
Bouncing Threads: Merging a new execution model into a nanotechnology
memory

Sarah E. Frost
sfrost@nd.edu

Arun F. Rodrigues
arodrig6@nd.edu

Charles A. Giefer
cgiefer@nd.edu

Peter M. Kogge
kogge@wizard.cse.nd.edu

University of Notre Dame
Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46556, USA

Abstract

The need for small, high speed, low power computers as
the end of Moore’s law approaches is driving research into
nanotechnology. These novel devices have significantly dif-
ferent properties than traditional MOS devices and require
new design methodologies, which in turn provide exciting
architectural opportunities. The H-memory is a design de-
veloped for a particular nanotechnology, quantum-dot cel-
lular automata. We propose a new execution model that
merges with the H-memory to exploit the characteristics of
this nanotechnology by distributing the functionality of the
CPU throughout the memory structure.

1 Introduction

The computer industry has had great success in shrink-
ing components according to Moore’s law. However, varia-
tions of Moore’s law also describe the rate of growth of the
power dissipation of these chips, especially logic chips, as
growing exponenitially and of the cost of fabrication plants,
already in the billions of dollars, as growing exponentially.
In addition to the problems due to rising heat dissipation
requirements and fabrication costs, the current strategy of
scaling down current devices is approaching a fundamental
physical barrier beyond which the devices no longer make
sense. To continue meeting the need for small, high speed,
low power computers, the current paradigm needs to be al-
tered.

If one steps back and looks at the total number of transi-
tors in a computer, they are predominantly memory. In fact,
memory has traditionally driven the size of devices but not
the system microarchitecture. It is in the context of this role
of memory that this paper proceeds.

Several devices are being explored to fill the gap left at
the end of the roadmap at the nano-scale [4]. The char-
acteristics of these devices are significantly different from
the MOS devices that current architectures and designs ex-
ploit. As these nano-scale devices are being developed, it is
important to develop architectures that exploit the charac-

teristics of the new devices in addition to drawing on wis-
dom gained in the design of MOS-based computers. For
instance, current systems have highlighted problems such
as the von Neumann bottleneck, the bottleneck between the
CPU and the memory. This paper introduces a memory ar-
chitecture based on the device characteristics of a particular
nanotechnology, quantum-dot cellular automata, and pro-
poses a natural extension of this framework that exploits
the characteristics of QCA and addresses the von Neumann
bottleneck, basically by doing away with teh cause of the
problem, the logic-based CPU chip.

1.1 Quantum Cellular Automata

Quantum-dot cellular automata (QCA) is a novel alter-
native to the transistor paradigm [6][1]. Its characteristics
are very different from MOS devices and offer new archi-
tectural opportunities. A QCA cell consists of four quantum
dots arranged as sitting on the corners of a square. Two ex-
cess electrons are introduced into the cell and are able to
move between dots by quantum mechanical tunneling. The
electrons repel each other and naturally reside in opposite
corners of the cell, leading to two steady states - electrons
in the top left and bottom right corners or in the bottom left
and top right corners (figure 1). The first has a polarization
of -1 and is associated with a binary 0 value, and the second
has a polarization of +1 and is associated with a binary 1
value. By placing several of these cells in close proximity
in a row, a QCA ”wire” is formed. The electrons remain
within their own cell, but are able to influence its neighbor
cells by the coulombic interaction of the electrons across
cell boundaries. If the electrons of a cell are prohibited from
tunneling, it can act as a driver cell, driving its neighbors to
assume its value, and in this way a value can be propogated
down this row of cells as in a wire.

The “clock” controlling such cells has four phases in
which an electric field is raised and lowered to control the
tunneling within the cells [3]. When the field strength is
high, a cell has a definite configuration and can act as a
driver cell. Cells in a rising field are assuming or switch-
ing to a value from a neighboring driver cell. Cells in an

Electron Sites

Electrons0 =

1 =

(a) (b) (c)

Figure 1. (a) A QCA cell has two stable con-
figurations corresponding to binary 0 and 1.
(b) A QCA driving its neighboring cell. (c) A
majority gate, the fundamental computational
unit.

area with a low field have no configuration and cannot in-
fluence the configuration of its neighboring cells, and finally
a cell in a region of falling field strength is releasing a de-
fined configuration. Respectively, these phases are referred
to as hold, switch, relax and release (figure 2). An array of
cells in the same clock phase are referred to as residing in
a clock zone. It is important to note that unlike traditional
circuits in which the clock is just like any other signal, the
QCA clock is a fundamentally different sort of phenomena
than the values being carried by the QCA cells. Indeed, a
fundamental assumption in designing with QCA is that the
continues to cycle independently of the cells in the circuit
and their values.

Hold Release Relax SwitchSwitch Hold Release Relax

Clocking

Strength
Field

Phase
Clock Zone

Figure 2. The four phases of the QCA clock:
hold, switch, relax, release.

The fundamental computational block is the majority
gate. A center cell acts as a ”device cell”, with neighbors
on three of its edges acting as inputs, and a neighboring cell
on the fourth edge acting as the output. Placing the cells in
appropriate clocking zones forces the device cell to assume
the value of the majority of its inputs, and allows this device
cell to drive the output cell. With inputs A,B,C, the major-
ity gate performs the function AB+BC+AC. By fixing one
of the inputs to be a logical 1, the majority gate acts as a two
input OR gate. Similarly, fixing one input to be a logical 0
leads to an AND gate.

Offsetting the cells in a wire so they are in a line corner
to corner forces the value being propagated to be inverted
at each cell. This allows an inverter to be built. With the
majority gate, fixed inputs and inversion, QCA is able to
perform any logical function. The device has been experi-
mentally verified using metal dots [7]. In a molecular im-
plementation [5], a QCA cell will be approximately 1.4 nm

on a side and operate at room temperature. QCA has the
potential for extremely dense logic and memory.

2 H Memory Framework

The goal of the ”H” framework is a dense memory na-
tive to QCA [2]. The basic design landscape for QCA is
different from the CMOS landscape. The design is driven
by three related considerations that come out of the basic
device characteristics of QCA. The first consideration is the
inherent, fine-grained pipelining of QCA “wires”. The sec-
ond is the tight connection between layout and timing, and
the third is that the data is always in motion. The H-memory
is a design that grows naturally out of this landscape. The
memory consists of a recursive H-tree structure (figure 3).
Data words are stored in memory macros at the leaves of the

Mem Mem

MemMem

Mem Mem

MemMem

Mem Mem

MemMem

Mem Mem

MemMem

Rtr

Rtr

Rtr

Rtr

Rtr Rtr

Rtr

Rtr

Rtr

Rtr

Rtr

Rtr

Memory Macro

Router Macro

Rtr

Rtr

Rtr

Figure 3. Recursively built H-structure built
with routers forming interior nodes and mem-
ory macros forming leaves.

tree, and the internal nodes can be thought of as routers. Ac-
cesses to the data are effected via two parallel parcels. The
first parcel, the address/data parcel, consists of the address
to be accessed, followed by the operation to be performed
(read or write), and finally the data to be written, if appro-
priate. The select parcel accompanies the data parcel and is
used to signal the presence of meaningful bits on the data
line (figure 4).

The parcels travel through the memory together in lock-
step. The data parcel goes to every memory macro in the
structure. The select parcel, though, arrives only at the de-
sired address. The leading edge of the select parcel activates
each router as the parcels encounter them. The routing de-
cision, left or right to reach the desired memory macro, is
made based on the bit in the address/data parcel that arrives
with the first bit of the select parcel. After the select parcel
leaves the router, the first bit of this parcel is stripped off,
leaving the next bit of the address to determine the direction
of the select parcel at the next router. In this manner, the
address is effectively stripped off as well. When the parcels
reach the desired memory macro, the operation code (read
or write) arrives with the leading edge of the select parcel
(figure 4). In this way, every leaf is uniquely addressable,
memory accesses can be pipelined on a fine-grained level,

and the structure provides the opportunity for very dense
storage.

2.1 The Memory Macro and Router Macro

The H-framework provides an efficient means of orga-
nizing and accessing data stored in memory macros. The
design of the memory macro itself takes advantage of the
design landscape of this nanotechnology as well. The basic
storage mechanism is a spiraled wire which acts as a shift
register due to the inherent latching in QCA wires. With
simple control logic, each bit in the memory macro is ei-
ther ”refreshed” by being allowed to re-enter the spiral or
replaced by a bit of a new data word during a write opera-
tion.

The router macro design also takes advantage of the
characteristics of QCA, exploiting both the majority gate,
the native computational gate of QCA, and the self-latching
of wires, another fundamental property of QCA. The router
allows the data parcel to go out both the left and right output
paths, and makes a simple decision based on the appropriate
address bit whether to send the select parcel down the left or
right branch. The same router design can be used through-
out the memory since the router itself needs no information
about its whereabouts in the structure. Its function is a sim-
ple binary decision, left or right, and then taking advantage
of the self-latching of the wires, the decision can be used
until the entire parcel has passed through the router.

Read
Write

Function:

(needed only for writes)
Data

Address Parcel
Address

Controls 1st Splitter

Sync presented to
jth Splitter

Initial Sync

Controls jth Splitter

Figure 4. Address and select parcel relation-
ship. The leading edge of the select parcel
signals the bit on which to base the routing
decision. At the j-th router encountered, the
j-th bit in the address is referenced.

The return path from the memory macro back to the H-
memory root is very simple. On a read, the data returns
to the root along a route parallel to its leaf-ward path. If a
memory macro is not being accessed, it outputs logic zero
on each clock cycle. At each router, then, where two sub-
trees join, a simple OR operation can merge the two return
paths that meet at that router. This straightforward strat-
egy is reasonable because in the basic case in which the H-
structure is a traditional memory with an external CPU, it
is impossible for accesses to collide inside the H-structure

since all leaves are a uniform distance from the root, all
accesses start at the root, and all accesses take the same
amount of time to execute at the leaf. Therefore, in the
traditional memory case, no collision handling is required
inside the memory.

The H-memory has the potential for very dense storage.
For instance, the basic H-memory with one 64 bit word
per leaf can store 1 GB in an area of 4.4x10(12) cells, or
0.08cm

2, assuming a 1.4 nm separation between the cen-
ters of two adjacent cells, consistent with a molecular im-
plementation of QCA. However, in traveling from entering
the root to the memory leaf, a significant latency cost in in-
curred. The latency depends on the number of routers and
the length of ”wire” the parcels must travel through as well
as the potential synchronization delay to guarantee the ac-
cess arrives at the memory leaf in step with the constantly
moving word stored in the memory macro. The number of
routers an access must travel through grows as the log of the
number of leaves in the structure, comparable to the height
of a binary tree. The latency for memories greater than 1
MB, though, is dominated by the wire length which grows
on the order of the squareroot of the number of leaves. To
reach the start of a word in this gigabyte memory from the
root would require 882 clock cycles. With a 1 THz clock,
this would be less than 1 nanosecond (.88 ns). This timing is
competitive with current memories whose access time is on
the order of tens of nanoseconds, but this is only a single or-
der of magnitude improvement despite the terahertz clock.
However, the QCA H-structure offers several possibilities
to improve this time, such as taking advantage of the fine
grained pipelining available. A more exciting alternative is
to eliminate the need for the latency by moving the func-
tionality of the CPU into the memory structure itself, dis-
tributing the functions among the routers. This eliminates
the latency by removing the need to travel long distances
between a central processing unit and the data to

There are several straightforward techniques that can be
applied to mask this latency. Foremost is the opportunity
for the fine-grained pipelining of accesses into the memory
itself. Also, there are alternative leaf configurations that al-
low storing more than one word per leaf that can minimize
the number of leaves needed to store a certain capacity, and
so reduce the length of wire an access must travel through.
In addition, techniques currently employed to mask mem-
ory latencies can be applied, such as implementing a mem-
ory hierarchy and caching, and implementing a ”sub-tree”
mode read analogous to page mode read.

The most exciting possibility for lessening the effect of
the long latency lies in eliminating the need to travel from
and to the root on every access by distributing the func-
tionality of the CPU throughout the H-structure itself. This
eliminates both the bottleneck of the central processing unit
and the long latencies involved with traveling between the
CPU and memory. A new execution model, one ”native”
to the H-framework, can take fully explore and exploit the
H-memory.

3 Execution Model

The most exciting possibility for lessening the effect of
the long latency lies in eliminating the need to travel from
and to the root on every access by distributing the func-
tionality of the CPU throughout the H-structure itself. This
eliminates both the bottleneck of the central processing unit
and the long latencies involved with traveling between the
CPU and memory. A new execution model, one ”native”
to the H-framework, can take fully explore and exploit the
H-memory.

Merging processing and memory in such a close fashion
will require new programming and execution models. The
”H” structures will require an execution model which takes
advantage of characteristics of QCA. One such execution
model is a ”bouncing thread” model in which computation
is comprised of a large number of threads. The state of these
threads is small enough that it can be carried with them as
they move through the H structure. Synchronization is pro-
vided at the word level and control is distributed through the
H structure.

A ”Bouncing threads” model is well suited to QCA be-
cause it takes advantage of the self-latching qualities of
QCA cells. Because a QCA ”wire” can hold the state
of a thread, we do not need to refer to memory to recall
thread state or construct an expensive centralized register
file. This lack of centralized structures allows support for a
large number of threads executing in parallel, thus conceal-
ing latency. Finally, because logic is inexpensive, it can be
replicated through the H structure.

ALU

Memory

Register File

Dispatch/Control

Figure 5. Distribution of the CPU functional-
ity throughout the internal nodes of the H-
structure

To support this execution model we integrate arithmetic
logic and control into the routers of the H memory. The op-
erations performed by each router on a thread traveling in an
H memory are similar to the operations performed by each
pipeline stage on an instruction traveling through a classical
CMOS processor. A thread which has just fetched a new in-
struction may have that instruction decoded at one router, be
directed to the proper memory word by the next router, and
fetch the relevant data from that word into its carried state.
On the return path, one router may perform an arithmetic

operation on the thread’s stage and the next router will up-
date the thread’s program counter and begin directing it to
fetch the next instruction. Unlike a classical pipeline, how-
ever, control, execution and memory are woven together.
There is no equivalent to a ”register fetch” stage, because
thread state is carried with the thread, not stored in central-
ized register files.

ADD X

X: value

Instruction

PC
Thread State

Fetch

Decode PC++

Load

ALU Registers

Figure 6. How a thread travels throught the
memory from instructions to data.

The key characteristic of QCA technology which ne-
cessitates bouncing threads is locality. Because latency is
directly proportional to distance, having single centralized
structures, such as a traditional register file, would require
constant high latency transfers of data to and from the cen-
tralized structure. With a bouncing thread model, we move
the thread state to the data, avoiding the need for any cen-
tralized structures. Because QCA wires are self-latching,
transmitting the thread state does not require additional stor-
age structures.

Because the control logic for bouncing threads is dis-
tributed and stateless (the state being a part of the thread
itself rather than being maintained separately), it is possible
to support large numbers of threads with little overhead. In-
stead of a central processor scheduling threads and manag-
ing context switches between them, threads are physically
spread through the machine. Multiple threads can be exe-
cuting at the same time, and the ”scheduling” of execution
units is performed naturally by the routing logic. Addition-
ally, the design of the memory macro ensures that all mem-
ory accesses are atomic, making synchronization easier.

4 Specific Implementation of Execution
Model

The ”bouncing threads” execution model supports a
wide range of possible implementations. One ISA in par-
ticular that we studied, called Simple24, has the appropriate
mix of simplicity and functionality to aptly demonstrate the
bouncing thread execution model. Simple24 is a bare-bones
accumulator based ISA. In addition to the standard memory,
control, and arithmetic instructions, Simple24 has support
for fine grained multithreading and synchronization. It is
constructed to demonstrate the fundamentals of the bounc-

ing threads model, so it lacks support for virtual memory,
interrupts, and other characteristics of a full featured pro-
cessor.

4.1 ISA variants

An accumulator based ISA was chosen because it sim-
plified decoding and control logic and allowed a very small
thread state. Other ISA models, such as VLIW or stack-
based, would require more complex decode and control
logic or would require thread state to become unmanage-
ably large.

4.2 Thread State

The state associated with each thread which must be car-
ried consists of an accumulator and immediate value, the
opcode of the current instruction, an address, and a program
counter. The accumulator and immediate value are the only
programmer visible state. The address register is used to
route the thread through the H-structure. The opcode and
program counter are used for control of the program.

The accumulator based ISA and minimal amount of
thread metadata allows for a small thread state. This orga-
nization of data is well suited for the serial decoding found
in the H-memory. This minimal overhead will enable muli-
tithreading at a

4.3 Thread Control & Synchonization

Thread control and synchronization is provided through
a few special instructions which are uniquely suited to the
H-memory.

A new thread is created with a FORK instruction. A
FORK instruction creates a new thread at a memory node.
This new thread contains the same state as the parent thread,
except its accumulator register is set to zero. By follow-
ing a FORK with a branch, behavior similar to the POSIX
fork() system call is achieved. This allows thread cre-
ation very low overhead.

Because of the physical design of the H memory macro,
all memory accesses are atomic. To allow low overhead
synchronization it is easy and efficient to implement a sim-
ple empty/full synchronization scheme at each word. In
this scheme, each memory work is equipped with an ad-
ditional synchonization bit, initially set low. A variant of
the STORE instruction, PUT, performs a STORE and also
sets the synchonization bit high. A varient of the LOAD,
GRAB will only load data if the synchonization bit is high.
If the synchonization bit is low, the GRAB instruction will
block until anothe thread sets the synchonization bit high.

5 Component Sizing

The memory macro and basic router macro have been
designed and their operation simulated providing a reliable

frame of reference for the sizes and latencies of compo-
nents. In the basic memory with an external CPU, two
components are needed, a memory macro and a simple
router macro. The memory macro consists of two elements:
the basic storage element which is a wire spiral, and the
control logic. For the bouncing threads execution model
and the ISAs explored, four additional types of routers are
needed. They are a center router, the decode router, the
PC-inc router, and finally an execute router, not needed for
the programs simulated. The center router is responsible
for thread dispatch and communication with devices out-
side the H-memory. The decode router is comparable to the
decode stage in a simple pipeline. The PC-inc router in-
crements a thread’s program counter, and the execute router
would perform complex ALU operations. In this frame-
work, the memory macro would change only minimally,
adding a full/empty bit to guarantee atomic operations at
the memory leaves, and some additional logic outside the
memory leaf to reconstitute the thread after a memory ac-
cess.

5.1 Traditional Memory Components

The basic memory macro consists of the spiral and the
control logic. The control logic occupies an area of 1914
cells. The size of the spiral depends on the number of bits
it holds and grows as a function of the square root of the
number of bits stored.

5.2 Normal Router

The simple router is 56 cells along its widest side which
dictates the width of the gap between successive portions of
the recursive structure. For the bouncing threads execution
model, a more sophisticated return path is needed to allow
the thread to go either up or down the tree. A first cut router
incorporating routing on the return path approximately is
approximately double the size of the simple router. This
design incorporates three of the simple routers (one router
going down the tree, and one router for each of the return-
ing subtrees) and by sharing clocking zones, only doubles
the size of the router. However, this naive approach can be
substantially improved upon. This router incorporating the
route-on-return is termed a ”normal” router.

5.3 Center Router

The center router, responsible for I/O and initial thread
dispatch has the potential to become rather complex. How-
ever, there is only one center router, and it has available to
it the area from the center of the memory out to the edge of
the memory. Since this space is not occupied by anything
else, the center router can expand into it without penalty.
Also, there is only one center router. For a reasonable sized
H-structure, the size of the center router is insignificant.

5.4 Decode Router

The decode router performs a relatively simple function
whose exact nature will depend on the specifics of the ISA
being implemented. Its function will be analogous to the
decode stage of a simple pipeline, which could mean di-
recting the thread to the appropriate functional router (e.g.
the execute router) or it could be just a normal router if
the op-code itself acted as the directions to the appropriate
router. The serial nature of the router and function keeps the
area requirement low. It is reasonable to assume the size of
this router would be similar to the normal router, and in the
worst case certainly no more than twice its size.

5.5 PC Increment Router

The PC-inc router logic is a simple serial addition. The
few gates needed to implement this function can be incor-
porated into the empty space available in the router taking
advantage of the clocking zones already in place. It can
reasonably be expected to be the same size as the normal
router.

5.6 Bouncing Thread Memory Macro

Finally, the implementation of the bouncing threads
model requires additional logic around the memory macros
to maintain the thread state during memory accesses and to
reconstitute the thread on completion of the access. The
main function of this logic is to store the parts of the thread
state not directly involved in the memory access. The size
of the required logic will be roughly a function of the size
of the thread state. The functional aspect will be quite sim-
ple, being to precisely synchronize the result of the memory
access and its addition to the thread state. Assuming only
one word is stored in each memory macro, the overall size
of the bouncing thread memory macro can be estimated as
being no bigger than twice the size of the basic memory
macro. For larger words, such as 128 bytes, this will be an
overestimate, but it is a comfortable upper bound.

5.7 Comparison

To simplify the calculation, all of the bouncing thread
routers were considered to be twice the size of the normal
router, and each bouncing thread router takes four addi-
tional clock cycles to travel through. This accounts for the
added complexity at some of the routers, and is again an
overestimate since for the larger memories, the bulk of the
routers will be normal routers.

To form a valid comparison, the access time is calculated
as being the time for a request to travel from the root to the
memory macro, assuming the worst synchronization case in
which the request has to wait a time equal to the number of
bits stored in the spiral to arrive at the memory macro in
sync with the start of the stored word, and back to the root.
The area grows faster for the bouncing threads H-structure

since the initial seed is larger. Even with the added com-
plexity, the access time for the bouncing threads memory
is roughly a constant ratio slower than the basic H-memory
(figure 8). A 24 bit word was used in the simulations of
the execution model. For the same sized memory, a larger
word is more efficient in terms of density and latency since
fewer memory macros are needed, and the tree is shallower.
The latency is in the tens of thousands of cycles. However,
a clock rate on the order of one to ten terahertz is expected
for the molecular implementation. In addition, the bounc-
ing threads memory will on average avoid this long latency
by taking advantage of the locality of data and instructions.

Because of the added complexity at the added complex-
ity at the routers, the H-structure that supports the bounc-
ing threads execution model has a greater area that depends
mainly on the word size. For the 24 bit word, the memory
is roughly 40% larger, while the 128 bit bouncing threads
memory is 30% larger than its basic H-memory counterpart.
For smaller sized words and larger memories, the area of the
memory is dominated by the size of the routers. Even with
the inefficient 24 bit word, the bouncing thread H-memory
exceeds the projected density of CMOS SRAM through the
end of the roadmap, and exceeds the DRAM projection past
2012. The 128 bit word bouncing memory exceeds the den-
sity of DRAM past the end of the roadmap (figure 7).

2002 2004 2006 2008 2010 2012 2014
10

−1

10
0

10
1

10
2

10
3

Memory Densities

Year (CMOS projections only)

D
en

si
ty

 (
G

bi
t/c

m
2)

ITRS CMOS DRAM
CMOS SRAM
Basic H−Memory, 24 bit
Bounce H−Memory,24 bit
Basic H−Memory, 128 bit
Bounce H−Memory,128 bit

Figure 7. Potential densities of the basic H-
Memory, bouncing threads H-Memory and
projected CMOS DRAM and SRAM.

6 Simulation Results

To test and demonstrate the operation of the execution
model, a simulator was built to explore design optimizations
and several ISA configurations. The simulator allows the
thread paths for an actual executable program to be seen.

Three ISAs were implemented on this architecture. The
first ISA is Simple12, a simple accumulator based ISA. The
second ISA implemented was stack-based. Finally, the sim-
ulations culminated in the Simple24 ISA.

Simple12 is a simple, easily implemented ISA which

0 50 100 150 200 250 300
10

3

10
4

10
5

Memory Size (GB)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Latency of Basic H and Bounce H

Basic H, 24 bit
Bounce H, 24 bit
Basic H, 128 bit
Bounce H, 128 bit

Figure 8. Access time in clock cycles. The
clock rate for a molecular implementation is
projected to be on the order of 1-10 THz.

allows straightforward implementations of enhancements
such as microthreads and an ”instruction cache”. However,
it also has several significant limitations such as supporting
only one accumulator, allowing self-modifying code, and
lacking support for the use of immediate values.

Due to the limitations of Simple12, a stack-based ISA
was explored. A stack-based ISA would be a good choice
to keep the size of the thread small and the logic efficient. It
allows for a larger address space to be tested along with test-
ing some other design ideas such as vector operations and
severe microthreading. The primary limitation of this ISA,
however, is that multithreading is difficult when dealing
with a stack. Since there is no operating system to control
memory management, implementing multithreading with a
stack in hardware would require too much logic and would
undermine the simplicity of this execution model.

The final ISA, a modification of the Simple12 ISA ten-
tatively named Simple24, better supports multithreading.
Among the modifications are: increasing the word size from
12 bits to 24 bits, increasing the address space to 16 bits (64
kB), and allowing different addressing modes. The feature
of different addressing modes is key to multithreading be-
cause it eliminates the need for self-modifying code and can
achieve much of the functionality of having an index regis-
ter.

A maxfinder program was primarily used as a bench-
mark to test all of the ISA’s as well as several enhance-
ments of the Simple12 ISA. The ”I-Cache” feature allows
several instructions to be prefetched so that thread time in
the instruction part of memory is reduced. The ”I-cache”
is treated simply as additional thread state. A slight modi-
fication of this is a ”Smart I-Cache” where the prefetching
stops at a jump or branch so that unused instructions are
not fetched, avoiding carrying excess state with the thread.
The ”Write Through” feature was the first implementation
of ”microthreading.” Since stores to memory do not affect
the thread state, this feature sent off a separate thread to the
memory leaf to execute the store and then terminate itself.

This freed up the main thread to continue with the program
execution. Finally, the ”Router Configuration” allowed dif-
ferent types and arrangements of routers to be examined,
exploring what functions to place in which routers.

In the simulations, several variables were explored in-
cluding functional router placement, I-cache size and type,
and the use of write through microthreads. The first cut
simulation took just over 8000 cycles to execute. The fi-
nal simulation with a 20 instruction I-cache, write through
microthreads, and the advanced routers that could route
threads both up and down the tree took just over 3000 cy-
cles. This can be even further improved upon since the pro-
gram’s data and instructions were spatially separated, and
the thread had to travel far up the tree to go from data to in-
struction. The thread passes through many routers as it trav-
els, which can be beneficial but results in longer latency. On
the the one hand, passing though several routers allows for
much of the logic to be distributed amongst these routers,
resulting in simple logic at smaller and faster routers, allow-
ing a ”superpipelined” model to be approached. To offset
the longer latency, it may be beneficial to research a cre-
ative integration of program data and text to reduce how far
up the tree threads must travel.

It is important to note that due to the recursive structure
of the H-framework, the size of the memory does not ef-
fect the operation of the ISA since a thread usually operates
in only a portion, a sub-tree, of the memory. While the
maxfinder program is a relatively simple one, it is complex
enough to indicate general strategies. With more complex
programs, the benefits of microthreads such as the write
through function and the I-cache will become even more
apparent. Reducing the running time of this maxfinder to
less than half the original time demonstrates the power of
the fine-level pipelining and multithreading available with
the H-Memory and the bouncing threads execution model.

7 Other Work and Conclusion

This is an exciting execution model that offers a wealth
of variations and enhancements. Some of the variations be-
ing initially explored were mentioned briefly such as mak-
ing use of microthreads to execute stores or as a pre-fetch
mechanism, incorporating sub-tree operations analogous to
vector operations, implementing instruction caches with
various protocols, and takind advantage of the relative ease
of explicit multithreading in this execution model.

In addition, the process that led to this execution model,
that of defining the design landscape (the characteristics of
a single device and a collection of devices), illustrates the
value of explicitly designing to exploit the characteristics
of a particular device. Not only does this lead to efficient
designs, but it leads to architectures and execution models
that address problems faced by traditional architectures.

References

[1] S. C. Benjamin and N. F. Johnson. A possible nanometer-
scale computing device based on an adding cellular automa-
ton. Applied Physics Letters, 1997.

[2] S. E. Frost, A. F. Rodrigues, A. W. Janiszewski, R. T. Rausch,
and P. M. Kogge. Memory in motion: A study of storage
structures in qca. In 1st Workshop on Non-Silicon Computa-
tion (NSC-1), held in conjunction with 8th Int. Symp. on High
Performance Computer Architecture (HPCA-8), Boston, MS.

[3] K. Hennessy and C. Lent. Clocking molecular quantum-dot
cellular automata. To appear in the Journal of Vacuum Sci-
ence Tech.

[4] ITRS. International technology roadmap for semiconductors
2000 update. Technical report, ITRS, 2000.

[5] C. Lent. Molecular electronics: Bypassing the transistor
paradigm. Science, 2000.

[6] C. S. Lent and P. D. Tougaw. A device architecture for com-
puting with quantum dots. Proceedings of the IEEE, 1997.

[7] A. O. Orlov, I. Amlani, G. Toth, C. S. Lent, G. H. Bernstein,
and G. L. Snider. Experimental demonstration of a binary
wire for quantum-dot cellular automata. Applied Physics Let-
ters, 1999.

