without delay since it has already been
released by TBOb.
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Figure 6. Access patterns of three transactions

Now assume Mary starts another short
transaction, T~~,Y, that needs to access
both p2 and a third procedure p3 that is
not yet in the wake of T~Ob. T~,,Y can
access p2 after T~O~. terminates, but
then it must wait until either p3 has
been accessed by T~Ob (i.e., until p3 en-
ters the wake of T~Ob) or until T~.~ ter-
minates. If Z’~O~never accesses p3 (Bob
changes his mind about viewing p3),
T ~,,Y is forced to wait until T~Ob termi-
nates (which might take a long time since
it is a long transaction). To improve con-
currency in this situation, Salem et al.
[19871 introduced a mechanism for ex-
panding the wake of a long transaction
dynamically in order to enable short
transactions that are already in the wake
of a long transaction to continue run-
ning. The mechanism uses the negative
access information provided to it in order
to add objects that will not be accessed by
the long transaction to its wake. Con-
tinuing the example, the mechanism
would add p3 to the wake of T~Ob by
issuing a release on p3 even if T~Ob had
not locked it. This would allow T~~,Y to

access p3 and thus continue executing
without delay.

Figure 6 depicts the example above.
Each data object is represented along the
vertical axis. Time is represented along

the horizontal axis. The transactions
belonging to Bob, John, and Mary are
represented by solid lines. For example,
TBOb k represented by a solid line that
passes through several black dots. Each
black dot represents a data object (hori-
zontal dotted lines connect black dots to
objects they stand for). T~Ob accesses p~,

P~, PZ3 PD P~, Pg, P1O, PG and PV (the
thick line extending to p~ is not part of

‘Bob). TBob accesses P2 at time tl as

indicated by the black dot at point ( tl,
~) in the graph. TJOh. is in the wake of

Bob totally because every object ac-
cessed by TJOh~ ( pl and p2) was accessed
before by TBOb. This is not the case with
T ~,,Y. In order to allow T~,,v to execute,
the transaction expand the wake of T~Ob
by adding p3 to it (as shown by the thick
line), then Z’MarY would be totally in the

wake of TBOb. In this case, the schedule
of the three transactions is equivalent to
the serial execution of T~Ob, followed by

‘John ~ followed by TM,~y.
The basic advantage of altruistic lock-

ing is its ability to use the knowledge
that a transaction no longer needs access
to a data object it has locked. It main-
tains serializability and assumes the data
stored in the database are of the conven-
tional form. Furthermore, if access
information is not available, any trans-
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Figure 7. Validation conflicts.

action, at any time, can run under the
conventional 2PL protocol without per-
forming any special operations. As ob-
served earlier, however, because of the
interactive nature of transactions in de-
sign environments, the access patterns of
transactions are not predictable. In the
absence of this information, altruistic
locking reduces to two-phase locking. Al-
truistic locking also suffers from the
problem of cascaded rollbacks: When a
long transaction aborts, all the short
transactions in its wake have to
be aborted even if they have already
terminated.

6. 1.2 Snapshot Validation

Altruistic locking assumes two-phase
locking as its basis and thus suffers from
the overhead of locking mechanisms
noted in Section 4. An alternative ap-
proach that avoids this overhead is to
assume an underlying validation mecha-
nism. As presented in Section 4, valida-
tion (also called optimistic) techniques
allow concurrent transactions to proceed
without restrictions. Before committing
a transaction, however, a validation
phase has to be passed in order to estab-
lish that the transaction did not produce
conflicts with other committed transac-
tions. The main shortcoming of the tradi-
tional validation technique is its weak
definition of conflict. Because of this
weak definition some transactions, such
as those in Figure 2, are restarted unnec-
essarily. In other words, the transactions
might actually have been serializable but
the conflict mechanism did not recognize
them as such. This is not a serious prob -

lem in conventional applications where
transactions are short. It is very undesir-
able, however, to restart a long transac-
tion that has done a significant amount
of work. Pradel et al. [1986] observed
that the risk of restarting a transaction
can be reduced by distinguishing be-
tween serious confZicts, which require
restart, and nonserious conflicts, which
do not. They introduced a mechanism
called snapshot validation that uses this
approach.

Going back to our example, assume
Bob, John, and Mary start three transac-
tions T~Oh, T~O~., and T~a,Y simul-
taneously. T~O~ modifies (i.e., writes)
procedures pl and p2 during the read
phase of T~Ohn and T~,rY as shown in
Figure 7. The validation phase of Z’~O~.
and T~~r will thus consider operations
in T~Ob. ~ccording to the traditional opti-
mistic concurrency control protocol, both
T John and T~~,Y would have to be
restarted because of conflicts. Procedures
pl and p2 that they read have been
updated by TBOb TJOh. read pl, which
was later changed by T~Ob; thus, what
T JOh~ read was out of date. This conflict
is “serious” since it violates serializabil-
ity and must be prevented. In this case,

JOh. has to be restarted to read theT
updated PI. The conflict between TM~rY
and T~O~, however, is not serious since
the concurrent schedule presented in
Figure 7 is equivalent to the serial
schedule of T~Ob followed by T~.,Y. This
schedule is not allowed under the tradi-
tional protocol, but the snapshot tech-
nique allows T~,,Y to commit because
the conflict is not serious.

Pradel et al. [1986] presented a simple
mechanism for determining whether or
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not conflicts are serious. In the example
above, T~Ob terminates while TM,,y is
still in its read phase. Each transaction
has a read set that is ordered by the time
of access of each object. For example, if
object PI is accessed before object p2 by
the same transaction, then pl appears
before p2 in the transaction’s read set.
When T~Ob terminates, TM,, takes note

dof the termination in its rea set. During
its validation phase, T~,,Y has to con-
sider only the objects that were read be-
fore T~O~ terminated. Any conflicts that
occur after that point in the read set are
not considered serious. Thus, the conflict
between T~Ob and T~,,Y regarding proce-
dure p2 is not serious because T~arY read
p2 after T~Ob has terminated.

Pradel et al. [1986] also analyzed the
starvation problem in the conventional
optimistic protocol and discovered that
the longer the transaction, the greater
the risk of starvation. Starvation occurs
when a transaction that is restarted be-
cause it had failed its validation phase
keeps failing its validation phase due to
conflicts with other transactions. Starva-
tion is detected after a certain number of
trials and restarts. The classical opti-
mistic concurrency control protocol solves
the starvation problem by locking the
whole database for the starving transac-
tion, thus allowing it to proceed uninter-
rupted. Such a solution is clearly not
acceptable for advanced applications.
Pradel et al. [19861 present an alterna-
tive solution based on the concept of a
substitute transaction.

If a transaction, T~O~., is starving, a
substitute transaction, ST~O~n, is created
such that ST~O~. has the same read set
and write set of T~O~~. At this point,
T ~O~. is restarted. ST~O~. simply reads
its transaction number (the first thing
any transaction does), then immediately
enters its validation phase. This will force
all other transactions to validate against
ST.O,. . Since ST~O~. has the same read
and write sets as T~O~., it will make sure
that any other transaction T~ that con-
flicts with T~O~~ would not pass its vali-
dation against ST~Ob~ and thus would
have to restart. This “clears the way” for

T ~0~~ to continue its execution with a
much decreased risk of restart. ST~O~.
terminates only after T~O~. commits.

6.1.3 Order-Preserving Serializability for

Multilevel Transactions

The two mechanisms presented above ex-
tend traditional single-level protocols in
which a transaction is a flat computation
made up of a set of atomic operations. In
advanced applications, however, most
computations are long-duration opera-
tions that involve several lower-level
suboperations. For example, linking the
object code of a program involves reading
the object code of all its component mod-
ules, accessing system libraries, and gen-
erating the object code of the program.
Each of these operations might itself in-
volve suboperations that are distinguish-
able. If traditional single-level protocols
are used to ensure atomicity of such long
transactions, the lower-level operations
will be forced to be executed in serial
order, resulting in long delays and a de-
crease in concurrency.

Beeri et al. [1988] observed that con-
currency can be increased if long-
duration operations are abstracted into
subtransactions that are implemented by
a set of lower-level o~erations. If these
lower-level operation; are themselves
translated into yet more lower-level oper-
ations, the abstraction can be extended
to multiple levels. This is distinct from
the traditional nested transactions model
~resented in Section 4 in two main re -.
spects: (1) A multilevel transaction has a
predefined number of levels, of which
each two adjacent pairs defines a layer of

the system, whereas nested transactions
have no medefined notion of lavers. (2)
In contra~t to nested transactio& where
there need not be a notion of abstrac-
tion. in a multilevel transaction. the
higher the level, the more abstract the
o~erations.
‘ These two distinctions lead to a major

difference between transaction manage-
ment for nested transactions and for
multilevel transactions. In nested trans-
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actions, a single global mechanism must
be used because there is no predefine
notion of layers. The existence of layers
of abstraction in multilevel transactions
opens the way to a modular approach to

concurrency control. Different concur-
rency control protocols (schedulers) are
applied at different layers of the system.
More specifically, layer-specific concur-
rency control protocols can be used. Each
of these protocols must ensure serializ-
ability with respect to its layer. In addi-
tion, a protocol at one layer should not
invalidate the protocols at higher levels.
In other words, the protocols at all layers
of the multilevel transaction should work
together to produce a correct execution
(schedule).

Unfortunately, not all combinations of
concurrency control protocols lead to cor-
rect executions. To illustrate, assume we
have a three-level necessary transaction
and the protocol between the second and
third levels is commutativity-based. This
means that if two adjacent operations at
the third level can commute, their order
in the schedule can be changed. C!hang-
ing the order of operations at the third
level, however, might change the order of
subtransactions at the second level. Since
the protocol only considers operations at
the third level, it may change the order
of operations in such a way so as to
result in a nonserializable order of the
subtransactions at the second level.

The example above shows that serializ-
ability is too weak a correctness criterion
to use for the “handshake” between the
protocols of adjacent layers in a multi-
level system. The correctness criteria
must be extended to take into account
the order of transactions at the adjacent
layers. Beeri et al. [1986, 1989] intro-
duced the notion of order-preserving cor-
rectness as the necessary property that
layer-specific protocols must use to guar-
antee consistency. This notion was used
earlier in a concurrency control model for
multilevel transactions implemented in
the DASDBS system [Weikum 1986;
Weikum and Schek 19841. A combined
report on both of these efforts appears in
Beeri et al. [19881.

The basic idea of order-preserving seri-
alizability is to extend the concept of
commutativity. Commutativity states
that order transformation of two opera-
tions belonging to the same transaction
can be applied if and only if the two
operations commute (i. e., the order of
their execution with respect to each other
is immaterial). This notion can be trans-
lated to multilevel systems by allowing
the order of two adjacent operations to
change only if their least common ances-
tor does not impose an order on their
execution. If commuting operations leads
to serializing the operations of a sub-
transaction in one unit (i.e., they are not
interleaved with operations of other sub-
transactions) and thus making it an
atomic computation, the tree rooted at
the subtransaction can be replaced by a
node representing the atomic execution
of the subtransaction. Pruning serial
computations and thus reducing the
number of levels in a multilevel transac-
tion by one is termed reduction.

To illustrate, assume Mary is assigned
the task of adding a new procedure p10
to module A and recompiling the module
to make sure the addition of procedure
p10 does not introduce any compile-time
errors. Bob is simultaneously assigned
the task of deleting procedure pO from
module A. Adding or deleting a proce -
dure from module A is an abstraction
that is implemented by two operations:
updating the attribute that maintains the
list of procedures contained in A (i.e.,
updating the object containing module A)
and updating the documentation D to
describe the new functionality of module
A after adding or deleting a procedure.
Recompiling a module is an abstraction
for reading the source code of the module
and updating the object containing the
module (e. g., to update its timestamp and
modify the object code). Consider the con-
current execution of T~~,Y and T~Oh in
Figure 8a. Although the schedule is not
serializable, it is correct because the op-
erations at the lower level can be com-
muted so as to produce a serializable
schedule while preserving the order of
the subtransactions at the second level.
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Figure 8. Order-preserving serializable schedule

The results of successive commutations
are shown in Figures 8b and 8c. The
result of applying reduction is shown in
Figure 8d, and the final result of apply-
ing commutation to the reduced tree,
which is a serial schedule, is shown in
Figure 8e.

Beeri et al. [1988] have shown that
order preservation is only a sufficient
condition to maintain consistency across
layers in a multilevel system. They
present a weaker necessary condition,
conflict-based, order-preserving serializ-
ability. This condition states that a
layer-specific protocol need only preserve
the order of conflicting operations of the
top level of its layers. For example, con-
sider the schedule in Figure 9a, which
shows a concurrent execution of three
transactions initiated by Mary, Bob, and
John. Compiling module A and compil-
ing module B are nonconflicting opera-
tions since they do not involve any shared
objects. Linking the subsystem contain-
ing both A and B, however, conflicts with

the other two operations. Although the
schedule is not order-preserving serializ-
able, it is correct because it could be
serialized, as shown in Figure 9b, by
changing the order of the two compile
operations. Since these are nonconflict-
ing subtransactions, the change of order
preserves correctness.

Martin [1987] presented a similar
model based on the paradigm of nested
objects, which models hierarchical access
to data by defining a nested object sys-
tem. Each object in the system exists at a
particular level of data abstraction. Op-
erations at level i are specified in terms
of operations at level i – 1. Thus, the
execution of operations at level i results
in the execution of perhaps several sub-
operations at level i – 1.The objects ac-
cessed by suboperations at level i – 1 on
behalf of an operation on an object at
level i are called subobjects of the object
at level i.

Martin’s model allows two kinds of
schedules that are not serializable—
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Figure 9. Conflict-based, order-preserving serializable schedule.

externally serializable schedules and
semantically verifiable schedules. Exter-
nally serializable schedules allow only
serializable access to top-level objects
while allowing nonserializable access to
subobjects. Subobjects may be left in a
state that cannot be produced by any
serial execution. Semantically verifiable
schedules allow nonserializable access to
objects at all levels. Nonserializable be-
havior can be proven to be correct if the
semantics of operations at all levels are
given and considered. In Martin’s model,
weakening an object’s conflict specifica-
tion may produce a correct nonserializ -
able schedule. For example, in Figure 9
it can be specified that a write operation
on a specific object at a specific level does
not conflict with a read operation on the
same node. The scheduler would have
then allowed the link operation and the
compile operations to be commuted. Such
a schedule might be considered correct if
the semantics of linking the object code
of two modules does not prohibit the
linker from reading different versions of
the two modules.

6.2 Relaxing Serializability

The approaches presented in Section 6.1
extend traditional techniques while
maintaining serializability as a basis for
guaranteeing consistency. Another ap-
proach that aims at supporting long
transactions is based on relaxing the se-
realizability requirement by using the
semantics of either data or application-
specific operations. Relaxing serializabil-
ity allows more concurrency and thus

improves the performance of a system of
concurrent transactions.

The semantics-based mechanisms can
be divided into two main groups [Skarra
and Zdonik 1989]. One group defines con-
currency properties on abstract data
types; the other defines concurrency
properties on the transactions them-
selves. The first group of mechanisms
[Herlihy and Weihl 1988; Weihl 1988]
constrains interleaving of concurrent
transactions by considering conflicts be-
tween operations defined on typed ob-
jects. Describing the details of this group
of mechanisms requires an overview of
abstract data types and object-oriented
systems. Since these concepts are outside
the scope of this paper, we have chosen to
limit our discussion to the mechanisms
in the second group, which use semantics
of transactions rather than typed objects.

6.2.1 Semantics-Based Concurrency Control

Garcia-Molina [1983] observed that by
using semantic information about trans-
actions, a DBMS can replace the serial-
izability constraint with the semantic
consistency constraint. The gist of this
approach is that from a user’s point of
view, not all transactions need to be
atomic. Garcia-Molina introduced the
notion of sensitive transactions to guar-
antee that users see consistent data on
their terminals, Sensitive transactions
are those that must output only consist-
ent data to the user and thus must see a
consistent database state in order to pro-
duce correct data. Not all transactions
that output data are sensitive since some

ACM Computing Surveys, Vol. 23, No. 3, September 1991



290 ● N. S. Barghouti and G. E. Kaiser

users might be satisfied with data that
are only relatively consistent. For exam-
ple, suppose Bob wants to get an idea
about the progress of his programming
team. He starts a transaction T~O~ that
browses the modules and procedures of
the project. Meanwhile, John and Mary
have two in-proWess transactions, T~O~~
and T~~,Y, respectively, that are modify-
ing the modules and procedures of the
project. Bob might be satisfied with
information returned by a read-only
transaction that does not take into con-
sideration the updates being made by

‘John and ‘Mary . This would avoid delays
that would result from having T~Oh wait
for T~O~. and T~,,Y to finish before read-
ing the objects they updated.

A semantically consistent schedule is
one that transforms the database from
one semantically consistent state to an-
other. It does so by guaranteeing that all
sensitive transactions obtain a consistent
view of the database. Each sensitive
transaction must appear to be an atomic
transaction with respect to all other
transactions.

It is more difficult to build a general
concurrency control mechanism that de-
tides which schedules preserve semantic
consistency than it is to build one that
recognizes serializable schedules. Even if
all the consistency constraints were given
to the DBMS (which is not possible in the
general case), there is no way for the
concurrency control mechanism to deter-
mine a priori which schedules maintain
semantic consistency. The DBMS must
run the schedules and check the con-
straints on the resulting state of the
database in order to determine if they
maintain semantic consistency [Garcia–
Molina 1983]. Doing that, however, would
be equivalent to implementing an opti-
mistic concurrency control scheme that
suffers from the problem of rollback. To
avoid rollback, the concurrency control
mechanism must be provided with infor-
mation about which transactions are
compatible with each other.

Two transactions are said to be com-
patible if their operations can be
interleaved at certain points without

violating semantic consistency. Having
the user provide this information is not
feasible in the general case because it
burdens the user with having to under-
stand the details of applications. In some
applications, however, this kind of bur-
den might be acceptable in order to avoid
the performance penalty of traditional
general-purpose mechanisms. If this is
the case, the user still has to be pro-
vided with a framework for supplying
information about the compatibility of
transactions.

Garcia-Molina presented a framework
that explicitly defines the semantics of
database operations. He defines four
kinds of semantic information: (1) trans-
action semantic types; (2) compatibility
sets associated with each type; (3) divi-
sion of transactions into smaller steps
(subtransactions); and (4) countersteps to
compensate for some of the steps exe-
cuted within transactions. The first three
kinds of information are declarative; the
fourth piece of information consists of a
procedural description. Transactions are
categorized into types. The type of a
transaction is determined by the nature
of the operations it performs on objects.
Each transaction type defines the steps
that make up a transaction of that type.
The steps are asumed to be atomic. A
compatibility set associated with a trans-
action type defines allowable interleav-
ing between steps of transactions of the
particular kind with the same or other
kinds of transactions. Countersteps spec-
ify what to do in case a step needs to be
undone.

Using these definitions, Garcia-Molina
defines an alternative concept to atomic-
ity called semantic atomicity. A transac-
tion is said to be semantically atomic if
all its steps are executed or if any exe-
cuted steps are eventually followed by
their countersteps. An atomic transac-
tion, in contrast, is one in which all or
none of the steps are executed. In the
context of a DBMS, the four pieces of
information presented above are used by
a locking mechanism that uses two kinds
of locks: local locks, which ensure the
atomicity of transaction steps, and global
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locks, which guarantee that the inter-
leaving between transactions do not vio-
late semantic consistency.

Thus, depending on the compatibility
sets of different types of transactions,
various levels of concurrency can be
achieved. In one extreme, if the compati-
bility sets of all kinds of transactions are
empty, the mechanism reverts to a tradi -
tional locking mechanism that enforces
serializability of long transactions. In the
other extreme, if all transaction types
are compatible, the mechanism only en-
forces the atomicity of the small steps
within each transaction, and thus the
mechanism reverts to a system of short
atomic transactions (i.e., the steps). In
advanced applications where this kind of
mechanism might be the most applica-
ble, allowable interleavings would be be-
tween these two extremes.

In Garcia- Molina’s scheme, transac-
tions are statically divided into atomic
steps. Compatibility sets define the al-
lowable interleaving with respect to
those steps. Thus, if transactions of type
X are compatible with transactions of
types Y and Z, any two transactions T,
of type Y and T of type Z can arbitrar-

I?lily interleave t eir steps with a trans-
action T~ of type X. There is thus
no distinction between interleaving with
respect to Y and interleaving with re-
spect to Z. Lynch [1983] observed that
it might be more appropriate to have dif-
ferent sets of interleavings with respect
to different transaction types. More
specifically, it would be useful if for ev-
ery two transaction types X and Y, the
DBMS is provided with information about
the set of breakpoints at which the steps
of a transaction of type X can be inter-
leaved with the steps of a transaction of
type Y. A breakpoint specifies a point
between two operations within a transac-
tion at which one or more operations of
another transaction can be executed.

Lynch’s observation seems to be valid
for systems in which activities tend to be
hierarchical in nature, for example, soft-
ware development environments. Trans-
actions in such systems can often be
nested into levels. Each level groups

transactions that have something in
common in terms of access to data items.
Level one groups all the transactions in
the system, whereas subsequent levels
group transactions that are more strongly
related to each other. A strong relation
between two transactions might be that
they often need to access the same ob-
jects at the same time in a nonconflicting
way. A set of breakpoints is then de-
scribed for each level. The higher-order
sets (for the higher levels) always in-
clude the lower order sets. This results in
a total ordering of all sets of breakpoints.
This means the breakpoints that specify
interleavings at any level cannot be more
restrictive than those that define inter-
leaving at a higher level.

Let us illush-ate this concept by contin-
uing our example from the software de-
velopment domain. Recall that Bob, John,
and Mary are cooperatively developing a
software project. In their development ef-
fort, they need to modify objects (code
and documentation) as well as get infor-
mation about the current status of devel -
opment (e. g., the latest cross-reference
information between procedures in mod-
ules A and B). Suppose Mary starts two
transactions (e. g., in two different win-
dows), T~a,Yl and T~,,Y2, to modify a
procedure in module A and get cross-
-reference information, respectively. Bob
starts a transaction T~O~l to update
a procedure in module B. John starts
two transactions, T~O~~l to modify mod-
ule A and T~O~~z to get cross-reference
information.

A hierarchy of transaction classes for
this example can be set up as shown in
Figure 10. The top level includes all
transactions. Level 2 groups all modifi-
cation transactions ( T~~,Yl, T~Obl, and
T ~Ohnl) together and all cross-reference
transactions (T~,,Yz and T~O~~2) to-
gether. Level 3 separates the transac-
tions according to which modules they
affect. Level 3 separates the transactions
that modify module A (T~,,Yl and

~0~~1)from those that modify module B
~T~O~l). Level 4 contains all the singleton
transactions.

The sets of breakpoints for these levels
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trans -
action ~egments “ between ~he break-
points. For example, the’ top-level set
might specify that no interleaving is al-
lowed and the second-level set might
specify that all modification transactions
might interleave at some granularity and
that cross-reference transactions might
similarly interleave. The two types of
transactions, however, cannot interleave
their operations. This guarantees that
cross-reference information does not
change while a modification transaction
is in progress.

The concurrency control mechanism
can then use the sets of breakpoints to
provide as much concurrency as permit-
ted by the allowed interleaving between
these breakpoints at each level. Atomic-
ity with respect to breakpoints and al -
lowed interleaving is maintained at each
level. Thus, the mechanism in our exam-
ple might allow transactions T~a,Yl and
T ~0~~1 to interleave their steps while
modifying module A (i. e., allow some de-
gree of cooperation so as not to block out
module A for a long time by one of them),

but it will not allow TM,,YI and T~O~~z to

interleave their operations.
Breakpoints is not the only way to pro-

vide semantic information about transac -
tions. In some advanced applications such
as CAD, where the different parts of the
design are stored in a project database, it
is possible to supply semantic informa-
tion in the form of integrity constraints
on database entities. Design operations
incrementally change those entities in

More
Allowable
Interleavings

r

order to reach the final design fEastman
1980, 1981]. By definition, Full ‘integrity
of the design, in the sense of satisfying
its specification, exists only when the de-
sign is complete. Unlike in conventional
domains where database integrity is
maintained during all quiescent periods,
the iterative design process causes the
integrity of the design database to be
only partially satisfied until the design is
complete. There is a need to define trans-
actions that maintain the partial in-
tegrity required by design operations.
Kutay and Eastman [1983] proposed a
transaction model that is based on the
concept of entity state.

Each entity in the database is associ-
ated with a state that is defined in terms
of a set of integrity constraints. Like a
traditional transaction, an entity state
transaction is a collection of actions that
reads a set of entities and potentially
writes into a set of entities. Unlike tradi-
tional transactions, however, entity state
transactions are instances of transaction
classes. Each class defines (1) the set of
entities that instance transactions read,
(2) the set of entities that instance trans-
actions write, (3) the set of constraints
that must be satisfied on the read and
write entity sets prior to the invocation
of a transaction, (4) the set of constraints
that can be violated during the execution
of an instance transaction, (5) the set of
constraints that hold after the execution
of the transaction is completed, and (6)
the set of constraints that is violated
after the transaction execution is com-
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pleted. A simple example of a transac-
tion class is the class of transactions that
have all the entities in the database as
its read set. All other sets are empty
since these transactions do not transform
the database in any way.

The integrity constraints associated
with transaction classes define a partial
ordering of these classes in the form of a
precedence ordering. Transaction classes
can thus be depicted as a finite-state ma-
chine where the violation or satisfaction
of specific integrity constraints defines a
transition from one database state to an-
other. Based on this, Kutay and
Eastman [1983] define a concurrency
control protocol that detects violations to
the precedence ordering defined by the
application-specific integrity constraints.
Violations are resolved by communica-
tion among transactions to negotiate the
abortion of one or more of the conflicting
transactions. Kutay and Eastman did
not provide details of intertransaction
communication.

6.2.2 Sagas

Semantic atomicity, multilevel atomic-
ity, and entity-based integrity con-
straints are theoretical concepts that are
not immediately practical. For example,
neither Garcia–Molina [1983] nor Lynch
[1983] explain how a multilevel atomic-
ity scheme might be implemented. It is
not clear how the user decides on the
levels of atomicity and breakpoint sets.
Simplifying assumptions are needed to
make these concepts practical. One re -
striction that simplifies the multilevel
atomicity concept is to allow only two
levels of nesting: the LT at the top level
and simple transactions. Making this
simplifying restriction, Garcia –Molina
and Salem [1987] introduced the concept
of sagas, which are LTs that can be bro-
ken up into a collection of subtransac-
tions that can be interleaved in any way
with other transactions.

A saga is not just a collection of unre-
lated transactions because it guarantees
that all its subtransactions will be com-
pleted or they will be compensated (ex-
plained shortly). A saga thus satisfies

the definition of a transaction as a logi-
cal unit; a saga similar to Moss’s nested
transactions and Lynch’s multilevel
transactions in that respect. Sagas are
different from nested transactions, how-
ever, in that, in addition to there being
only two levels of nesting, they are not
atomicity units since sagas may view the
partial results of other sagas. By struc-
turing long transactions in this way,
nonserializable schedules that allow more
concurrency can be produced. Mecha-
nisms based on nested transactions as
presented in Section 4 produce only
serializable schedules.

In traditional concurrency control,
when a transaction is aborted for some
reason, all the changes that it introduced
are undone and the database is returned
to the state that existed before the trans-
action began. This operation is called
rollback. The concept of rollback is not
applicable to sagas because unlike atomic
transactions, sagas permit other transac-
tions to change the same objects that
its committed subtransactions have
changed. Thus, it would not be possible
to restore the database to its state before
the saga started without cascaded aborts
of all the committed transactions that
viewed the partial results of the aborted
transaction. Instead, user-supplied com -
pensation functions are executed to
compensate for each transaction that
was committed at the time of failure or
automatic abort.

A compensation function undoes the
actions performed by a transaction from
a semantic point of view. For example, if
a transaction reserves a seat on a flight,
its compensation function would cancel
the reservation. We cannot say, however,
that the database was returned to the
state that existed before the transaction
started, because, in the meantime, an-
other transaction could have reserved
another seat and thus the number of seats
that are reserved would not be the same
as it was before the transaction.

Although sagas were introduced to
solve the problem of long transactions in
traditional applications, their basic idea
of relaxing serializability is applicable to
design environments. For example, a long
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transaction to fix a bug in a design
environment can be naturally modeled
as a saga that consists of subtransactions
to edit a file, compile source code, and
run the debugger. These subtransactions
can usually be interleaved with sub-
transactions of other long transactions.
The three transactions in Figure 9 can be
considered sagas, and the interleavings
shown in the figure can be allowed under
the sagas scheme. Using compensation
functions instead of cascaded aborts is
also suitable for advanced applications.
For example, if one decided to abort the
modifications introduced to a file, one
could revert to an older version of the file
and delete the updated version.

One shortcoming of sagas, however, is
that they limit nesting to two levels. Most
design applications require several levels
of nesting to support high-level opera-
tions composed of a set of suboperations
[Beeri et al. 19891. In software develop-
ment, for example, a high-level operation
such as modifying a subsystem trans-
lates into a set of operations to modify its
component modules, each of which in turn
is an abstraction for modifying the proce-
dures that make up the module.

Realizing the multilevel nature of ad-
vanced applications, several researchers
have proposed models and proof tech-
niques that address multilevel transac-
tions. We already described three related
models in Section 6.1.3 [Beeri et al. 1988,
1989; Weikum and Schek 1984]. Two
other nested transaction models [Kim et
al. 1984; Walter 1984] are described in
Section 7, since these two models address
the issue of groups of users and coordi-
nated changes. We now will describe a
formal model of correctness without seri-
alizability that is based on multilevel
transactions.

6.2.3 Confhct Predicate Correctness

Korth and Speegle [19881 have presented
a formal model that allows mathematical
characterization of correctness without
serializability. Their model combines
three features that lead to enhancing
concurrency over the serializability-based

models: (1) versions of objects, (2) multi-
level transactions, and (3) explicit con-
sistency predicates. These features are
similar to Kutay and Eastman’s [19831
predicates described earlier. We describe
Korth and Speegle’s model at an intu-
itive level.

The database in Korth and Speegle’s
model is a collection of entities, each of
which has multiple versions (i. e., multi-
ple values). The versions are persistent
and not transient like in the traditional
multiversion schemes. A specific combi-
nation of versions of entities is termed a
unique database state. A set of unique
database states that involve different
versions of the same entities forms one
database state. In other words, each
database state has multiple versions. The
set of all versions that can be generated
from a database state is termed the uer-
sion state of the database. A transaction
in Korth and Speegle’s model is a map-
ping from a version state to a unique
database state. Thus, a transaction
transforms the database from one consist-
ent combination of versions of entities to
another. Consistency constraints are
specified in terms of pairs of input and
output predicates on the state of the
database. A predicate, which is a logical
conjunction of comparisons between enti-
ties and constants, can be defined on a
set of unique states that satisfy it. Each
transaction guarantees that if its input
predicate holds when the transaction be-
gins, its output predicate will hold when
it terminates.

Instead of implementing a transaction
by a set of flat operations, it is im-
plemented by a pair of sets of sub-
transactions and a partial ordering on
these subtransactions. Any transaction
that cannot be divided into subtransac-
tions is a basic operation such as read
and write. Thus, a transaction in Korth
and Speegle’s model is a quadruple
(T, P, I,, 0,), where T is the set of sub-
transactions, P is a partial ordering on
these subtransactions, 1~ is the input
predicate on the set of all database states,
and 0~ is the output predicate. The input
and output predicates define three sets of
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data items related to a transaction: (1)
the input set, (2) the update set, and (3)
the fixed-point set, which is the set of
entities not updated by the transaction.
Given this specification, Korth and
Speegle define a parent-based execution
of a transaction as a relation on the set of
subtransactions T that is consistent with
the partial order P. The re~ation encodes
dependencies between subtransactions
based on their three data sets. This defi-
nition allows independent executions on
different versions of database states.

Finally, Korth and Speegle define a
new multilevel correctness criteria: An
execution is correct if at each level, every
subtransaction can access a database
state that satisfies its input predicate
and the result of all of the subtransac -
tions satisfies the output predicate of the
parent transaction. But since determin-
ing whether an execution is in the class
of correct executions and is NP-complete,
Korth and Speegle consider subsets of
the set of correct executions that have
efficient protocols. One of these subsets
is the conflict predicate correct (CPC)
class in which the only conflicts that can
occur are a read of a data item followed
by a write of the same data item (this is
the same as in traditional multiversion
techniques). In addition, if two data items
are in different conjuncts of the consist-
ency predicate, execution order must be
serializable only with respect to each
conjunct individually. If for each con-
junct the execution order is serializable,
the execution is correct. The protocol that
recognizes the CPC class creates a graph
for each conjunct where each node is a
transaction. An arc is drawn between
two nodes if one node reads a data item
in the conjunct and the other node writes
the same data item in the same conjunct.
A schedule is correct if the graphs of all
conjuncts are acyclic. This class contains
executions that could not be produced by
any of the mechanisms mentioned above
except for sagas.

Korth and Speegle [1990], recognizing
that the practicality of their model was
in question, applied the model to a realis-
tic example from the field of computer-

7?John T Mary

write(A)
read(A)

write(B)

read(B)
write(A)

write(B)

Time

Figure 11. Nonserializable but conflict-predicate-
correct schedule.

aided software engineering (CASE).
Rather than using the same example they
presented, we use another example here.
Consider the schedule shown in Figure
11 (which is adapted from [Korth and
Speegle 1988]). This schedule is clearly
not serializable and is not allowed by any
of the traditional protocols. Suppose,
however, that the database consistency
constraint is a conjunct of the form P1
OR P2, where PI is over A while P2 is
over B. This occurs when A and B are
not related to each other (i. e., the value
of B does not depend on A and vice versa).
In this case, the schedule is in CPC since
the data items A and B are in different
conjuncts of the database consistency
constraint and the graphs for both con-
juncts P1 and P2 individually are
acyclic, as shown in Figure 12. In other
words, the schedule is correct because
both T~O~~and T~~w access A in a serial-
izable manner and also access B in a
serializable manner.

6.2.4 Dynamic Restructuring of Transactions

In many advanced database applications,
such as design environments, operatio-
are interactive. The operations a use
performs within a transaction might be
(1) of uncertain duration, (2) of uncertain
development (i.e., it cannot be predicted
which operations the user will invoke a
priori) and (3) dependent on other con-
current operations. Both altruistic lock-
ing and sagas address only the first and
third of these characteristics. They do
not address the uncertainty of the devel-
opment of a transaction. Specifically,
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Figure 12. Graphs built by

neither sagas nor long transactions in
the altruistic locking scheme can be re-
structured dynamically to reflect a
change in the needs of the user. To solve
this problem, Pu et al. [19881 introduced
two new operations, split-transaction
and join-transaction, which are used to
reconfigure long transactions while in
progress.

The basic idea is that all sets of
database actions included in a set of con-
current transactions are performed in a
schedule that is serializable when the
actions are committed. The schedule,
however, may include new transactions
that result from splitting and joining the
original transactions. Thus, the commit-
ted set of transactions may not corre-
spond in a simple way to the originally
initiated set. A split-transaction divides
an ongoing transaction into two or more
serializable transactions by dividing the
actions and the resources between the
new transactions. The resulting transac-
tions can proceed independently from
that point on. More important, the re-
sulting transactions behave as if they
had been independent all along, and the
original transaction disappears entirely,
as if it had never existed. Thus, the
split-transaction operation can be applied
only when it is possible to generate two
serializable transactions.

One advantage of splitting a transac-
tion is the ability to commit one of the
new transactions in order to release all of
its resources so they can be used by other
transactions. The splitting of a transac-
tion reflects the fact that the user who
controlled the original transaction has
decided he or she is done with some of
the resources reserved by the transac-
tion. These resources can be treated as
part of a separate transaction. Note that
the splitting of a transaction in this case

@-’-@l
conjunct P2

CPC protocol.

has resulted from new information about
the dynamic access pattern of the trans-
action (the fact that it no longer needs
some resources). This is different from
the static access pattern that altruistic
locking uses to determine that a resource
can be released. Another difference from
altruistic locking is that rather than only
allowing resources to be released by com-
mitting one of the transactions that re -
suits from a split, the split-transactions
can proceed in parallel and be controlled
by different users. A join-transaction does
the reverse operation of merging the re-
sults of two or more separate transac-
tions, as if these transactions had always
been a single transaction, and releasing
their resources atomically.

To clarify this technique, suppose both
Mary and John start two long transac-
tions T~,,Y and TJOhn tO modify the two
modules A and B. After a while, John
finds that he needs to access module A.
Being notified that T~O~~ needs to access
module A, Mary decides she can “give
up” the module since she finished her
changes to it. Therefore, she splits T~~,Y
into T~,rY and T~~,YA. Mary then comm-

its T~,,YA, thus committing her
changes to A while continuing to retain
B. Mary can do that only if the changes
committed to A do not depend in any way
on the previous or planned changes to B,
which might later be aborted. T~O~~ can
now read A and use it for testing code.
Mary independently commits T~,,Y, thus
releasing B. T~O~~ can then access B and
finally commit changes to both A and B.
The schedule of T~&, T~arYA, and T~O~~
is shown in Figure 13.

The split-transaction and join-trans-
action operations relax the traditional
concept of serializability by allowing
transactions to be dynamically restruc-
tured, Eventually, the restructuring
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commit(A)
write(B) actual read(A)

commit(B) write(A)
read(B)
write(B)

v
commit(A, El)

Time

Figure 13. Example of split-transaction.

produces a set of transactions that are
serialized. Unlike all the other ap-
proaches described earlier in this section,

this approach addresses the issue of user
control over transactions since it allows
users to restructure their long transac-
tions dynamically. This is most useful
when opportunities for limited exchange
of data among transactions arise while
they are in progress. The split and join
operations can be combined with the
other techniques discussed in Section 8
to provide for the requirements of
cooperation.

7. SUPPORTING COORDINATION AMONG

MULTIPLE DEVELOPERS

When a small group of developers works
on a large project, a need arises to coordi-
nate the access of its members to the
database in which project components are
stored. Most of the time, the developers
work independently on the parts of the
project for which they are responsible,
but they need to interact at various points
to integrate their work. Thus, a few coor-
dination rules, which moderate the con-
current access to the project database by
multiple developers, need to be enforced
to guarantee that one developer does not
duplicate or invalidate the work of other
developers.

In this section we describe mechanisms
that coordinate the efforts of members of
a group of developers. It is important to

emphasize that all the mechanisms de-
scribed in this section fall short of sup-
porting synergistic cooperation in the
sense of being able to pass incomplete
but relatively stable data objects be-
tween developers in a nonserializable
fashion. It is also important to note that
unlike the mechanisms presented in Sec-
tion 6, most of the models presented here
were not developed as formal transaction
models but rather as practical systems to
support design projects, mostly software
development efforts. The behavior of
these systems, however, can be formu-
lated in terms of transaction models, as
we do in this section.

7.1 Version and Configuration Management

The simplest form of supporting coordi-
nation among members of a development
team is to control the access to shared
files so only one developer can modify
anY file at any one time. One approach
that has been implemented by widely
used version control tools like the Source
Code Control System (SCCS) [Rochkind
1975] and the Revision Control System
(RCS) [Tichy 19851 is the checkout/
check in mechanism (also called reserve/
replace and reserve /deposit). Each data
object is considered to be a collection of
different versions. Each version repre
sents the state of the object at some time
in the history of its development. The
versions are usually stored in the form of
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a compact representation that allows the
full reconstruction of any version, if
needed. Once the original version of
the object has been created, it becomes
immutable, which means it cannot be
modified. Instead, a new version can be
created after explicitly reserving the ob-
ject. The reservation makes a copy of the
original version of the object (or the lat -
est version thereafter) and gives the
owner of the reservation exclusive access
to the copy so he or she can modify it and
deposit it as a new version.

Other users who need to access the
same object must either wait until the
new version is deposited or reserve an-
other version, if that exists. Thus, two or
more users can modify the same object
only by working on two parallel versions,
creating branches in the version history.
Branching ensures write serializability
by guaranteeing that only one writer per
version of an object exists. The result
of consecutive reserves, deposits, and
branches is a version tree that records
the full history of development of the
object. When two branches of the version
tree are merged (by manually merging
the latest version of each branch into one
version), the tree becomes a dag. This
scheme is pessimistic since it does not
allow access conflicts to occur on the same
version (rather than allowing them to
occur then correcting them as in opti-
mistic schemes). It is optimistic, how-
ever, in the sense that it allows multiple
parallel versions of the same object to be
created even if these versions are con-
flicting. The conflicts are resolved
manually when the users merge their
versions.

The basic checkout/checkin mecha-
nism provides minimal coordination be-
tween multiple developers. It does not
use semantic information about the ob -
jects or the operations performed on these
objects. The model suffers from two main
problems as far as concurrency control is
concerned. First, it does not support any
notion of aggregate or composite objects,
forcing the user to reserve and deposit
each object individually. This can lead to
problems if a programmer reserves sev-
eral objects, all of which belong conceptu-

ally to one aggregate object, creates new
versions of all of them, makes sure they
are consistent as a set, then forgets to
deposit one of the objects. This will lead
to an inconsistent set of versions being
deposited. Second, the reserve/deposit
mechanism does not provide support for
reserved objects beyond locking them in
the public database. Thus, once an object
has been reserved by a programmer, it is
not controlled by the concurrency control
mechanism. The owner of the reserva-
tion can decide to let other programmers
access that object.

The first problem results from not
keeping track of which versions of objects
are consistent with each other. For ex-
ample, if each component (object) of a
software system has multiple versions, it
would be impossible to find out which
versions of the objects actually partici -
pated in producing a particular exe-
cutable version being tested. Further, a
programmer cannot tell which versions
of different objects are consistent with
each other. There is a need to group sets
of versions consistent with each other
into configurations. This would enable
programmers to reconstruct a system us-
ing the correct versions of the objects
that comprise the system. This notion of
configurations is supported by many soft-
ware development systems (e. g., Apollo
Domain Software Engineering Environ-
ment (DSEE) [Leblang and Chase, Jr.
1987]). A recent survey by Katz [1990]
gives a comprehensive overview of
version and configuration management
systems.

Supporting configurations reduces the
problem of consistency to the problem
of explicitly naming the set of consist-
ent versions in configuration objects.
This basically solves the problem of
checkout/checkin where only ad hoc ways
(associating attributes with versions de-
posited at the same time) can be used to
keep track of which versions of different
objects belong together.

7. 1.1 Domain Relative Addressing

Walpole et al. [1987, 1988al
the problem of consistency in

addressed
con figura -
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modify(yl)
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read(p2)
modify(p2)
write(p2)

write(p2)

T~me

Figure 14. Domain-relative addressing schedule

tion management systems and intro-
duced a concurrency control notion called
domain-relative addressing that supports
versions of configuration objects. Domain
relative addressing extends the notion of
Reed’s time-relative addressing (multi-
version concurrency control) described in
Section 4.3. Whereas Reed’s mechanism
synchronizes accesses to objects with
respect to their timestamps, domain-
relative addressing does so with respect
to the domain of the data items accessed
by the transaction. The database is parti-
tioned into separate consistent domains,
where each domain (configuration) con-
sists of one version of each of the concep -
tual objects in a related set.

To illustrate this technique, consider
the two transactions T~Ob and TJOh. of
Figure 14. By all the conventional con-
currency control schemes, the schedule
in the figure is disallowed. Under
domain-relative addressing, the schedule
in Figure 14 is allowed because TBOband
T~O~~operate on different versions of pro-
cedures PI and p2. A similar scenario
occurs if Bob wants to modify module A
then modify module B to make it consist-
ent with the updated A. At the same
time, John wants to modify B, keeping it
consistent with A. This can be done if

T~ob and ‘John use different versions of
modules A and B as shown in Figure 15.
This scheme captures the semantics of
the operations performed (consistent up-
dates) by maintaining that version Al
(the original version of module A) is
consistent with B1 (the version of module
B modified by T~O~.), while A2 (module A

Figure 15. Maintaining consistency using domain-

relative addressing.

after T ~ has modified it) is consistent
Pwith B (the new version of module B

that T~Ob has created). All of Al, A2, B1,
and B2 become immutable versions.
Domain-relative addressing is the con-
currency control mechanism used in the
Cosmos software development environ-
ment [Walpole et al. 1988bl.

7.2 Pessimistic Coordination

Although domain-relative addressing
solves the problem of configurations of
objects, it does not address the second
problem of the checkout /checkin model,
which is concurrency control support for
the checked-out objects. Two mechanisms
that provide partial solutions to this
problem are the conversational transac-

tions mechanism provided as an exten-
sion to System R [Lorie and Plouffe 1983;
William et al. 19811 and the design
transactions mechanism [Katz and Weiss
1984]. Although the models differ in their
details, they are similar as far as concur-
rency control is concerned. Thus, we re-
fer to both models as the conversational
transactions model. In this model, the
database of a design project consists of a
public database and several private
databases. The public database is shared
among all designers, whereas each pri-
vate database is accessed only by a single
designer. Each designer starts a long
transaction in his or her private data-
base that lasts for the duration of the
design task.

When the long transaction needs to
access an object in the public database, it
requests to check out the object in a par-
ticular mode, either to read it, write it, or
delete it. This request initiates a short
transaction on the public database. The
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short transaction first sets a short-lived
lock on the object, then checks if the
object has been checked out by another
transaction in a conflicting mode. If it
has not, the short transaction sets a per-
manent lock on the object for the dura-
tion of the long transaction. Before the
short transaction commits, it copies the
object to the specific private database and
removes the short-lived lock. If the object
has been checked out by another long
transaction, the short transaction re-
moves the short-lived lock, notifies the
user that he or she cannot access the
object, and aborts. The short-lived lock
that was created by the short transaction
on the public database prevents other
short transactions from accessing the
same object at the same time. The per-
manent locks prevent long transac-
tions from checking out an object that
has already been checked out in an ex-
clusive mode.

All objects that are checked out by a
long transaction are checked back in by
initiating short checkin transactions on
the public database at the end of the long
transaction. A checkin transaction copies
the object to the public database and
deletes the old version of the object that
was locked by the corresponding check-
out transaction. The new version of the
object does not inherit the long-lived lock
from its predecessor. Thus, each conver-
sational transaction ensures that all the
objects that it checked out will be checked
back in before it commits. This mecha-
nism solves the first problem described
above with the reserve/deposit model.

A concurrency control mechanism sim-
ilar to conversational transactions is used
in Smile, a multiuser software develop-
ment environment [Kaiser and Feiler
1987]. Smile adds semantics-based con-
sistency preservation to the conversa-
tional transactions model by enforcing
global consistency checks before allowing
a set of objects to be checked in. Smile
also maintains semantic information
about the relations among objects, which
enables it to reason about collections of
objects rather than individual objects. It
thus provides more support to composite
objects such as modules or subsystems.

Like the conversational transactions
model, Smile maintains all information
about a software project in a main
database, which contains the baseline
version of a software project. Modifica-
tion of any part of the project takes place
in private databases called experimental

databases. To illustrate Smile’s transac-
tion model, assume John wants to modify
modules A and B; he starts a transaction
T~O~~ and reserves A and B in an experi-
mental database (EDB~O~.). When a
module is reserved, all of its subobjects
(e.g., procedures, types) are also re-
served. Reserving A and B guarantees
that other transactions will not be able
to modify these modules until John has
deposited them. Other transactions, how-
ever, can read the baseline version of the
modules from the main database. John
then proceeds to modify the body of the
modules. When the modification process
is complete, he requests a deposit opera-
tion to return the updated A and B to the
main database and make all the changes
available to other transactions.

Before a set of modules is deposited
from an experimental database to the
main database, Smile compiles the set of
modules together with the unmodified
modules in the main database. The com-
pilation verifies that the set of modules
is self-consistent and did not introduce
any errors that would prevent integrat-
ing it with the rest of the main database.
If the compilation succeeds, the modules
are deposited and T~O~. commits. Other-
wise, John is informed of the errors and
the deposit operation is aborted. In this
case, John has to fix the errors in
the modules and repeat the deposit oper-
ation when he is done. T~O~. commits
only when the set of modules that
was reserved is successfully compiled
then deposited.

Smile’s model of consistency not only
enforces self-consistency of the set of
modules, it also enforces global consist-
ency with the baseline version of all other
modules. Thus, John will not be permit-
ted to make a change to the interface of
module A (e. g., to the number or types of
parameters of a procedure) within
EDB~O~~ unless he has reserved all other
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modules that may be affected by the
change. For example, if procedure pl of
module A is called by procedure p7 of
module C, John has to reserve module C
(in addition to modules A and B, which
he has already reserved) before he can
modify the interface of pl. If another
transaction T~~,Y has module C reserved
in another experimental database,
EDB~~,Y, the operation to change pl is
aborted and T John. k forced to either wait
until T~,,Y deposits module C, at which
point TJOh. can reserve it, or to continue
working on another task that does not
require module C. From this example, it
should be clear that by enforcing seman-
tics-based consistency, Smile restricts
cooperation even more than the conver-
sational transactions because two users
cannot simultaneously access objects se-
mantically related to each other at the
interface level.

Although the two-level database hier-
archy of Smile and the conversational
transactions mechanism provide better
coordination support than the basic
checkout /checkin model, it does not al-
low for a natural representation of hier-
archical design tasks in which groups of
users participate. Supporting such a ~i -

erarchy requires a nested database struc-
ture similar to the one provided by the
multilevel transaction schemes described
in Section 6.

7.2.1 Multilevel Pessimistic Coordination

A more recent system, Infuse, supports a
multilevel, rather than a two-level, hier-
archy of experimental databases. Infuse
relaxes application-specific consistency
constraints by requiring only that mod-
ules in an experimental database be
self-consistent before they are deposited
to the parent database [Kaiser and Perry
1987]. More global consistency is en-
forced only when the modules reserved in
top-level experimental databases are de-
posited to the main database.

Returning to our example, assume both
Bob and Mary are involved in a task that
requires modifying modules A and C;
Figure 16 depicts the situation. They
refers to create an experimental database

main database

5ilA,C

A c

Bob Mary

Figure 16. Experimental databases in Infuse.

in which both modules A and C are re-
served (EDBA,C). Bob and Mary decide
that Bob should modify module A and
Mary should work on module C. Bob cre-
ates a child experimental database in
which he reserves module A (EDBA).
Mary creates EDBC in which she re-
serves module C. Bob decides his task
requires changing the interface of proce -
dure pl by adding a new parameter. At
the same time, Mary starts modifying
module C in her database. Recall that
procedure p7 of module C calls pl in
module A. After Bob completes his
changes, he deposits module A to EDBA.
No errors are detected at that point be-
cause Infuse only checks that A is self-
consistent. This is possible because
Infuse assumes any data types or pro-
cedures used in the module but not
defined in it must be defined elsewhere.
If they are not defined anywhere in the
system, the final attempt to deposit into
the main database will detect that. In-
fuse only checks that all uses of a data
type or object in the same module are
consistent with each other.

Mary then finishes her changes and
deposits module C. Again no errors are
detected at that level. When either Bob
or Mary attempts to deposit the modules
in EDBA ~ to the main database, how-
ever, the’ compiler reports that modules
A and C are not consistent with each
other because of the new parameter of
procedure pl. At that point, either Bob
or Mary must create a child experimen-
tal database in which he or she can fix
the bug by changing the call to pl in
procedure p7.
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Infuse’s model allows greater concur-
rency at the cost of greater semantics-
based inconsistency— and the poten-
tial need for a later round of changes
to reestablish consistency. But serializ-
ability is always maintained by requir-
ing sibling EDBs to reserve disjoint
sub sets of the resources locked by
the parent EDB.

7.3 Optimistic Coordination

The coordination models presented in
Section 7.2 are pessimistic in that they
do not allow concurrent access to the
same object in order to prevent any con-
sistency violations that might occur.
They are thus more restrictive in that
sense than the configuration and version
management schemes. It is often the case
in design efforts, however, that two or
more developers within the same team
prefer to access different versions of the
same object concurrently. Since these de-
velopers are typically familiar with each
other’s work, they can resolve any con-
flicts they introduce during their concur-
rent access by merging the different
versions into a single consistent ver-
sion. Rather than supporting multiple
versions in a flat database, however,
software development environments to
provide a hierarchical structure like
Infuse’s.

7.3.1 Copy 1 Modify / Merge

Like Infuse, Sun’s Network Software En-
vironment (NSE) supports a nested
transaction mechanism that operates on
a multilevel hierarchical database struc-
ture [Adams et al. 19891. Like Cosmos
(and unlike Infuse), NSE supports con-
current access to the same data objects.
NSE combines the checkout/checkin
model with an extension to the classical
optimistic concurrency control policy,
thus allowing limited cooperation
among programmers. Unlike the check-
out/checkin model and Cosmos, however,
NSE provides some assistance to devel-
opers in merging different versions of the
same data item.

NSE requires programmers to acquire
(reserve) copies of the objects they want
to modify in an environment (not to be
confused with a software development
environment) where they can modify the
copies. Programmers in other environ-
ments at the same level cannot access
these copies until they are deposited to
the parent environment. Environments
can, however, have child environments
that acquire a subset of their set of copies.
Multiple programmers can operate in the
same environment where the basic
reserve/deposit mechanism is enforced to
coordinate their modifications.

Several sibling environments can con-
currently acquire copies of the same ob-
ject and modify them independently, thus
creating parallel versions of the same
object. To coordinate the deposit of these
versions to the parent environment, NSE
requires that each environment merge
its version (called reconcile in NSE’S ter-
minology) with the previously committed
version of the same object. Thus, the first
environment to finish its modifications
deposits its version as the new version of
the original object in the parent environ-
ment; the second environment to finish
has to merge its version with the first
environment’s version, creating a newer
version; the third environment to finish
will merge its version with this newer
version, and so on.

Like the optimistic concurrency control
(OCC) mechanism, NSE’S mechanism
allows concurrent transactions (pro -
grammers in sibling environments in this
case) to access private copies of the same
object simultaneously. Before users can
make their copies visible to other users
(i.e., the write phase in the OCC mecha-
nism), they have to reconcile (validate)
the changes they made with the changes
other users in sibling environments have
concurrently made on the same objects.
If conflicts are discovered, rather than
rolling back transactions, the users
of conflicting updates have to merge
their changes, producing a new version
of the object.

To illustrate this mechanism, assume
the modules of the project depicted in
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Figure 17. Layered development in NSE.

Figure 1 represent the following: Module
A comprises the user interface part of the
project, module B is the kernel of the
project, module C is the database man-
ager, and module D is a library module.
The development happens in three layers
as shown in Figure 17. At the top layer,
the environment PROJ-ENV represents
the released project. All the objects of the
project belong to this environment. At
the second level, two environments coex-
ist: one to develop the user interface,
FRONT-END, and the other to develop
the kernel, 13ACK_END. FRONT_ END
acquires copies of modules A and C;
BACK. END acquires copies of B and C.
John works on modifying the front end in
his private environment, JOHN, while

Mary works on developing the back end
in her private environment.

John acquires module A in order to
modify it. He creates a new version of PI

but then finds out that in order to modify
p2, he needs to modify P5. Conse-
quently, he acquires p5 into his environ-
ment and creates new versions of p2 and
p5. Finally, he deposits all his changes
to FRONT-END, creating new versions
of modules A and C as shown in Figure
17. Concurrently, Mary acquires module
B, modifies it, and deposits the changes
to BACK-END. Mary can then test her
code in BACK_END.

Suppose before Mary starts testing her
code, John finishes testing his code and
deposits all of his changes to the top-level
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environment, creating a new version of
the project and making all of his changes
visible to everybody. Before testing her
code, Mary can check to see if any of the
code that is relevant to her (modules B
and C) has been changed by another pro-
grammer. NSE provides a command,
resync, to do that automatically on de-
mand. Resync will inform Mary that
John has changed procedure p5. At this
point, Mary can decide to acquire John’s
new version and proceed to test her code.

In another scenario, the exact same
series of actions as above occurs except
that Mary discovers she needs to modify
procedure p5 in module C, so she ac-
quires it. In this case, after the resync
command informs her that John has al-
ready deposited a new version of p5,
Mary has to merge her new version with
John’s. This is done by invoking a spe-
cial editor that facilitates the merging
process. Merging produces a new version
of p5, which Mary can use to test her
code. Finally, she can deposit all of her
code, creating a new version of the whole
project.

7.3.2 Backout and Comm!t Spheres

Both Infuse and NSE implicitly use the
concept of nested transactions; they also
enforce a synchronous interaction be-
tween a transaction and its child sub-
transactions, in which control flows from
the parent transaction to the child sub-
transaction. Subtransactions can access
only the data items the parent transac-
tion can access, and they commit their
changes only to their parent transaction.
A more general model is needed to sup-
port a higher level of coordination among
transactions. Walter [1984] observed that
there are three aspects that define the
relationship between a parent transac-
tion and a child subtransaction: the in-
terface aspect, the dependency aspect,
and the synchronization aspect.

The interface between a parent trans-
action and a child subtransaction can ei -
ther be single-request, that is, the parent
requests a query from the child and waits
until the child returns the result or con-

versational, that is, the control changes
between the parent that issues a se-
quence of requests and the child that
answers these requests. A conversational
interface, in which values are passed back
and forth between the parent and the
child, necessitates grouping the parent
and child transactions in the same roll-
back domain, because if the child trans-
action is aborted (for any reason) in the
middle of a conversation, not only does
the system have to roll back the changes
of the child transaction, but the parent
transaction has to be rolled back to the
point before the conversation began. In
this case, the two transactions are said to
belong to the same backout sphere. A
backout sphere includes all transactions
involved in a chain of conversations and
requires backing out (rollback) of all
transactions in the sphere if any one of
them is backed out. A single-request in-
terface, which is what the traditional
nested transaction model supports, does
not require rolling back the parent, be-
cause the computation of the child trans-
action does not affect the computation in
progress in the parent transaction.

The dependency aspect concerns a child
transaction’s ability to commit its up-
dates independently of when its parent
transaction commits. If a child is inde-
pendent of its parent, it is said to be in a
different commit sphere. Any transaction
within a commit sphere can commit only
if all other transactions in its sphere also
commit. If a child in a different commit
sphere than its parent commits, then the
parent must either remember the child
committed (e. g., by writing the commit-
ted values in its variables) or be able to
execute the child transaction again if the
parent is restarted.

The synchronization aspect concerns
the ability to support the concurrent exe-
cution of the parent transaction and its
subtransactions. Such concurrency can
occur if the child subtransaction is called
from the parent transaction asyn-
chronously (i. e., the parent continues its
execution and fetches the results of the
child subtransaction at a later time). In
this case, both the parent and the child
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may attempt to access the same data
items at the same time, thus the need for
synchronization. If the child is called
synchronously (i. e., the parent waits
until the child terminates), it cam
safely access the data items locked by
its parent.

Given these three aspects, Walter
[19841 presented a nested transaction
model in which each subtransaction has
three attributes that must be defined
when the transaction is created. The first
attribute, reflecting the interface trite -
rion, can be set to either COMMIT or
NOCOMMIT. The dependency attribute
is set to either BACKOUT or NOBACK-
OUT, and the third attribute, reflecting
the synchronization mode, is set to either
SYNC or NOSYNC. The eight combina-
tions of these attributes define levels of
coordination between a transaction and
its subtransactions. For example, a sub-
transaction created with the attributes
COMMIT, BACKOUT, SYNC is inde-
pendent of its parent since it possesses
its own backout sphere and its own com-
mit sphere and it can access data items
not locked by its parent.

Walter claims it is possible to define
all other nested transaction models in
his model. Moss’ model, for example,
is defined as creating subtransactions
with attributes set to BACKOUT,
NOCOMMIT, SYNC. Beeri et al.’s [1988]
multilevel transaction model described in
Section 6.1.3 supports the combination
COMMIT, BACKOUT, NOSYNC. No
synchronization is needed between a
transaction and its subtransactions be-
cause they operate at two different levels
of abstraction (e. g., if locking is used,
different levels would use different types
of locks).

The models we described in this sec-
tion support limited cooperation among
teams of developers mainly by coordinat -
ing their access to shared data. Both NSE
and Cosmos allow two or more environ-
ments to acquire copies of the same ob -
ject, modify them, and merge them. NSE
also provides programmers with the abil-
ity to set notification requests on partic-
ular objects so they are informed when

other programmers acquire or reconcile
these objects. Infuse provides a notion of
workspaces that cuts across the hierar-
chy to permit grouping of an arbitrary
set of experimental databases. This “cut-
ting across” enables users to look at the
partial results of other users’ work under
certain circumstances for the purpose of
early detection of inconsistencies. None
of the models described so far, how-
ever, supports all the requirements of
synergistic cooperation among teams of
developers.

8. SUPPORTING SYNERGISTIC
COOPERATION

In Section 7 we addressed the issue of
coordinating the access of a group of de-
velopers to the shared project database.
Although this coordination is often all
that is needed for small groups of devel-
opers, it is not sufficient when a large
number of developers works on a large-
scale design project [Perry and Kaiser
1991]. The developers are often subdi-
vided into several groups, each respon-
sible for a part of the design task.
Members of each group usually cooperate
to complete their part. In this case, there
is a need to support cooperation among
members of the same group, as well as
coordination of the efforts of multiple
groups. The mechanisms described in
Section 7 address the coordination issue,
but most of them do not support any form
of cooperation.

Supporting synergistic cooperation
necessitates relying on sharing the col-
lective knowledge of designers. For
example, in an SDE it is common to have
several programmers cooperate on devel-
oping the same subsystem. Each pro-
grammer becomes an “expert” in a
particular part of the subsystem, and it
is only through the sharing of the exper-
tise of all the programmers that the sub-
system is integrated and completed. In
such a cooperative design environment,
the probability of conflicting accesses to
shared data is relatively high because it
is often the case that several users, with
overlapping expertise, are working on
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related tasks concurrently. Note that in
an SDE there is overlapping access to
executable and status information even
if not to source code components.

Many of the conflicts that occur in de-
sign environments are not serious in the
sense that they can be tolerated by users.
In particular, designers working closely
together often need to exchange incom-
plete designs, knowing they might
change shortly, in order to coordinate the
development of various parts of the
design. A DBMS supporting such an
environment should not obstruct this
kind of cooperation by disallowing
concurrent access to shared objects or
nonserializable interaction.

Instead, the concept of database consist-
ency preservation needs to be refined
along the lines of Section 7 to allow non-
serializable cooperative interaction. Such
a refinement can be based on four obser-
vations [Bancilhon et al. 1985]: (1) design
efforts are usually partitioned into sepa-
rate projects, where each project is devel-
oped by a team of designers; (2) available
workstations provide multiple windows
in which multiple tasks can be executed
concurrently by the same designer; (3)
projects are divided into subtasks where
a group of designers, each working on a
subtask, has a great need to share data
among themselves and (4) in complex
design projects, some subtasks are con-
tracted to other design groups (subcon-
tractors) that have limited access to the
projects’s main database.

ln this section, we present two models
that aim at defining the underlying
primitives needed for the implementa-
tion of cooperative concurrency control
mechanisms. We then describe four
mechanisms, two from the CAD/CAM
community and two from the SDE do-
main, that use combinations of these
primitives to implement cooperative con-

currency control policies. It is worth-
while to note that much of the work
described in this section is very recent,
and some of it is preliminary. We believe
the models presented here provide a
good sample of the research efforts under
way in the area of cooperative trans-
action models.

8.1 Cooperation Primitives

In order to address the four observations
listed above, there is a need to introduce
two new primitives that can be used by
mechanisms supporting cooperation. The
first primitive is notification (mentioned
in Section 7), which enables developers
to monitor what is going on as far as
access to particular objects in the

database is concerned. The second is the
concept of a group of cooperating devel -
opers. The members of a group usually
work on the same task (or at least re-

lated tasks) and thus need to cooperate
among themselves much more than with
members of other groups.

8. 1.1 Interactive Notification

One approach to maintaining consist-
ency, while still allowing some kind of

cooperation, is to support notification and
interactive conflict resolution rather than
enforce serialization [Yeh et al. 19871. To
do this, the Gordion database system pro-
vides a notification primitive that can be

used in conjunction with other primitives
(such as different lock modes) to imple-
ment cooperative concurrency control
policies [Ege and Ellis 1987]. Notification
alerts users about “interesting” events
such as an attempt to lock an object that
has already been locked in an exclusive
mode.

Two policies that use notification in
conjunction with nonexclusive locks
and versions were implemented in the
Gordion system: immediate notification
and delayed notification [Yeh et al. 1987].
Immediate notification alerts the user of
any conflict (attempt to access an object
that has an exclusive lock on it or from
which a new version is being created by
another user) as soon as the conflict oc-
curs. Delayed notification alerts the user
of all the conflicts that have occurred
only when one of the conflicting transac-
tions attempts to commit. Conflicts are
resolved by instigating a “phone call”
between the two parties with the as-
sumption that the y can interact (hence
the name interactive notification) to re-
solve the conflict.
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These policies incorporate human be-
ings as part of the conflict resolution al-
gorithm. This, on the one hand, enhances
concurrency in advanced applications,
where many of the tasks are interactive.
On the other hand, it can also degrade
consistency because human beings might
not really resolve conflicts, which could
result in inconsistent data. Like the sagas
model, this model burdens the user with
knowledge about the semantics of appli-
cations. This points to the need for incor-
porating some intelligent tools, similar
to NSE’S merge tool, to help the user
resolve conflicts.

8. 1.2 The Group Paradigm

Since developers of a large project often
work in small teams, there is a need to
define formally the kinds of interactions
that can happen among members of the
same team as opposed to interactions be-
tween teams. El Abbadi and Toueg [1989]
defined the concept of a group as a set of
transactions that, when executed, trans-
forms the database from one consistent
state to another. They presented the
group paradigm to deal with consistency
of replicated data in an unreliable dis-
tributed system. They hierarchically
divide the problem of achieving serializ-
ability into two simpler ones: a local pol-
icy that ensures a total ordering of all
transactions within a group and a global
policy that ensures correct serialization
of all groups.

Groups, like nested transactions, are
an aggregation of a set of transactions.
There are significant differences, how-
ever, bet ween groups and nested transac-
tions. A nested transaction is designed a
priori in a structured manner as a single
entity that may invoke subtransactions,
which may themselves invoke other sub -
transactions. Groups do not have any a

priori assigned structure and do not have
predetermined precedence ordering im-
posed on the execution of transactions

within a group. Another difference is that
the same concurrency control policy is
used to ensure synchronization among
nested transactions at the root level and
within each nested transaction. Groups,

however, could use different local and
global policies (e.g., an optimistic local
policy and a 2PL global policy).

The group paradigm was introduced to
model intersite consistency in a dis-
tributed database system. It can also be
used to model teams of developers, where
each team is modeled as a group with a
local concurrency control policy that sup-
ports synergistic cooperation. A global
policy can then be implemented to coor-
dinate the efforts of the various groups.
The local policies and the global policy
have to be compatible in the sense that
they do not contradict each other. Toueg
and El Abbadi do not sketch the compati-
bility requirements between global and
local policies.

Dowson and Nejmeh [19891 applied the
group concept to model teams of pro-
grammers. They introduced the notion of
visibility domains, which model groups of
programmers executing nested transac-
tions on immutable objects. A visibility
domain is a set of users that can share
the same data items. Each transaction
has a particular visibility domain associ-
ated with it. Any member of a visibility
domain of a transaction may start a sub-
transaction on the copy of data that
belongs to the transaction. The only
criterion for data consistency is that
the visibility domain of a transaction
be a subset of the visibility domain of
its parent.

8.2 Cooperating Transactions

Variations of the primitives defined
above have been the basis for several
concurrency control mechanisms that
provide various levels of cooperation. In
this section we present four mechanisms
that support some form of synergistic co-
operation. Two of the mechanisms were
designed for CAD environments; the
other two were designed for SDES. The
notion of cooperation in SDES is simi-
lar to that in CAD. Differences, how-
ever, arise from the differences in the
structure of projects in the two do-
mains. It seems that CAD projects are
more strictly organized than software
development projects, with a more
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stringent division of tasks, and with less
sharing among tasks.

In both cases, designers working on
the same subtask might need uncon-
strained cooperation, whereas two de-
signers working on different tasks of the
same project might need more con-
strained cooperation. CAD designers
working on two different projects (al-
though within the same division, for ex-
ample) might be content with traditional
transaction mechanisms that enforce
isolation. In software development,
programmers working on different proj-
ects might still need shared access to
libraries and thus might need more
cooperation than is provided by tradi-
tional mechanisms, even if their tasks
are unrelated.

One approach to providing such sup-
port is to divide users (designers or pro-
grammers) into groups. Each group is
then provided with a range of lock modes
that allows various levels of isolation and
cooperation among multiple users in the
same group and between different groups.
Specific policies that allow cooperation
can then be implemented by the environ-
ment using the knowledge about user
groups and lock modes. In this section,
we describe four mechanisms that are
based on the group concept. All four
mechanisms avoid using blocking to syn-
chronize transactions, thus eliminating
the problem of deadlock.

8.2.1 Group-Oriented CAD Transact/ens

One approach, called the group-oriented
model, extends the conversational trans-
actions model described in Section 7
[Klahold et al. 1985]. Unlike the conver-
sational transactions model, the group-
oriented model does not use long-lived
locks on objects in the public database.
The conversational transactions model
sets long-lived locks on objects that are
checked out from the public database un-
til they are checked back in to the public
database.

The group-oriented model categorizes
transactions into group transactions (GT)
and user transactions (UT). Any UT is a

subtransaction of a GT. The model also
provides primitives to define groups of
users with the intention of assigning each
GT a user group. Each user group devel-
ops a part of the project in a group
database. A GT reserves objects from the
public database into the group database
of the user group it was assigned. Within
a group database, individual designers
create their own user database and in-
voke UTS to reserve objects from the
group database to their user database.

In the group-oriented model, user
groups are isolated from each other. One
user group cannot see the work of an-
other user group until the work is de-
posited in the public database. Group
transactions are thus serializable. Within
a group transaction, several user trans-
actions can run concurrently. These
transactions are serializable unless users
intervene to make them cooperate in a
nonserializable schedule. The basic
mechanism provided for relaxing serial-
izability is a version concept that allows
parallel development (branching) and no-
tification. Versions are derived, deleted
and modified explicitly by a designer only
after being locked in any one of a range
of lock modes.

The model supports five lock modes on
a version of an object: (1) read only, which
makes a version available only for read-
ing; (2) read–derive, which allows multi-
ple users either to read the same version
or derive a new version from it; (3) shared
derivation, which allows the owner to
both read the version and derive a new
version from it, while allowing parallel
reads of the same version and derivation
of different new versions by other users;
(4) exclusive derivation, which allows the
owner of the lock to read a version of an
object and derive a new version and al-
lows only parallel reads of the original
version; and (5) exclusive lock, which
allows the owner to read, modify, and
derive a version and allows no parallel
operations on the locked version.

Using these lock modes, several de-
signers can cooperate on developing the
same design object. The exclusive lock
modes allow for isolation of development
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efforts (as in traditional transactions), if
that is what is needed. To guarantee con-
sistency of the database, designers are
only allowed to access objects as part of a
transaction. Each transaction in the
group-oriented model is two-phased, con-
sisting of an acquire phase and a release
phase. Locks can only be strengthened
(converted into a more exclusive mode)
in the acquire phase and weakened (con-
verted into a more flexible lock) in the
release phase. If a user requests a lock
on a particular object and the object is
already locked with an incompatible lock,
the request is rejected and the initiator
of the requesting transaction is informed
of the rejection. This avoids the problem
of deadlock, which is caused by blocking
transactions that request unavailable re-
sources. The initiator of the transaction
is notified later when the object he or she
requested becomes available for locking.

In addition to this flexible locking
mechanism, the model provides a read
operation that breaks any lock by allow-
ing a user to read any version, knowing
that it might be about to be changed.
This operation provides the designer
(more often a manager of a design effort)
with the ability to observe the progress
of development of a design object with-
out affecting the designers doing the
development.

8.2.2 Cooperating CAD Transactions

Like the group-oriented model, the
cooperating CAD transactions model,
introduced by Bancilhon, et al. [19851,
envisions a design workspace to consist
of a global database that contains a pub-
lie database for each project and private
databases for active designers’ transac-
tions. Traditional two-phase locking is
used to synchronize access to shared data
among different projects in the database.
Within the same project, however, each
designer invokes a long transaction to
complete a well-defined subtask for which
he is responsible.

All the designers of a single project
participate in one cooperating transac-
tion, which is the set of all long transac-

tions initiated by those designers. All the
short-duration transactions invoked by
the designers within the same cooperat-
ing transaction are serialized as if they
were invoked by one designer. Thus, if a
designer invokes a short transaction
(within his or her long transaction) that
conflicts with another designer’s short
transaction, one of them has to wait only
for the duration of the short transaction.
Each cooperating transaction encapsu-
lates a complete design task. Some of the
subtasks within a design task can be
“subcontracted” to another group in-
stead of being implemented by members
of the project. In this case, a special coop-
erating transaction called a client/sub-
contractor transaction is invoked for that
purpose. Each client/subcontractor
transaction can invoke other client /sub-
contractor transactions leading to a hier-
archy of such transactions spawned by a
single client (designer). This notion is
similar to Infuse’s hierarchy of experi -
mental databases, discussed in Section
7.2.1.

A cooperating transaction is thus a
nested transaction that preserves some
consistency constraints defined as part of
the transaction, Each subtransaction (it-
self a cooperating transaction) in turn
preserves some integrity constraints (not
necessarily the same ones as its parent
transaction). The only requirement here
is that subtransactions have weaker con-
straints than their ancestors. Thus, the
integrity constraints defined at the top
level of a cooperating transaction imply
all the constraints defined at lower lev-
els. At the lowest level of the nested
transaction are the database operations,
which are atomic sequences of physical
instructions such as reading and writing
of a single data item.

To replace the conventional concept of
a serializable schedule for a nested trans-
action, Bancilhon et al. [19851 define the
notion of an execution of a cooperating
transaction to be a total order of all the
operations invoked by the subtransac-
tions of the cooperating transaction that
is compatible with the partial orders im-
posed by the different levels of nested
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transactions. A protocol is a set of rules
that restrict the set of admissible execu-
tions. Thus, if the set of rules is strict
enough, they would allow only serializ-
able executions. The set of rules can,
however, allow nonserializable, and even
incorrect, executions.

8.2.3 Transaction Groups

In order to allow members of the same
group to cooperate and to monitor
changes in the database, there is a need
to provide concurrency control mecha-
nisms with a range of lock modes of vary-
ing exclusiveness. The transaction groups

model proposed for the ObServer system
replaces classical locks with (lock mode,
communication mode) pairs to support
the implementation of a nested frame-
work for cooperating transactions [Zdonik
1989; Skarra and Zdonik 1989]. A trans-
action group (TG) is defined as a process
that controls the access of a set of cooper-
ating transactions (members of the
transaction group) to objects from the
object server. Since a TG can include
other TGs, a tree of TGs is composed.

Within each TG, member transactions
and subgroups are synchronized accord-
ing to an input protocol that defines some
semantic correctness criteria appropriate
for the application. The criteria are spec-
ified by semantic patterns and enforced
by a recognize and a conflict detector.
The recognize ensures that a lock re-
quest from a member transaction
matches an element in the set of locks
that the group may grant its members.
The conflict detector ensures that a re-
quest to lock an object in a certain mode
does not conflict with the locks already
held on the object.

If a transaction group member re-
quests an object that is not currently
locked by the group, the group has to
request a lock on the object from its par-
ent. The input protocol of the parent
group, which controls access to objects,
might be different from that of the child
group. Therefore, the child group might
have to transform its requested lock into
a different lock mode accepted by the
parent’s input protocol. The transforma -

tion is carried out by an output protocol,
which consults a lock translation table to
determine how to transform a lock re-
quest into one that is acceptable by the
parent group.

The lock modes provided by ObServer
indicate whether the transaction intends
to read or write the object and whether it
permits reading while another transac-
tion writes, writing while other transac-
tions read, and multiple writers of the
same object. The communication modes
specify whether the transaction wants to
be notified if another transaction needs
the object or if another transaction has
updated the object. Transaction groups
and the associated locking mechanism
provide suitable low-level primitives for
implementing a variety of concurrency
control policies.

To illustrate, consider the following ex-
ample. Mary and John are assigned the
task of updating modules A and B, which
are strongly related (i. e., procedures in
the modules call each other, and type
dependencies exist between the two mod-
ules), while Bob is assigned responsibil-
ity for updating the documentation of the
project. Mary and John need to cooperate
while updating the modules, whereas Bob
only needs to access the final result of
the modification of both modules in order
to update the documentation. Two trans-
action groups are defined, TG1 and TG2.

‘G1 has ‘B& and TG2 as its members,
and TG2 has T~O~mand T~,,Y as its mem-
bers. The output protocol of TG2 states
that changes made by the transactions
within TG2 are committed to TG1 only
when all the transactions of TG2 have
either committed or aborted. The input
protocol of TG2 accepts lock modes that
allow T~,,Y and T.70h. to cooperate (e. g.,
see partial results of their updates to the
modules) while isolation is maintained
within TG1 (to prevent T~Ob from access-
ing the partial results of the transactions
in TG2). This arrangement is depicted in
Figure 18.

8.2.4 Participant Transactions

The transaction groups mechanism de-
fines groups in terms of their access to

ACM Computing Surveys, Vol 23, No 3, September 1991



Concurrency Control in Advanced Database Applications g 311

T T-

T TG2
Cooperative

Bob Group

TG1

Figure 18. Transaction groups,

database objects in the context of a nested
transaction system. Another approach is
to define a group of transactions as par-
ticipants in a specific domainl [Kaiser
19901. Participant transactions in a do-
main need not appear to have been per-
formed in some serial order with respect
to each other. The set of transactions
that is not a participant in a domain is
considered an observer of the domain.
The set of observer transactions of a do-
main must be serialized with respect to
the domain. A particular transaction may
be a participant in some domains and an
observer of others whose transactions ac-
cess the same objects.

A user can initiate a transaction that
nests subtransactions to carry out sub-
tasks or to consider alternatives. Each
subtransaction may be part of an implicit
domain, with itself as the sole partici-
pant. Alternatively, one or more explicit
domains may be created for subsets of
the subtransactions. In the case of an
implicit domain, there is no requirement
for serializability among the subtransac -
tions. Each subtransaction must, how-
ever, appear atomic with respect to any
participants, other than the parent, in
the parent transaction’s domain.

The domain in which a transaction
participates would typically be the set of
transactions associated with the mem-
bers of a cooperating group of users
working toward a common goal. Unlike

lThe word domain means different things in par-
ticipant transactions, visibility domains, and do-

main relative addressing.

transaction groups, however, there is no
implication that all the transactions in
the domain commit together or even that
all of them commit (some may abort).
Thus, it is misleading to think of the
domain as a top-level transaction, with
each user’s transaction as a subtrans-
action, although in practice this is likely
to be a frequent case. The transac-
tion groups mechanism described above
is thus a special case of participant
transactions.

Each transaction is associated with
zero or one particular domain at the time
it is initiated. A transaction that does
not participate in any domain is the same
as a classical (but interactive) transac-
tion. Such a transaction must be se-
rializable with respect to all other
transactions in the system. A transaction
is placed in a domain in order to share
partial results with other transactions in
the same domain nonserializably, but it
must be serializable with respect to all
transactions not in the domain.

To illustrate, say a domain X is de-
fined to respond to a particular modifica-
tion request, and programmers Mary and
John start transactions T~.,Y and T~O~.
that participate in X. Assume an access
operation is either a read or a write oper-
ation. The schedule shown in Figure 19
is not serializable according to any of the
conventional concurrency control mecha-
nisms. T~~,

i
reads the updates TJohn

made to mo ule B that are written but
are not yet committed by T~O~., modifies
parts of module B, then COmmitS. TJOh.
continues to modify modules A and B
after T~~,Y has committed. Since T~.,Y
and T~Ohn participate in the same do-
main X, the schedule is legal accord-
ing to the participant transactions
mechanism.

Now suppose Bob starts a transaction

TBOb that 1s an observer of domain X.
Assume the sequence of events shown in
Figure 20 happens. Bob first modifies
module C. This by itself would be legal,
since T~Ob thus far could be serialized
before ~Jo~n (but not after). But then
TBOb attempts to read module B, which
has been modified and committed by

~,,Y. This would be illegal even thoughT
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T John T Ma-y

begin(X)
access(A)
read(B) begin(X)
write(B) access(C)

read(B)

access(A) write(B)
read(B)
write(B)

commit(B,C)

read(B)
write(B)

commit(A,B)

Time

Figure 19. Participation schedule

T ~,,Y was committed. T~.,Y cannot be
serialized before T~Ob, and thus before

~0~~, because T~.,Y reads the uncom-T
mitted changes to module B written by
T . In fact, T~.,Y cannot be serialized
ei%~er before or after T~O~.. This would
not be a problem if it were not necessary
to serialize T~a,Y with any transactions
outside the domain. Mary’s update to
module B would be irrelevant if John
committed his final update to module B
before any transactions outside the do-
main accessed module B. Thus, the seri-
alizability of transactions within a par-
ticipation domain needs be enforced only
with respect to what is actually observed
by the users who are not participants in
the domain.

9. SUMMARY

This paper investigates concurrency
control issues for a class of advanced
database applications involving
computer-supported cooperative work.
We concentrate primarily on software de-
velopment environments, although the
requirements of CAD/CAM environ-
ments and office automation are similar.
The differences between concurrency
control requirements in these advanced
applications and traditional data process-
ing applications are discussed, and sev-
eral new mechanisms and policies that
address these differences are presented.
Many of these have not yet been imple-
mented in any system. This is due to two

Ti...

T John

begin(X)
modify(A)
modify(B)
read(C)
write(C)
modify(A)
read(B)

modify(B)

modify(B)

T Mary T Bob

begin
modify(C)

begin(X)
access(D)
read(B)
write(B)

commit(B,D)

read(B)

e

Figure 20. Participation conflict

factors: Many are theoretical frameworks
rather than practical schemes, and many
of the more pragmatic schemes are so
recent that there has not been a suffi-
cient period of time to design and imple-
ment even prototype systems. Table 1
summarizes the discussions in Sections 6
to 8 by indicating whether or not each
mechanism or policy addresses long
transactions, user control and coopera-
tion, and naming a system, if any, in
which the ideas have been implemented.

There are four other concerns that ex-
tended transactions models for advanced
applications should address: (1) the inter-
face to and requirements for the under-
lying DBMS, (2) the interface to the
application tools and environment ker-
nel, (3) the end-user interface, and (4) the
environment/DBMS administrator’s in-
terface. In a software development envi-
ronment, for example, there is a variety
of tools that need to retrieve different
kinds of objects from the database. A tool
that builds the executable code of the
whole project might access the most re-
cent version of all objects of type code.
Another tool, for document preparation,
accesses all objects of type document or
of type description in order to produce a
user manual. There might be several re-
lationships between documents and code
(a document describing a module may
have to be modified if the code of the
module is changed, for instance). Users
collaborating on a project invoke tools as
they go along in their sessions, which
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Table 1. Advanced Database Systems and Their Concurrency Control Schemes

Mechanism System Long Trans. User Control Cooperation

Altruistic locking N/A Yes No Limited
Snapshot validation N/A Yes No Limited
Order-preserving transactions DASDBS Yes No Limited
Entity-state transactions N/A Yes No Limited

Semantic atomicity N/A Yes No Limited
Multilevel atomicity N/A Yes No Yes

Sagas N/A Yes No Limited
Conflict-based serializability N/A Yes No Limited

Split-transaction, join-transaction N/A Yes Yes Limited
Checkout/checkin RCS No No Limited
Domain-relative addressing Cosmos Yes No Limited
Conversational transactions System R Limited Limited No
Multilevel coordination Infuse Yes Yes Limited
Copy/modify/merge NSE Yes Yes Limited

Backout and commit spheres N/A Yes Yes Limited
Interactive notification Gordion No Limited Limited

Visibility domains N/A Yes Limited Yes

Group-oriented CAD trans. N/A Yes Limited Yes

Cooperating CAD transactions Orion Yes Limited Yes

Transaction groups ObServer Limited Limited Yes

Participant transactions N/A Yes Limited Yes

might result in tools being executed
concurrently. In such a situation, the
transaction manager, which controls con-
current access to the database, must
“understand” how to provide each user
and each tool with access to a consistent
set of objects upon which they operate,
where consistency is defined according to
the needs of the application.

A problem that remains unsolved is
the lack of performance metrics by which
to evaluate the proposed policies and
mechanisms in terms of the efficiencies
of both implementation and use. We have
encountered only one empirical study
[Yeh et al. 1987] that investigates the
needs of developers working together on
the same project and how different con-
currency control schemes might affect the
development process and the productiv-
ity of developers. It might be that some
of the schemes that appear adequate the-
oretically will turn out to be inefficient
or unproductive for the purposes of a par-
ticular application. But is is not clear
how to define appropriate measures.

Another problem is that most of the
notification schemes are limited to at-
taching the notification mechanism to the
locking primitives and notifying human

users, generally about the availability of
resources. These schemes assume that
only the human user is active and that
the database is just a repository of pas-
sive objects. It is important, however, for
the DBMS of an advanced application to
be active in the sense that it be able to
monitor the activities in the database
and automatically perform some opera-
tions in response to changes made to the
database (i.e., what the database com-
munity calls triggers [Stonebraker et al.
1988]). Notification must be expanded,
perhaps in combination with triggers, to
detect a wide variety of database condi-
tions, to consider indirect as well as di-
rect consequences of database updates,
and to notify appropriate monitor and
automation elements provided by the
software development environment.

In addition to supporting automation,
advanced applications like SDES typi-
cally provide the user with capabilities to
execute queries about the status of the
development process. By definition, this
requires access to the internal status of
in-progress tasks or transactions, per-
haps restricted to distinguished users
such as managers. If a manager of a
design project needs to determine the
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exact status of the project in terms of
what has been completed (and how far
the schedule has slipped!), the database
management system must permit access
to subparts of tasks that are still in
progress and not yet committed. Some
queries may, however, require a consis-
tent state of the database in the sense
that no other activities may be concur-
rently writing to the database. The brief
lack of concurrency in this case may be
deemed acceptable to fulfill managerial
goals.

One key reason why traditional con-
currency control mechanisms are too re-
strictive for advanced applications is that
they do not make use of the available
semantics. Many of the extended trans-
action models presented in this paper use
some kind of information about transac-
tions, such as their access patterns, and
about users, such as which design group
they belong to. Most, however, do not
define or use the semantics of the task
that a transaction is intended to perform
or the semantics of database operations
in terms of when an operation is applica-
ble, what effects it has, and what impli-
cations it has for leading to future
database operations. Consequently, these
mechanisms capture only a subset of the
interactions possible in advanced appli-
cations. One approach to solving this
problem is to define a formal model that
can characterize the whole range of in-
teractions among transactions. This
approach was pursued in developing
the ACTA framework, which is capable
of specifying both the structure and
behavior of transactions, as well as
concurrency and recovery properties
[Chrysanthis and Ramamritham 19901.

Although all of the extended trans-
action models presented in this paper
address at least one of the concurrency
control requirements, which include
supporting long-duration transactions,
user control over transactions, and coop -
eration among multiple users, none of
them supports all requirements. For ex-
ample, some mechanisms that support
long transactions, such as altruistic lock-
ing, do not support user control. Some

mechanisms that support user control,
such as optimistic coordination, do not
directly support cooperation. All three
requirements must be fulfilled for the
class of advanced applications considered
here, those involving computer-supported
cooperative work.
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