
1

Indexing and Querying XML 
Data for Regular Path 

Expressions

Quanzhong Li
Bongki Moon

Brought to you by George Thomas {george@cc.gatech.edu}
February 27, 2003



2

What’s the big deal?

Numbering scheme for elements and 
attributes
XISS

Indexing and storing system for XML
Query processing paradigm

Decompose regular path expressions
Path-join algorithms to process these 
expressions



3

Storage for Retrieval
Tree model for XML data
Several XML query languages

Regular path expressions
Approaches based on tree traversals are 
potentially expensive
Optimal query plan

Value
Element names/values
Attribute names/values

Structure
Ancestor-descendant relationships



4

Numbering scheme

Extended preorder
Ancestor-descendant relationship 
between elements and attributes
Support proposed join algorithms



5

Dietz’s Numbering Scheme
First to use tree traversal order to 
determine the ancestor-
descendant relationship between 
any pair of tree nodes
Based on preorder and postorder

For two given nodes x and y of a 
tree T, x is an ancestor of y if and 
only if x occurs before y in the 
preorder traversal of T and after y 
in the post-order traversal

For two given nodes x and y of a 
tree T, x is an ancestor of y if and 
only if x occurs before y in the 
preorder traversal of T and after y 
in the post-order traversal



6

The Good and Bad

The Good
Determine the ancestor-descendant 
relationship in constant time

The Bad
Inflexible
Inserts/Deletes



7

The Extended Preorder 
Numbering Scheme

Uses extended preorder and a range of 
descendants
Each node has a pair of numbers

<order, size>
For a tree node y and its parent 
x, order(x) < order(y) and order(y) + 
size(y) <= order(x) + size(x)
The interval [order(y), order(y)+size(y)] is 
contained in the interval [order(x), order(x) 
+ size(x)]
For two sibling nodes x and y, if x is the 
predecessor of y in preorder traversal, 
order(x) + size(x) < order(y)
For a tree node x, size(x) >= ∑ysize(y) for 
all y's that are a direct child of x 

For two given nodes x and y of a tree T, x is an ancestor of y if and only if 
order(x) < order(y) <= order(x) + size(x).

For two given nodes x and y of a tree T, x is an ancestor of y if and only if 
order(x) < order(y) <= order(x) + size(x).



8

The Good and the Bad

The Good
More flexible
Tolerant of dynamic data updates
Order values of deleted nodes can be 
recycled

The Bad
They don’t tell us how they plan to recycle 
these order values



9

XISS
XML Indexing and Storage System
Three major index structures

Element index
Attribute index
Structure index

Two additional structures
Name index
Value table

Data loader (not discussed)

Query processor (not discussed)



10

XISS Components

Document id (did) for each XML 
document
Name index

B+ tree
Name identifier (nid)

Element, attribute, structure indices
B+ tree
Name identifiers (nid) as keys



11

Element and Attribute Indices

Element index
Allows quick search for elements 
with the same name string

Attribute index
Each record has a value identifier 
(vid)

Key into the value table



12

Structure Index

Collection of linear arrays
Elements and attributes are 
sorted by the order value
Attributes are placed before 
their sibling elements



13

Supported operations
For a given element name string, say figure, find a 
list of elements having the same name string (i.e. 
figure), grouped by documents which they belong to 
(element index)
For a given attribute name string, say caption, find a 
list of attributes having the same name string (i.e., 
caption), grouped by documents which they belong 
to (attribute index)
For a given element, find its parent element and 
child elements (or attributes). For a given attribute, 
find its parent element (structure index)



14

Conventions and 
recommendations

Conventional approaches
Top-down

Tree traversal cost

Bottom-up
Expensive if there are more ancestors and 
fewer descendants

Hybrid
Effectiveness not always guaranteed



15

Join Algorithms and Decomposing 
Path expressions

Different basic subexpressions
a subexpression with a single element or a single attribute
a subexpression with an element and an attribute (e.g., 
figure[@caption = "Tree Frogs"]) {EA Join}
a subexpression with two elements (e.g., chapter/figure or 
chapter/_*/figure) {EE Join}
a subexpression that is a Kleene closure (+,*) of another 
subexpression {KC Join}
a subexpression that is a union of two other subexpressions

Cons: No detail on decomposition strategies

/chapter/ */figure[@caption="Tree Frogs"]/chapter/ */figure[@caption="Tree Frogs"]



16

Performance results
EE Join algorithm outperforms the bottom-up 
method

Access patterns
Nature of data

Bottom-up method outperformed the EA Join 
algorithm

Nature of data
KC Join performance was not evaluated
Query processing time increased almost 
linearly, as the size of the XML data increased



17

Open Issues

A more formal analysis of the 
algorithms
Explore optimal ways to decompose 
expressions
Explore trade-off between disk access 
efficiency and storage utilization


