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Abstract

This paper presents the New Systolic Language as a general solution to the

problem systolic programming. The language provides a simple programming

interface for systolic algorithms suitable for di�erent hardware platforms and

software simulators. The New Systolic Language hides the details and potential

hazards of inter-processor communication, allowing data ow only via abstract

systolic data streams. Data ows and systolic cell programs for the co-processor

are integrated with host functions, enabling a single �le to specify a complete

systolic program.

1 Introduction

As massively parallel machines and co-processors become more common, tools and lan-
guages are needed to harness their vast power. Systolic algorithms are perhaps the most
e�cient class of algorithm for massively parallel implementation, using regular data ow
through a processor network to harness the inherent parallelism of a problem and to avoid
communication bottlenecks in the parallel processor [7]. A systolic algorithm has two ma-
jor parts: a cell program and a data ow speci�cation. The cell program de�nes the local
operations of each processing element, while the data ow describes the communication
network and its use. Additionally, systolic applications must be concerned with host to
co-processor communication and data access.
This paper presents a language that eases the process of transforming a systolic algorithm

into a functioning systolic program. The New Systolic Language (NSL) hides low-level
implementation concerns such as the availability of physical connections, the allocation of
registers and delay elements, and the avoidance of data and timing hazards; the programmer
deals exclusively with an abstract and versatile systolic stream data type. Data ows
are de�ned in terms of these streams and separate systolic cell programs perform local
computation on the streams. These two parts of the systolic program are integrated with
host functions, enabling host input and output to be hooked directly to the systolic co-
processor.
The New Systolic Language is intended to be an abstract, machine-independent program-

ming language. However, it was developed as a high-level interface to the Brown Systolic
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Array (B-SYS), and reects some of the characteristics of that machine, briey described
in Section 3. The prototype NSL system generates B-SYS assembly code which can either
be printed out for inspection or sent to the B-SYS simulator and animator (based on the
xtango algorithm animation package [21]). Interfaces to a B-SYS system and to a general-
purpose massively parallel machine are under development, as are many enhancements to
and re�nements of the language. The New Systolic Language and its stream model of
data ow attempt to overcome the di�culties and adapt the advantages of several existing
systolic programming methods.

2 Systolic Programming

Systolic speci�cation paradigms can be loosely divided into two categories: systolic pro-
gramming languages and systolic design languages. Systolic programming languages pro-
vide constructs or subroutine libraries for general-purpose systolic processors or multipro-
cessors as a means of implementing systolic programs on the machine. On the other hand,
systolic design systems aid in mapping an algorithm or recurrence relation to the systolic
domain. Using a systolic design system, various interconnection networks and data ows
may be explored as a precursor to building or programming a systolic array. These systems
are especially useful to the producer of single-purpose systolic arrays who can implement
any systolic data ow in the custom network. Programmable systolic arrays can, in general,
accommodate a large selection of data ows despite hardwired restrictions.
Typically, systolic programming methods for existing machines adopt some of the pe-

culiarities of the machine (the current NSL implementation does not entirely avoid this
pitfall). For example, W2 and Hearts provide for the replication of a cell program but still
require the programmer to access the communication links within the cell program [13, 20].
W2 cell programs include send and receive statements for placing data on one or the
other of Warp's physical queues. In Hearts, logical data connections are de�ned in an ex-
ternal table and graph (i.e., not in the textual programming language of the cell program),
while data movement is the result of the cell program's port or channel input and out-
put instructions, a typical problem of shared asynchronous variables and similar constructs
[12]. The Apply system on the iWarp multiprocessor features localized cell programs but,
being designed speci�cally for multiprocessor image processing, does not provide general
ow directives [24].
General-purpose parallel programming languages such as Paris or C* on the Connection

Machine and Occam on Transputer arrays can also be used for systolic programming, but
often require the programmer to be even more concerned with low-level architectural details
[16, 23]. One advantage of these languages, however, is that both the systolic program and
the host or main program can be expressed in a common language, simplifying the interface
between the systolic algorithm and the rest of the computer.
Systolic design languages have many advantages over hardware-speci�c languages. In-

stead of building up from a speci�c machine implementation, they move down from abstract
systolic speci�cations. The two most common speci�cation paradigms are dependency map-
pings, either as matrix transformations or graphs, and recurrence equations, the basis of
functional systolic languages. As the semantics of these two paradigms are so closely re-
lated, it is often di�cult to categorize a given language.
Engstrom and Capello's SDEF systolic design environment [6] is a dependency map-

ping system that has greatly inuenced the speci�cation requirements of the New Systolic
Language. SDEF cleanly separates systolic cell programs from the macroscopic systolic
data movement, as can be seen in Figure 1. This feature is particularly attractive on the
realization that many algorithms share systolic data ow patterns and many di�erent ow
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Dimension: 2
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lower upper
0 degree i

0 n j

Domains:

name: C type: float dependence: i(0) j(-1)
name: X type: float dependence: i(-1) j(0)

name: Y type: float dependence: i(-1) j(0)

Function: name: POLY

Embedding:

1 1
0 1

POLY(C,X,Y)

{

Y' = C + X*Y;
}

(a) SDE File (b) F File

Figure 1: SDEF program for Horner's method.

patterns can solve a speci�c problem, often with identical cell programs. One drawback of
the SDEF system (shared by Hearts' graphical data ow speci�cation) is the multiple views
required for each application: cell programs, systolic mappings, and inputs and outputs are
not speci�ed in a single, common, language, but each has its own input format.
Because of the close relationship between recurrence equations and systolic algorithms,

functional or rule-based languages are one of the most precise ways to specify a systolic
algorithm. Chandy and Misra's language, for example, provides a direct means of express-
ing an indexed recurrence and its initial conditions [1]. As they readily admit, however,
their language does not address the problem of systolic mapping, dealing primarily with
formal algorithm development and veri�cation. Combining the language with a mapping
methodology [4, 14, 17, 25] could eliminate this problem. Chen and Mead also present a
syntactic means of expressing systolic programs as recursive functions [2].
Luk and Jones have developed a functional language for deriving and evaluating systolic

mappings [15]. The language can not only de�ne algorithms, but can also de�ne the hard-
ware structure of the circuit implementation. This is particularly helpful for evaluating
space-time tradeo�s and connecting subarrays to solve multi-stage problems.
All of these languages can elegantly express a systolic algorithm and its mapping to

a processor array. However, they are predominantly systolic design systems | tools for
creating, expressing, and evaluating valid systolic designs. As such, they do not deal with
the problems of interfacing host and co-processor code, a task which would in most cases
require leaving the programming paradigm. Additionally, although these paradigms are
excellent for evaluating design tradeo�s, they are not particularly accessible to the general
programmer.
The requirements of the New Systolic Language implementation draw from the features

of the languages discussed above; it must be emphasized that many of these languages'
missions di�er from NSL's, and that \faults" can turn into features when viewed from a
di�erent perspective. The four guiding principles of NSL are:

1. The language should cleanly separate systolic cell programs and data ow directives.
Shared asynchronous variables are to be avoided because multiple references can pro-
duce unpredictable results. Instead, cell programs should be speci�ed as pure transfer
functions between systolic inputs and systolic outputs.

2. Programs should be able to execute both host and co-processor array functions, prefer-
ably in the context of a conventional language.
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Figure 2: Abstract linear SSRA processor array (a) and the B-SYS architecture (b).

3. The programmer should be able to declare systolic data streams as such using concise
ow directives. Stream declaration and initialization should be accomplished apart
from the cell program, dissociating cell operation from macroscopic data ow and
enabling the reuse of standard data ows and cell operations. Input and output for
the systolic streams should be simple and intuitive.

4. The language should be independent of low-level co-processor features and functions,
hiding array topology, processing element architecture, array size, and the method of
systolic communication from the user. The programmer should not have to specify
the physical names of queues, ports, registers, or bits.

3 The Systolic Shared Register Architecture

A previous paper [10] presented the Systolic Shared Register Architecture (SSRA) for pro-
grammable systolic computation (Figure 2a). SSRA machines have four distinguishing
features: regular topology, SIMD broadcast instructions, shared register banks, and stream
oriented communication. The shared registers (R in Figure 2a) lead to highly e�cient
systolic communication between functional units (F in Figure 2a) since computation and
communication can be performed simultaneously. For example, the single instruction

E0  min(W0;W1)

not only performs a minimization but also moves data eastward. (The registers are ad-
dressed relative to the functional units, east or west in the linear case.) The SSRA design
readily extends to other topologies, including square and octagonal mesh architectures [9].
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Figure 3: Two systolic streams.

The Brown Systolic Array is an 8-bit linear SSRA machine designed for sequence compar-
ison and other combinatorial applications (Figure 2b). Each 6.9mm� 6.8mm 2�-CMOS
chip contains 47 functional units and 48 register banks (85 000 transistors). Each mem-
ory bank contains 16 8-bit registers. The B-SYS chips have been fabricated by MOSIS
(MOS Implementation Service) and a working prototype with 470 processors and an un-
sophisticated host to co-processor interface performed 108 million 8-bit operations per sec-
ond (108 MOPS). A 64-chip version with an on-board instruction sequencer could provide
6 GOPS of processing power, and work is currently underway to design a high speed chip
that will provide over 4 GOPS per chip.

4 The NSL Programming Language

The goal of this research has been to design a general-purpose systolic programming envi-
ronment suitable for a wide variety of machines, from the Connection Machine, which can
emulate meshes of arbitrary dimension, to the �xed linear topology of the Brown Systolic
Array. The programmer should be able to quickly, concisely, and naturally specify the
systolic cell functions and data ows of common systolic algorithms without any knowl-
edge of the target architecture, apart from the fact that it is capable of supporting systolic
operations over some broad range of topologies.
Although the Systolic Shared Register Architecture enables very e�cient NSL imple-

mentation, the architecture is not required by the NSL paradigm. The abstract idea of
a systolic stream can be implemented on any parallel processor that either provides or
simulates communication between processing elements over a regular network.
As a consequence of being designed for systolic applications, NSL does not support ar-

bitrary programming of individual processing elements. Currently, algorithms that require
more than one type of cell program must de�ne systolic streams that distinguish processing
elements. It is expected that NSL will be extended to support any constant number of cell
programs; for broadcast machines, the several logical instructions streams would be auto-
matically converted to a single SIMD program, while for MIMD machines, all cell programs
would be evaluated simultaneously.
This section continues with an overview of the New Systolic Language and a look at NSL

cell programs and main programs. Section 5 considers a programming example from com-
putational biology that highlights several advanced NSL features, followed by a summary
of the directions in which the language is evolving.

4.1 NSL Overview

The systolic stream is the most important aspect of the New Systolic Language. Concep-
tually, the systolic stream is viewed as a ow of data buckets passing by the processing
elements. During each time step, one bucket in the stream is directly accessible to each
processing element. The value contained in the bucket may be used in computation and,
if desired, changed. Before the next evaluation of the cell program, this bucket will have
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Figure 4: Overview of New Systolic Language programming.

moved downstream to the next processing element or delay register, making room for a
new input value.

Systolic speed refers to the number of time steps required for data to travel from one
processing element to the next. That is, a stream implements some number of logical delay
elements between processing elements which can be represented as shown in Figure 3. The
�gure diagrams a westward owing stream of speed 1 and an eastward owing stream of
speed 3. Speed 0 streams are used for immobile and local data which can be automatically
preloaded or postcollected when needed. Processing elements can also look small distances
upstream and downstream, accessing future inputs and past outputs, as shall be described
in Section 5.

Systolic streams are de�ned in NSL main programs and are linked to the systolic cell
program on execution. Systolic cell programs do not concern themselves with stream speed
or type: the NSL system assigns registers and performs functions according to the declared
type and speed of the systolic stream.

As seen in Figure 4, the NSL system can be divided into three parts: the cell program,
the main program, and the NSL system. As mentioned, the NSL cell program speci�es com-
putation on abstract systolic data streams, independent of the macroscopic data movement.
Cell programs can call user-de�ned routines which process NSL data types (registers, ags,
and data streams) as well as a large number of standard operators and functions. The NSL
prototype system was developed in the object-oriented C++ language which provided the
ability to overload operators [5]. Thus, common operations have been de�ned for all basic
systolic data types (e.g., when X and Y are systolic streams, the operation X+Y is evaluated
by NSL to generate co-processor instructions). C++ has greatly simpli�ed the evolution
and evaluation of the language.

NSL routines and cell programs are not called as common C++ routines. References to
an NSL cell program are restricted to calls from other NSL routines and cell programs and
to use as a parameter to the Code::store() procedure (or the Code::run() procedure
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Figure 5: NSL systolic I/O objects.

which combines the functions of storing and executing the code). The NSL system itself
will call the cell program and, as a consequence of the overloaded operators, generate code
for the systolic co-processor.
Referring to Figure 4, NSL main programs control the ow of information through the

systolic co-processor by de�ning systolic data streams. Generic systolic stream ow speci-
�cations include data type (integer or character) and precision information as well as the
direction and speed of ow. In the current implementation, ow direction is restricted to
eastward and westward, the limits of a linear systolic array; an NSL implementation for
mesh systolic arrays would enable several more directions of ow.
In addition to ow information, streams include input and output speci�cations. When-

ever a stream moves through the array, an input is needed and an output produced at the
array boundaries. These inputs and outputs can be linked to �les, functions, and arrays
(Figure 5). By default, the input is zero and the output is ignored.
When the NSL system is initialized, information about the co-processor or simulator

con�guration (size, topology, and architectural features) is de�ned. (Much of this informa-
tion is accessible to the user for the construction of routines that must depend on hardware
parameters.) This initialization informs NSL what type of systolic array required by the
programmer's application | the NSL system must emulate that architecture if it di�ers
from the actual hardware. A complete NSL system could, for example, automatically exe-
cute hexagonal-mesh programs on square- or triangular-mesh co-processors.
After initialization, a call to the Code::run() procedure in the user's program will

generate (Code::store()) and execute (Code::execute()) the co-processor code. The
Code::store() routine detects and resolves potential data hazards, such as overwriting a
register needed by a neighboring functional unit, discussed in Section 4.3, and then generates
and optimizes code for the co-processor. Using the input and output speci�cations of the
systolic streams, the Code::execute() routine sends input to and stores output from the
co-processor. As mentioned, the stream I/O speci�cations can link these inputs and outputs
to �les, functions, or arrays.

4.2 Cell Programs

NSL cell programs are C++ procedures that make use of NSL's special systolic data objects.
No information about data ow, data type, stream inputs and outputs, or array topology
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#include "nsl.h"

void

horner (SStream& C,
SStream& X, SStream& Y)

{

Y = Y + (C * X);

}

(a)

#include "nsl.h"

void

sort (SStream& Max, SStream& Min)
{

Flag f = Min > Max;

Max = select (f, Min, Max);

Min = select (f, Max, Min);
}

(b)

Figure 6: NSL cell programs for Horner's method (a) and sorting (b).

is present in the cell program.

An NSL cell program for Horner's method of polynomial evaluation is shown in Fig-
ure 6a.1 Following the �rst requirement for systolic programming, this cell program is a
pure transfer function that does not involve the macroscopic ow of data; no information
about the systolic streams, apart from their formal parameter names, is available to the
cell program. A stream name (Y) as an rvalue (on the right-hand side of an assignment
statement) refers to the input value of that stream, while a stream name as an lvalue
(left-hand side) will set the output value of that stream (corresponding to Y' in the SDEF
systolic design system). Stream names which do not occur as lvalues (C and X) are given
the identity transformation (C=C and X=X), as with SDEF. If desired, Hearts notation can
be used as well, giving direct access to the stream input (Y.in()) and output (Y.out())
registers. For more complicated access to the streams, several other options will be detailed
latter.
Cell programs can use most C++ arithmetic and logical operations and can declare

registers or ags for local use, as is done in the NSL cell program for sorting (Figure 6b). The
select function is similar to the C programming language's ?: triadic conditional expression
operator, which cannot be overloaded in C++. For more complicated conditionals, several
methods of context ag manipulation also exist.
In addition to the prede�ned NSL operators and routines, users may program new rou-

tines involving the NSL data types for use with cell programs, such as minimization routine
of Figure 7b. Cell programs and NSL routines can use standard looping constructs to cre-
ate functions that depend on the target architecture, as illustrated by Figure 7b, an NSL
routine for generating a bridge fault test vector. The static Con�g class stores the systolic
co-processor's con�guration | size, topology, bits per word, and the like. In the future,
the con�guration will have two parts: the physical con�guration and the logical con�gu-
ration. The NSL system will then be able to simulate a logical architecture on a physical
co-processor, though some help from the programmer will generally be required to support
this feature.

NSL cell programs only have systolic streams as arguments and never return a value.
Data is passed to and from the main program (running on the host) through the systolic
data streams according to their input and output speci�cations. General NSL routines, such
as min() and bridge_test(), can process and return any NSL or C++ data structure.
In summary, NSL cell programs make use of the NSL Register, Flag, SStream and other

data types, the normal C++ operators, and a few special functions. The systolic cell
programs contain no information about data movement, array con�guration, or stream
initialization and result extraction; cell programs can be easily reused with di�erent data

1In C++, the notation SStream& C indicates that the parameter C is a reference to an SStream object,
similar to a Pascal var parameter. Constant parameters can be speci�ed with the const keyword [5].
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Register
min (const Register& r1,

const Register& r2)

{

return (select ((r1 < r2), r1, r2));
}

(a)

Register

bridge_test (void)

{
Register result;

int i = 0;

for ( ; i < Config::word; i+= 2) {

result << 2; result++;
}

return (result);

}

(b)

Figure 7: NSL routines for minimization (a) and bridge fault testing (b).

ows.

4.3 Main Programs

The NSL calling routine of Figure 8 has full control over the systolic array: it con�gures
the array, maintains the data streams, and calls systolic cell programs as needed. First,
the array is initialized to the type (in this case, linear) and size desired. This is followed
by several data stream de�nitions and linkages of stream inputs and outputs. In addition
to the basic SStream object type, NSL provides several variations. A FixSStream is an
SStream that does not move, and the SkipSStream, discussed in the next section, can be
used to logically join processing elements.
The NSL system automatically detects data and timing hazards within the systolic

streams. When found, an additional register is allocated to the stream and the logical
register meanings are woven between cell program iterations. For example, the systolic
sorting cell program

E1  min(W0;W1)

W0  max(W0;W1);

which passes the minimum of two values to its eastern neighbor and saves the maximum, has
a read-after-write hazard: E1 is W1 of a neighboring functional unit, and thus the second
instruction will not access the same W1 value as the �rst. The solution is to use three
registers for the systolic stream, alternating the register which serves for interprocessor
communication. Two cycles of this woven cell program would be:

E2  min(W0;W1)

W0  max(W0;W1)

E1  min(W0;W2)

W0  max(W0;W2);

where E2 and E1 are alternately used for communication. The use of a local scratch register
could solve this problem as well, but would require an additional instruction in each sorting
loop. One of the prime functions of the preprocessing Code::store() step is to detect
these hazards and allocate registers appropriately.
After determining weave conditions, code is regenerated using the revised stream ow

speci�cations and is then compressed to eliminate temporary variables and to combine ag-
based and register-based instructions when possible. The resulting cell programs are often
as e�cient as hand-coded routines and, of course, much easier to understand.
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#include "nsl.h"

main(void)

{
int n=5;

// Array length n, 16 registers, 8 flags, two directions,

// 1 register bank per PE, linear array, 8-bit word.

Config::setup (n, 16, 8, 2, 1, LINEAR, 8);

// Fixed stream of one-byte integer coefficients

FixSStream Coeff (INT, NSL_BYTE1);

// Two mobile streams
SStream X (EAST, NSL_SPEED1, INT, NSL_BYTE1);

SStream Y (EAST, NSL_SPEED1, INT, NSL_BYTE1);

// Use a file for input of coefficients,
// reversing them from the order they appear in the file.

Coeff.source ("file1", n, REVERSE, 0);

// Read n X inputs from file2, then default to 0.

X.source ("file2", n, IDENT, 0);

// Place n Y outputs in file3 after waiting n
// steps (Y inputs default to 0)

Y.sink ("file3", n, IDENT, n);

// Compile and execute the complete cell program
// until the Y stream has received n outputs.

Code::run (&horner, &Coeff, &X, &Y);

}

Figure 8: NSL main program for Horner's method.

5 Programming Example

The SSRA and the Brown Systolic Array implementation were greatly inuenced (and
indeed targeted for) the sequence comparison problems of the Human Genome Project [3].
As the 3-billion-character string of human DNA is transcribed, the availability of fast data
analysis tools and co-processors will become critical. The architectural parameters of B-
SYS (in particular, bits per word and registers per register bank) were determined in a large
part by the requirements of these algorithms. A simple sequence comparison algorithm can
illustrate the more re�ned attributes of a systolic stream.
The edit distance, the number of single-character insertions and deletions required to

transform a string a into another string b, both of length n, is the solution dn;n of the
recurrence:

d0;0 = 0

di;0 = di�1;0 + 1

d0;j = d0;j�1 + 1

di;j = min

8<
:

di�1;j�1 if ai = bj , otherwise
di;j�1 +1
di�1;j +1:

Several more complicated variations of this problem are discussed in the literature [8, 9, 11,
19]. One way of mapping this recurrence to a programmable systolic array is to let each
processing element F correspond to a speci�c j value, letting di;j and di+1;j be computed
in Fj separated by one unit of time. In this mapping, the string b is preloaded into the
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#include "nsl.h"

#define DEL_COST 1

void
sequence (SStream& Char1, SStream &Char2, SStream &Cost)

{

// Cost input is d_{i-1,j-1}

// Cost[-1] is last step's input, or d_{i,j-1}
// Cost[+1] is last step's output, or d_{i-1,j}.

Cost = select (match (Char1, Char2),

Cost,

select (Cost[-1] < Cost[+1],

Cost[-1], Cost[+1]) + DEL_COST);
}

int

iweight (const int n) // n-th initial weight d_{n,0}

{ return n; }
main(void)

{

int n = 5;

int final_cost;

Config::setup (n, 16, 8, 2, 1, LINEAR, 8);

// Fixed stream of one-byte characters.

FixSStream Seq1 (CHAR, NSL_BYTE1);

// Two mobile streams

SStream Seq2 (EAST, NSL_SPEED1, CHAR, NSL_BYTE1);

SStream Weight (EAST, NSL_SPEED2, INT, NSL_BYTE1);

Seq1.source ("seq1", n);

Seq2.source ("seq2", n);

// Use a function for n input values.

Weight.source (iweight, n);

// Only save one result (in an array).
Weight.sink (&final_cost, 1, IDENT, 2*n-1);

Code::run (&sequence, &Seq1, &Seq2, &Weight);

cout << "Sequence Distance: " << final_cost;

}

Figure 9: NSL cell program for sequence comparison.

array, while the string a systolically ows through the array.
An NSL program for simple sequence comparison is shown in Figure 9. This program

illustrates tying functions and arrays to systolic stream inputs and outputs: the function
iweight() returns the value dt;0 = t for each time step t (the index of the time step is passed
to the routine when called by NSL). More importantly, the program illustrates advanced
manipulation of the systolic stream object type. In the sequence comparison algorithm,
three previous results are required: di�1;j�1, di;j�1, and di�1;j , the �rst two having been
computed in Fj�1 (at times t � 2 and t � 1) and the remaining one in Fj (at time t � 1).
Since cost data is required from two time steps ago, the cost stream moves at a speed
of 2 (thus, three registers in each register bank are automatically allocated to the stream
because weaving is required). The output of Fj 's cell program will be di;j , and the input
is di�1;j�1. The problem is to access di;j�1, which will be next time step's stream input,
and di�1;j , which was last time step's stream output. In short, Fj must look upstream
and downstream from its current position. In NSL, these values are accessible using array
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Function Meaning

S Stream input (rvalue) or output (lvalue).

S.in() Stream input value.

S[0] Stream input value.

S[-i] Upstream input value.

S.out() Stream output value.

S[+i] Downstream output value.

S= Assignment of stream output value.

S.source() Assignment of �le, function, or array as stream's input source.

S.sink() Assignment of �le, function, or array as stream's result sink.

S.force_weave() Force S to be woven.

Table 1: SStream member functions.

notation, indexing the systolic data stream relative to the current input or output. Thus,
the expression Cost[0] is equivalent to both Cost.in() and Cost as an rvalue, all of which
refer to the stream input value di�1;j�1. Cost[1] retrieves the value one time unit down
the systolic stream, or di�1;j (produced by Fj last time step). Similarly, negative indices
retrieve values upstream, so Cost[-1] retrieves the value one time unit up the systolic
stream, or di;j�1 (produced by Fj�1 last time step). These systolic stream functions are
summarized in Table 1.

Note that during each time step, the di�1;j values are accessed by two adjacent functional
units. Fj accesses di;j�1 as Cost[-1], a value slightly upstream from that functional unit,
while Fj�1 refers to the same value as Cost[+1], downstream from that functional unit.
Because of the shared registers, this value is readily available to both of these neighboring
functional units.

Occasionally, processing elements must be logically grouped together to form larger
processors with more memory and computational power. The NSL system supports the
SkipSStream object type to simplify programming such algorithms. This type of systolic
stream is initialized according to the desired size of the processor groups. Individual values
in the stream are available to all processing elements in a group, and stream output val-
ues are taken from the processing element farthest downstream in each group. This data
structure has been used with several amino acid sequence comparison algorithms, in which
20-element cost tables corresponding to a speci�c character bj are stored across two to four
adjacent processing elements (Figure 10), while ai values use a unit speed SkipSStream

to travel through the array. During each cycle of the algorithm, each group of processing
elements searches the table in parallel and the dominant, downstream processing element
then computes the next di;j value. Given a su�cient number of registers in each register
bank, a single-processor version could still only process characters at one half the rate of the
4-processor algorithm. Methods and constructs for automatically generating SkipSStream

objects based on the resource requirements of the user's program are currently under de-
velopment.

In summary, SStream objects are seen as a streams of data owing past the functional
units. Functional units can look short distances upstream and downstream as they compute
values to place in in streams. The shared registers of the SSRA design greatly simplify the
implementation of this feature.
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Figure 10: Protein comparison in NSL.

6 Enhancements

The most obvious future development issue is the extension of NSL to topologies of two or
more dimensions. In concert with this, stream direction speci�cations to access arbitrary
processing elements within these topologies should be added. A vector notation similar to
that of the SDEF system could specify, for example, a stream owing to the processing
element two units north and one unit east. More common ows, such as northwest, would
only require textual speci�cation. Depending on actual network topology, some of these
streams may require the generation of extra co-processor data movement instructions (i.e.,
simulating an octagonal mesh on a square mesh). Also, support for two-dimensional input
and output speci�cations, perhaps similar to those of Hearts, should be provided: a systolic
stream composed of entire rows from a matrix, distributed along a column of processing
elements, should be simple to specify and easy to use.

A possible syntax for a matrix multiplication program is shown in Figure 11. In this
mapping of C = A � B, the elements of C are calculated in place, Ci;j in Pi;j . The A

matrix ows eastward in row-major order with (i � 1) zeros inserted before Ai;1. The B

matrix ows southward in column-major order with (j� 1) zeros inserted before B1;j . The
entire algorithm requires n3�n2 time to complete, at which point the C matrix is read out
of the array.

Other future work includes support for wavefront programming. Some algorithms, such
as systolic data compression [22], do not have a �xed relationship between input to and
output from the array: the delay between input and output depends on how compactly the
text can be compressed. Methods for automatically providing sentinels or other mechanisms
which implement wavefront programming should be evaluated.

Since NSL is intended for arbitrary systolic co-processors without program modi�ca-
tion (apart from NSL initialization via the Con�guration call), support for oversized and
undersized arrays must be developed. In the former case, this could involve controlling a
variable-length co-processor, masking certain processing elements, or employing user-guided
cell program analysis to �nd algorithmic methods of coping with large arrays. For example,
in the case of sequence comparison, extra processing elements can be loaded with wildcard
characters which match all other characters. Thus, by the sequence comparison algorithm,
these processing elements will not a�ect the cost values exiting the array. Similarly, padding
strings with null characters will have an entirely predictable e�ect on the distance com-
putation. Performing functions on undersized arrays is a more complicated, though still
achievable, goal [18]. With guidance from the programmer, NSL should be able to partition
problems for undersized arrays by storing intermediate results in the host's memory.
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#include "nsl.h"

void

cell (SStream& A, SStream &B, SStream &C)
{

C += A * B;

}

main(void)
{

int n = 8;

int maxtime = n*n*(n-1);

int a[n][n], b[n][n], c[n][n];

Config::setup (n, 16, 8, 2, 1, MESH, 8);

// Fixed array

// (default stream type is 2D)

FixSStream Cstream (INT, NSL_WORD);

// Two mobile streams

SStream Astream (EAST, NSL_SPEED1, INT, NSL_WORD);

SStream Bstream (SOUTH, NSL_SPEED1, INT, NSL_WORD);

// Skew to prepad row i with i-1 zeros.

// A source function could perform this as well.

Astream.source (a, n, n, ROW_MAJOR_SKEW);

Bstream.source (b, n, n, COL_MAJOR_SKEW);

// Timed cell program interation needed because the

// Cstream does not move.

Code::runtime (&cell, &Astream, &Bstream, &Cstream, maxtime);

Cstream.sink (c, n, n, IDENT);

}

Figure 11: NSL matrix multiplication.

7 Conclusions

The New Systolic Language greatly expedites systolic programming, freeing the program-
mer from many tedious tasks. As the examples of this paper have illustrated, NSL provides
a concise and intuitive interface for systolic co-processor programming. NSL uses the clean
separation of cell function and data movement present in the SDEF systolic design sys-
tem, but additionally provides a common and simple interface to all aspects of systolic
programming. The pitfalls of low-level systolic communication directives have been deftly
sidestepped by providing automatic hazard detection and avoidance. Additionally, the sys-
tem is not limited to any particular machine or network topology; future extensions will
render the New Systolic Language truly independent of hardware, able to run on a variety
of machines and simulators.
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