Indexing and Querying XML
Data for Regular Path

!'_ Expressions

Quanzhong Li
Bongki Moon

Brought to you by George Thomas {george@cc.gatech.edu}
February 27, 2003




i What's the big deal?

= Numbering scheme for elements and
attributes

= XISS
= Indexing and storing system for XML

= Query processing paradigm
=« Decompose regular path expressions

= Path-join algorithms to process these
expressions




i Storage for Retrieval

= Tree model for XML data

= Several XML query languages
= Regular path expressions

= Approaches based on tree traversals are
potentially expensive

= Optimal query plan

= Value
« Element names/values
= Attribute names/values
= Structure
= Ancestor-descendant relationships



i Numbering scheme

s Extended preorder

= Ancestor-descendant relationship
between elements and attributes

= Support proposed join algorithms



i Dietz’s Numbering Scheme

= First to use tree traversal order to
determine the ancestor-
descendant relationship between
any pair of tree nodes

= Based on preorder and postorder

For two given nodes x and y of a
tree T, x [s an ancestor of y if and
only if x occurs before y in the

preorder traversal of T and after y
' tr




i The Good and Bad

= The Good

s Determine the ancestor-descendant
relationship in constant time

= The Bad

» Inflexible
= Inserts/Deletes



The Extended Preorder
Numbering Scheme

s Uses extended preorderand a range of
descendants

= Each node has a pair of numbers
= <order, size>

(10.30) (41.10) = For a tree node y and its parent
’ ’ X, order(x) < order(y)and order(y) +

size(y) <= order(x) + size(x)

(45.5) = The interval [order(y), order(y)+size(y)] is
contained in the interval [order(x), order(x)
+ size(x)]

= For two sibling nodes x and y, if x is the

predecessor of y in preorder traversal,
order(x) + size(x) < order(y)

= For a tree node x, size(x) >= Zysize(y) for
all y's that are a direct child of x

(11,5)

For two given nodes x and y of a tree T, x is an ancestor of y if and only if |
order(x) < order(y) <= order(x) + size(x)




i The Good and the Bad

= The Good

= More flexible
= Tolerant of dynamic data updates

= Order values of deleted nodes can be
recycled

= The Bad

= They don't tell us how they plan to recycle
these order values



XISS

XML Indexing and Storage System

Three major index structures
= Element index
= Attribute index
= Structure index

Two additional structures
= Name index
= Value table

Data loader
Query processor



+

XISS Components

= Document id (did) for each XML
document

= Name index
= B+ tree
= Name identifier (nid)

= Element, attribute, structure indices
= B+ tree
=« Name identifiers (nid) as keys

10



i Element and Attribute Indices

= Element index
= Allows quick search for elements

Elament nid Diocument 10 List Wlth the Same name String
) D) Yoo = Attribute index
= Each record has a value identifier
B -ire=

— (vid)
wOrdar, Sizas, :
| o = Key into the value table
Parant 1D
Elamant List with the Elamant
Zame Namainthe Reacord

Same Document

11



Structure Index

Document 1D i?:'dfl :
B"-tres
Array of All Elemeants

and Attributes inthe ™

nid,

ciorder, Siza»,
Farent order,
C hild order,
Sibling order,
Attribute order

Same Documeant

= Collection of linear arrays

Elements and attributes are
sorted by the order value

Attributes are placed before
their sibling elements

12



i Supported operations

= For a given element name string, say figure, find a
list of elements having the same name string (/.e.
figure), grouped by documents which they belong to
(element index)

= For a given attribute name string, say caption, find a
list of attributes having the same name string (/.e.,
caption), grouped by documents which they belong
to (attribute index)

= For a given element, find its parent element and
child elements (or attributes). For a given attribute,
find its parent element (structure index)

13



Conventions and
recommendations

+

= Conventional approaches

= TOp-down
= Tree traversal cost

= Bottom-up

= Expensive if there are more ancestors and
fewer descendants

O HYbrld

= Effectiveness not always guaranteed

14



Join Algorithms and Decomposing
Path expressions

/chapter/ */flgure[@captlon—"Tree Frogs"]

= Different basic subexpressions
= a subexpression with a single element or a single attribute

= a subexpression with an element and an attribute (e.g.,
figure[Q@caption = "Tree Frogs"]) {EA Join}

= a subexpression with two elements (e.g., chapter/figure OF
chapter/ */figure) {EE Join}

= a subexpression that is a Kleene closure (+,*) of another
subexpression {KC Join}

= a subexpression that is a union of two other subexpressions
= Cons: No detail on decomposition strategies

15



Performance results

+

EE Join algorithm outperforms the bottom-up
method

= Access patterns
= Nature of data

Bottom-up method outperformed the EA Join
algorithm

= Nature of data
KC Join performance was not evaluated

Query processing time increased almost
linearly, as the size of the XML data increased

16



Open Issues

+

= A more formal analysis of the
algorithms

= Explore optimal ways to decompose
expressions

= Explore trade-off between disk access
efficiency and storage utilization

17



