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Key messages

• CMOS scaling will continue for next 12 –15 
years

• Alternative new technologies will emerge 
and begin to be integrated on CMOS by 
2015

• Nanoscience research is needed to facilitate 
radical new scalable technologies beyond 
2020
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The future of nanocomputing

• Introduction
• Scaled CMOS
• Nano-computing, nano-technology and 

nano-science
• Radical new technologies
• Challenges
• Conclusions
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The foundations of microelectronics

Central Breakthroughs:

•Band structure concept

•Minute amounts of impurities 
control properties

•Advances in purification and 
high quality crystal growth of Si
and Ge 

Most basic semiconductor 
devices were demonstrated 
within 12 years

Beginning about 1946, we 
began to utilize this 
knowledge base

Government funded 
research in solid state 
physics in 1930’s and 40’s 
laid the foundation

Bipolar transistor 1948

Field effect transistor 1953

LED 1955

Tunnel diode 1957

IC 1959

Laser 1960
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The beauty of silicon

1 GB64 MB4 MBDRAMs

Cost per 
Megabit

12”8”6”Wafer diameter

0.15 µm0.35 µm0.8 µmFeature size

200019951990

1. Scaling device 
dimensions 
downward

For four decades, the semiconductor 
industry has steadily reduced the 
unit cost of IC components by

$6.50 $3.14 $0.10

2. Scaling wafer 
diameter 
upward
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Brick Walls on the ITRS
YEAR

TECHNOLOGY NODE
1999

180 nm
2002

130 nm
2005

100 nm
On-chip local frequency (MHz) 1.25 2.10 3.50
Number of metal levels - Logic 6-7 7-8 8-9
Number of optional levels 0 2 2
Jmax (A/cm2) - wire (at 105oC) 5.8 E5 9.6 E5 1.4 E6
Local wiring pitch - DRAM non-contacted (nm) 360 260 200
Local wiring pitch - Logic (nm) 500 325 230
Local wiring AR-Logic (Cu) 1.4 1.5 1.7
Cu local dishing (nm) 18 14 11
Intermediate wiring pitch - Logic (nm) 560 405 285
Intermediate wiring h/w AR - Logic (Cu DD via/lin) 2.0/2.1 2.2/2.1 2.4/2.2
Cu intermediate wiring dishing - 
15 um wide wire (nm) 64 51 41
Dielectric erosion, intermediate wiring 
50% density (nm) 64 51 41
Global wiring pitch - Logic (nm) 900 650 460
Global wiring h/w AR - Logic - Cu DD via/line (nm) 2.2/2.4 2.5/2.7 2.7/2.8
Cu global wiring dishing, 15 um wide wire (nm) 116 95 76
Contact aspect ratio - DRAM, stacked cap 9.3 11.4 13
Conductor effective resistivity (uohm -cm) 2.2 2.2 2.2
Barrier/cladding thickness (nm) 17 13 10
Interlevel metal insulator effective 
dielectric constant (k) - Logic 4.0 - 3.5 3.5 - 2.7 2.2 - 1.6

Solutions Exist
Solutions being pursued
No known solutions
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Silicon Nanotechnology is Here!
1000010000

10001000

100100

1010

1010
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0.10.1

0.010.01

MicronMicron NanoNano--
metermeter

1970 1980 1990 2000 2010 20201970 1980 1990 2000 2010 2020

Nominal feature sizeNominal feature size

NanotechnologyNanotechnology

130nm130nm
90nm90nm

70nm70nm
50nm50nm

Gate WidthGate Width
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The ingredients of scaling 
Material Evolution in MOSMaterial Evolution in MOS

2000’s

60’s
70’s

80’s

90’s

Al

SiO2

Al-Si

SiO2

Poly

Al-Cu

SiO2

WSi2/Poly

Ti/TiN

Al-Cu

SiO2

TiSi2/Poly

Ti/TiN

W

Al-Cu

SiO2

TiSi2/Poly

Ti/TiN

W

Low K

Al-Cu

SiO2/SiN

CSi2/Poly

Ti/TiN

W

ELK

Cu

Silicon Silicon Silicon Silicon Silicon Silicon

New materials

Improved processing

New geometries

Scaling Will continue as long as 
(δ cost) /(δ performance) < alternate technologies
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Transistor Scaling

70nm transistor
for 0.13µm process

2001 production

70nm

30nm transistor 
Prototype

30nm

Demo: 2000

15nm
15nm transistor

prototype Source: 
Intel (IEDM, Dec 2001)
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New Materials

GateGate
SilicideSilicide
addedadded

ChannelChannel
StrainedStrained
siliconsilicon

ChangesChanges
MadeMade

FutureFuture
OptionsOptions

HighHigh--kk
gategate

dielectricdielectric

NewNew
transistortransistor
structurestructure

TransistorTransistor
Source: Intel

The problem: High Ioff currentThe problem: High The problem: High IoffIoff currentcurrent
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New Geometries 

SourceSource
DrainDrain

GateGate
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DrainDrain

SourceSource
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Source: Intel
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Improved processing

EUV EUV LithographyLithography
Prototype Exposure ToolPrototype Exposure Tool

50nm Lines Printed50nm Lines Printed
with EUV Lithographywith EUV Lithography

EUV lithography in commercialization phase
Cost effectiveness is key challenge

EUV lithography in commercialization phase
Cost effectiveness is key challenge

Source:  Source:  SandiaSandia
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The limits of logic scaling

• For an arbitrary switching device made of 
of a single electron in a dual quantum well
– Operating at room temperature

• It can be shown a power dissipation limit of 
100 W/cm**2

• Will limit the operational frequency to ~100 
GHz at  length scales ~ 4 nm
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CMOS device circa 2016

• Cost 10-11 $/gate

• Size 8 nm / device

• Speed 0.2 ps /operation 

• Energy 10-18 J/operation
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The future of nanocomputing

– Introduction
– Scaled CMOS
– Nano-computing, nano-technology and nano-science

• A taxonomy
• New devices
• New architectures
• Alternative state variables

– Radical new technologies
– Challenges
– Conclusions
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Architecture
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A taxonomy for nano-computing
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The future of nanocomputing
– Introduction
– Scaled CMOS
– Nano-computing, nano-technology and nano-science

• A taxonomy
• New devices
• New architectures
• Alternative state variables

– Radical new technologies
– Challenges
– Conclusions
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CNT-FET Device Structure
E-beam Ti/Au gate

Mo S/D 8 nm
ZrO2

1.4 nm diameter single wall CNT

McEuen et. al, . Cornell Universwity
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Nanowire Gating Geometries
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C. Leiber et. al. , Harvard U
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Top-gated p-Si Nanowire 
Transistors 
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Crossed Nanowire Structures: A 
Powerful Strategy for Creation & 

Integration of Nanodevices

Nanowires serve dual purpose: both active devices and 
interconnects.
All key nanoscale metrics are defined during synthesis and 
subsequent assembly. 
Crossed nanowire architecture provides natural scaling and 
potential for integration at highest densities.
No additional complexity (with added material).
C. Leiber et. al. , Harvard U
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Crossed Nanowire FETs
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In crossed nanowire FETs (cNW-FET), all critical nanoscale metrics 
are defined by synthesis and assembly:

• channel width by the active nanowire diameter (to 2 nm)
• channel length by the gate nanowire diameter (to 1-2 nm)
• gate dielectric oxide coating on the nanowires (to 1 atomic layer)

The conductance of cNW-FETs can be changed by more than 105-times 
with less than 0.1 V variation in the nano-gate.

Huang, Duan, Lieber et al., Science 294, 1313 (2001)
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Device Demonstrated
P-N Junction

Lieber/Harvard



2/5/2003 Intel Corp. George Bourianoff 26

Room temperature Single 
Electron Transistor (SET)

••Single electron Single electron 
in “island” in “island” 
controls current controls current 
flow from flow from 
source to drainsource to drain

••Typical sizes Typical sizes 
of theof the TiOxTiOx
lines are 15lines are 15--25 25 
nm widths and nm widths and 
3030--50 nm 50 nm 
lengths. lengths. 

••Typical island Typical island 
sizes are 30sizes are 30--50 50 
nm by 35nm by 35--50 50 
nmnm Courtesy, NEC, IEDM 2000, PP 481
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Spin resonance transistor (SRT)

• Transistors that control 
spins rather than charge

• More energy efficient than 
conventional transistors

• Combines magnetic and 
electrostatic fields

• May enable quantum 
computing

Courtesy Eli Courtesy Eli YablanovitchYablanovitch, UCLA, UCLA
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A Molecular Electronic Switch
(2-amino-4-ethyinylphenyl-4-ethylphenyl-5-

nitro-1-benzenethiolate)
Au

Silicon Nitride

1000 Self Assembled
Molecules (SEM)

AuIV Characteristics
1
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0.00 0.50 1.00 1.50 2.00 2.50 3.00
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C
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A
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Source: M.Reed & others,Yale Univ and Rice Univ

(@T=60K)
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The future of nanocomputing

– Introduction
– Scaled CMOS
– Nano-computing, nano-technology and nano-science

• A taxonomy
• New devices
• New architectures
• Alternative state variables

– Radical new technologies
– Challenges
– Conclusions



2/5/2003 Intel Corp. George Bourianoff 30

Emerging Research Architectures
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Quantum Cellular Automata

Adder circuit with carry 
executed in QCA logic

Example of asynchronous,  
CNN, nearest neighbor 
architecture

Courtesy of Notre Dame
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Fault tolerant architecture
• All-memory architecture
• Defect tolerant
• Potentially self-repairing and 

reconfigurable
J. Heath, R. S. Williams 
et al, UCLA and HP
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Phase logic
• Store information in the 

relative phase of 2 signals
• Multi-valued logic 

possible depending on 
frequencies of 2 signals

• Tunneling Phase logic 
devices use RTDs to 
create one of the signals

Courtesy: R Courtesy: R KeihleKeihle, University of , University of 
MinnesotaMinnesota
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Quantum Computer
Selected technological 
implementations
•Liquid-state NMR

•Linear ion trap

•Coupled quantum dots

•Deterministically doped 
semicondustor structures

31P 31P

e-28Si
Barrier layer

    -  -  - + + +
A-Gate J-Gate A-Gate
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The future of nanocomputing
– Introduction
– Scaled CMOS
– Nano-computing, nano-technology and nano-science

• A taxonomy
• New devices
• New architectures
• Alternative state variables

– Radical new technologies
– Challenges
– Conclusions
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Alternative state variables

• Electric charge

• Molecular state

• Spin orientation

• Electric dipole 
orientation

• Photon intensity
• Photon polarization
• Quantum state
• Phase state
• Mechanical state
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The future of nanocomputing
– Introduction
– Scaled CMOS
– Nano-computing, nano-technology and nano-science

• A taxonomy
• New devices
• New architectures
• Alternative state variables

– Radical new technologies
– Challenges
– Conclusions
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Economic criteria

• Economic relevance criteria
– The risk adjusted ROI  for any new technology must 

exceed that of silicon

• Caution
– Sufficiently advanced technologies will create their 

own applications.  New technologies cannot 
necessarily be justified by current day applications.
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Technical criteria

• CMOS compatibility
• Energy efficiency
• Scalability
• Performance
• Architectural compatibility
• Sensitivity to parametric variation
• Room temperature operation
• Stability and reliability
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Existence proof for alternate models

The brain is the 
ultimate model for its 
ability to deal with 
complexity

• Little understanding on its architecture & organization
• It is however

– Orders of magnitude more powerful than the best microprocessor
– Self assembled
– Parallel operation
– Self repairing to a significant degree
– Fault tolerant
– Runs on ~ 10W
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Breakthrough scientific 
investigation is needed

1952 Achievements
• Bulk band structure 

of solids

• Doping

• Crystal growth

2002 Needs
• geometry dependent 

energetic structure of 
nanostructures

• precise location of atoms

• self organization of matter in 
complex structures 
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The integration challenge

ScalabilityScalability
Port SwitchPort Switch

MemoryMemory MemoryMemory
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BridgeBridge
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InfiniBand*InfiniBand*
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I/OI/O
BridgeBridge

ScalabilityScalability
Port SwitchPort Switch

ScalabilityScalability
NodeNode

ControllerController

I/O HubI/O Hub

IntelIntel®® 8287082870 44--way & 8way & 8--way Server Configurationsway Server Configurations
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Conclusions

• CMOS scaling will continue for next 12 –15 
years

• Alternative new technologies will emerge 
and begin to be integrated on CMOS by 
2015

• Nanoscience research is needed to facilitate 
radical new scalable technologies beyond 
2020
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For further information on Intel's silicon technology, 
please visit the Silicon Showcase at 

www.intel.com/research/silicon
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Backup
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For about four decades now we have exploited 
(mined) our investment in basic science and we 
have continuously evolved the devices based 
on this understanding
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Leakage is the limiter to SiO2 scaling
Integration is the key challenge to High K

Leakage is the limiter to SiO2 scalingLeakage is the limiter to SiO2 scaling
Integration is the key challenge to High KIntegration is the key challenge to High K
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What new basic science is 
needed?

• Spin manipulation, e.g. 
transport, storage, detection, 
creation, …

• Geometry related quantum 
effects, e.g. quantum wedge, 
parabolic wells, …

• Precise location of atoms e.g. 
coherent manipulation of 
entangled wavefunctions

Rs →r

P+ P+

B-

Si

Source Drain
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Transport in Si-Ge Core-Shell 
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Coaxially-Gated Si-Ge
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Devices Demonstrated
Nanowire FET

Lieber/Harvard
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Photonic devices

Man-made crystals 
produced by etching 
precisely placed holes 
in silicon or III-V 
material

Can produce, detect and 
manipulate light more 
efficiently than 
naturally occurring 
materials
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System software design needs to 
facilitate  emerging technologies 

Challenge
• CMOS is based on Boolean logic and binary data 

representation
• Alternative technologies will require “native” 

logic systems and data representations to optimize 
their performance

Solution?
• Design science must provide functional 

abstractions and interfaces to couple multiple, 
dissimilar technologies into a single functional 
system 
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Nano-computing, nano-
technology and nano-science
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Changing architectural paradigms
Current

• Boolean logic
• Binary data 

representation

• 2D
• Homogeneous
• Globally interconnected
• Synchronous
• Von Neuman
• 3 terminal

Future
• Neural networks, CNN, 

QCA,…
• Associative, patterned, 

memory based, … data 
representations

• 3D
• Non homogeneous
• Nearest neighbor
• Asynchronous
• Integrated memory/logic
• 2 terminal
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