
Compositional Reasoning Based on WEB-Refinement for
the Automatic Verification of Pipelined Machines

ABSTRACT
We show how to use compositional reasoning to automatically prove
that pipelined machine models satisfy the same safety and live-
ness properties as their corresponding instruction set architecture
models. By applying compositional reasoning to deep pipelines
we demonstrate both that we obtain exponential savings in ver-
ification times over previous monolithic approaches and that we
can, quite easily, verify machines that state-of-the-art tools cannot
currently handle. We discuss how compositional reasoning can be
added to the design cycle and give an example where we verify a
complex pipelined machine with branch prediction, instruction and
data caches, and a write buffer. Compositional reasoning allowed
us to reduce the verification time by more than a factor of 10 over
current state-of-the-art monolithic approaches, and, perhaps more
importantly, the counterexamples generated are much simpler, as
bugs are isolated to a particular step in the composition.

1. INTRODUCTION
We present a compositional reasoning technique that can be used
to automatically reason about pipelined machines that are too com-
plex to handle with current state-of-the-art methods and tools. Our
technique allows one to verify that a pipelined machine is correct
in stages, by starting with the instruction set architecture, showing
that it is refined by a simple pipelined machine, which is refined
by a more complex machine, and so on until the final pipelined
machine is verified. Each stage of the proof entails establishing a
WEB-refinement proof, which means that, relative to a refinement
map and up to stuttering, the two machines have exactly the same
infinite behaviors. As WEB-refinement is a compositional notion,
this sequence of refinement proofs implies that the final pipelined
machine has the same behaviors as the instruction set architec-
ture. In terms of temporal logic, we have that the machines satisfy
exactly the same CTL∗ \X properties expressible at the instruc-
tion set architecture level. We automate the process by reducing
the WEB-refinement proof to a statement expressible in the logic
of Counter arithmetic with Lambda expressions and Uninterpreted
functions (CLU), which is a decidable logic [2]. We use the tool
UCLID [7] to transform the CLU formula into a CNF (Conjunctive
Normal Form) formula, which we then check with the SAT solver

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Siege [16].

The goal of much of the current work in verification is to design
methods, tools, and techniques that extend the range of automatic
methods. While there has been much success, we are still very
far away from being able to automatically verify industrial designs.
Compositional reasoning is one of the main methods for dealing
with complex systems and the idea is simply to decompose the ver-
ification problem into manageable pieces that are then composed
together to produce the final result. How might we apply this idea
to pipelined machine verification? For example, suppose that MA
is a complex pipelined machine model and ISA is the correspond-
ing instruction set architecture and suppose that proving that MA
refines ISA is too difficult to do in one step. An obvious idea is
to define an intermediate machine MA’ and then show that MA’
refines ISA and that MA refines MA’. Consider carrying out this
proof using the standard Burch and Dill notion of correctness. The
problem is that, while it is clear how to prove that MA’ refines
ISA, how does one prove that MA refines MA’? If we use flush-
ing, we have to flush both machines, but then MA’ just becomes a
complex variant of ISA and the proof is even more complex than
proving that MA refines ISA directly. It is not immediately clear
how to take advantage of the fact that we already established that
MA’ refines ISA. Our main contribution is to show how to do this
in an automatic way for both safety and liveness (the Burch and
Dill approach only provides safety [8]) that also leads to drastic
improvements in verification times.

Our compositional method for pipelined machine verification can
be used to significantly extend the types of machines that can be
verified with state-of-the-art tools such as UCLID and Siege. We
show that increasing the number of cycles required to fetch an in-
struction leads to an exponential growth in verification times, when
using a refinement map based on flushing. Thus, while a a 6-stage
pipelined machine can be verified in about 10 seconds, by the time
we get to a 10-stage pipelined machine, the verification problem is
too complicated for Siege to solve. However, by using composi-
tional reasoning the verification time for the complete proof is less
than a second longer than the verification time for the 6-stage ma-
chine. It is worth noting that other deep pipelines will suffer from
the exponential increase in verification times and our method can
be used to deal with the problem.

Having established that exponential savings are possible, we turn
our attention to another example, using a different refinement map
(based on the commitment approach), to show the applicability of
our method. We consider a complex machine that includes a data
cache, an instruction cache, and a write buffer, and we show how

1



to verify the machine in a compositional manner, by treating each
of the caches and the write buffer in separate refinement steps. As
a result, we reduce the running time by more than a factor of 10.

Can we really obtain the benefits of composition without paying a
price? Actually, we often have to provide invariants. But, for our
examples they are simple. For example, to verify a write-through
cache, we need the invariant that the valid cache entries are con-
sistent with memory. The invariants we used were straight-forward
and did not make the verification task more difficult. If one uses a
hierarchical, compositional approach to design, then the invariants
should be known, as they allow different engineers to implement
different parts of the system independently. Therefore, composi-
tion can fit nicely into the design cycle, which is also composi-
tional. This is why we claim that our method is automatic, because
in the context of compositional design, the invariants allowing for
the separation of concerns are known.

Compositional verification has several important advantages over
monolithic verification that are perhaps even more important than
the increased performance. Suppose that modifications are made to
the design and in the process a bug is introduced. Compositional
verification allows us to focus in on where the bug first appears and
the counterexample generated is with respect to a specific refine-
ment stage, i.e., the counterexample is at exactly the right level of
abstraction required to easily understand and correct the problem.
For example, if the bug does not involve the cache, then neither
does the counterexample, whereas in a monolithic approach, there
is no way to know if the cache was involved, thus, as the verification
engineer is trying to understand the counterexample, she is forced
to manually rule out the possibility that the cache contributed to
the error. By using our compositional approach, the engineer can
bridge the abstraction gap on her own terms and at a rate that makes
sense given available tools and the development process.

In this way, the development and debugging processes are simpli-
fied. By focusing on a new feature at a time, the engineer is assured
that all previous features are correct. Debugging is with respect to
the current stage in the refinement process, not with respect to the
ISA, thus, as we later show, the running times are faster, the coun-
terexamples are shorter and clearer, and design understanding is
enhanced.

While our main contribution is to show how to use composition
to automatically prove safety and liveness properties for pipelined
machines, as far as we know, we are also the first to model data and
instruction caches and write buffers, and the first to automatically
prove safety and liveness for these features. In addition, we are the
first to show how to relate two pipelined machines.

The paper is organized as follows. In Section 2, we briefly re-
view related work. In Section 3, we provide an overview of WEB-
refinement, the compositional theory of refinement upon which our
correctness proofs depend. In Section 4, we examine the deep
pipeline example, and in Section 5, we consider a pipelined ma-
chine with branch prediction, instruction and data caches, and a
write buffer. Everything required to reproduce our results, e.g., ma-
chine models, correctness statements, CNF formulas, etc., is avail-
able upon request. Conclusions and an outline of future work ap-
pear in Section 6.

2. RELATED WORK

Pipelined machine verification is an active area of research. One
popular approach involves the use of theorem provers, which have
the advantage that the underlying logics are very powerful and ex-
pressive, but also undecidable. Examples of this line of research
include the work by Sawada and Hunt, who use an intermediate
abstraction called MAETT to verify some safety and liveness prop-
erties of complex pipelined machines [17, 19, 18]. Another exam-
ple of a theorem proving approach is the work by Hosabettu et al.,
who use the notion of completion functions [4].

Our main concern, however, is with automatic methods. An early
and influential paper in this area is due to Burch and Dill, who
showed how to automatically compute the refinement map using
flushing [3]. The idea is that a pipelined machine is related to
an instruction set architecture state by feeding the pipeline with
enough bubbles to complete all the partially executed instructions.
The use of flushing is now widespread, although there has been
recent work on another, dual approach to flushing called the com-
mitment approach [8, 11], where a pipelined machine state is re-
lated to an instruction set architecture state by invalidating all the
partially executed instructions in the pipeline and reseting the PC
so that it points to the oldest invalidated instruction. Different
types of automatic methods have been used, e.g., McMillan uses
model-checking and symmetry reductions [12]; Patankar et al. use
Symbolic Trajectory Evaluation (STE) to verify a processor that
is a hybrid between ARM7 and StrongARM [15]; and SVC is
used to check the correct flow of instructions in a pipelined DLX
model [13].

More directly related to this paper is the work on decision proce-
dures for boolean logic with equality and uninterpreted function
symbols [1]. The results in [1] were further extended in [2], where
a decision procedure for the CLU logic is given. The decision pro-
cedure is implemented in UCLID, which has been used to verify
out-of-order microprocessors [7] and which we use to verify the
models presented in this paper. We use the UCLID tool and models
that are similar to the models in [11], which in turn are similar to
the models in [20].

The notion of correctness for pipelined machines that we use was
first proposed in [8], and is based on WEB-refinement [9]. The
first proofs of correctness for pipelined machines based on WEB-
refinement were carried out using the ACL2 theorem proving sys-
tem [5, 6]. The advantage of using a theory of refinement over
using the Burch and Dill notion of correctness, even if augmented
a “liveness” criterion, is that deadlock may avoid detection with
the Burch and Dill approach [8], whereas it follows directly from
the WEB-refinement approach that deadlock (or any other liveness
problem) is ruled out. In [11], it is shown how to automatically
verify safety and liveness properties of pipelined machines using
WEB-refinement. The proofs are carried out using UCLID and
Siege, and it is shown that Siege outperforms Chaff [14], which is
why we use Siege in this paper. Our results extend this work by
showing how to use WEB-refinement to automatically prove safety
and liveness in a compositional fashion.

3. A COMPOSITIONAL THEORY OF RE-
FINEMENT

Pipelined machine verification is an instance of the refinement prob-
lem: given an abstract specification, S, and a concrete specification,
I, show that I refines (implements) S. In the context of pipelined
machine verification, the idea is to show that MA, a machine mod-
eled at the microarchitecture level, a low level description that in-

2



cludes the pipeline, refines ISA, a machine modeled at the instruc-
tion set architecture level. A refinement proof is relative to a refine-
ment map, r, a function from MA states to ISA states. The refine-
ment map, r, shows us how to view an MA state as an ISA state,
e.g., the refinement map has to hide the MA components (such as
the pipeline) that do not appear in the ISA. What exactly do we
mean when we say MA refines ISA? We mean that the two systems
are stuttering bisimilar: for every pair of states w, s such that w is an
MA state and r(w) = s, we have that for every infinite path σ start-
ing at s, there is a “matching” infinite path δ starting at w, and con-
versely. That σ and δ “match” implies that applying r to the states
in δ results in a sequence that is equivalent to σ up to finite stut-
tering (repetition of states). Stuttering is a common phenomenon
when comparing systems at different levels of abstraction, e.g., if
the pipeline is empty, MA will require several steps to complete
an instruction, whereas ISA completes an instruction during ev-
ery step. Of course, reasoning about infinite paths is difficult to
automate, and in [9], WEB-refinement, an equivalent formulation
is given that requires only local reasoning. We will define WEB-
refinement and will show how to use it to reason compositionally
and automatically about pipelined machines.

The definitions are given in terms of general transition systems
(TS). A TS, M , is a triple 〈S,99K,L〉, consisting of a set of states, S,
a transition relation, 99K, and a labeling function L whose domain
S and where L(s) corresponds to what is visible at state s. We start
by defining the notion of WEB on a single transition system.

DEFINITION 1. B ⊆ S×S is a WEB on TS M = 〈S,99K,L〉 iff:

(1) B is an equivalence relation on S; and

(2) 〈∀s,w ∈ S :: sBw ⇒ L(s) = L(w)〉; and

(3) There exist functions erankl : S×S → N,erankt : S →W,

such that 〈W,l〉 is well-founded, and

〈∀s,u,w ∈ S :: sBw ∧ s 99K u ⇒

(a) 〈∃v :: w 99K v ∧ uBv〉 ∨

(b) (uBw ∧ erankt(u)l erankt(s)) ∨

(c) 〈∃v :: w 99K v ∧ sBv ∧

erankl(v,u) < erankl(w,u)〉〉

If states s and w are in the same equivalence class, then they have
the same infinite behaviors, up to stuttering. The first two con-
ditions are straightforward. The third WEB condition states that
given states s and w in the same class, such that s can step to u, u is
either matched by a step from w, or u and w are in the same class
and erankt decreases (which guarantees that w is eventually forced
to take a step), or some successor v of w is in the same class as s
and erankl decreases (to guarantee that u is eventually matched).
The point of the above definition is that it allows us to avoid rea-
soning about infinite sequences, since to prove the WEB conditions
reasoning about single steps of 99K suffices. We now show how to
use the definition of WEB to define the notion of WEB-refinement.

DEFINITION 2. (WEB Refinement) Let M = 〈S,99K,L〉, M ′ =
〈S′,99K

′,L′〉, and r : S → S′. We say that M is a WEB refinement
of M ′ with respect to refinement map r, written M ≈r M ′, if there
exists a relation, B, such that 〈∀s ∈ S :: sBr(s)〉 and B is a WEB on
the TS 〈S]S′,99K ] 99K

′,L〉, where L(s) = L′(s) for s an S′ state
and L(s) = L′(r(s)) otherwise.

To apply the above definition in the context of pipelined machine
verification, M ′ corresponds to the ISA and M corresponds to MA.
It turns out that if MA is a refinement of ISA, then the two ma-
chines satisfy the same formulas expressible in the temporal logic
CTL∗ \X, over the state components visible at the instruction set
architecture level. CTL∗ \X is a very expressive temporal logic,
allowing one to express both safety and liveness properties.

The above notion is compositional, that is we can prove the fol-
lowing theorem, where r;q denotes composition, i.e., (r;q)(s) =
q(r(s)).

THEOREM 1. (Composition)
If M ≈r M ′ and M ′ ≈q M ′′ then M ≈r;q M ′′.

To use WEB-refinement for automatic verification of pipelined ma-
chines we strengthen the WEB-refinement proof obligation such
that we obtain a CLU-expressible statement that holds for the ex-
amples we consider. The details appear elsewhere [11]; here we
review the essential elements. The equivalence classes of B con-
sist of one ISA state and all the MA states that map to the ISA
state under r, thus, condition 2 of the WEB definition clearly holds.
By using oracle variables, we can make ISA and MA determinis-
tic [10], and after some symbolic manipulation, we can strengthen
condition 3 of the WEB definition to the following “core theorem”,
where rank is a function that maps states of MA into the natural
numbers.

〈∀w ∈ MA :: s = r(w) ∧ u = ISA-step(s) ∧

v = MA-step(w) ∧ u 6= r(v)

=⇒ s = r(v) ∧ rank(v) < rank(w)〉

In the formula above ISA-step is the function which steps the
ISA machine once and MA-step is the function which steps the
MA machine once. The proof obligation relating s and v is the
safety component, and the proof obligation that rank(v) < rank(w)
is the liveness component.

4. DEEP PIPELINE EXAMPLE
We prove that a pipeline model “MA2” with 7 stages including 2-
cycle instruction fetch (F1, F2), instruction decode (ID), execute
(EX), 2-cycle memory access (M1, M2), and write back (WB)
termed refines MA1, pipeline model with 6 stages including F1,
ID, EX, M1, M2, and WB. Both machines implement the follow-
ing abstract instruction types. ALU instructions, loads, stores, and
branch instructions, with register-register and register-immediate
addressing modes. The pipeline organization is inspired by the
Intel XScale processor. Notice that the difference between MA1
and MA2 is that MA2 has a 2-cycle fetch stage and a total of 6
pipeline latches, and MA1 has a 1-cycle fetch stage with a total
of 5 pipeline latches. Relating machines with different number
of pipeline latches allows us to verify deep pipelined machines in
stages, by exploiting the compositional property of WEB-refinements.
We demonstrate the verification of a 10 stage deep pipelined ma-
chine with a 5-cycle fetch stage in 5 steps, where the steps involve
relating the 10 stage pipeline to a 9 stage pipeline, to an 8 stage
pipeline, . . , to a 6 stage pipeline, to the ISA, using flushing as
a refinement map. We now describe how we define the refinement
map between the various machines.

Bubbles are introduced in the pipeline due to stalls and mispre-
dicted branch instructions in both MA1 and MA2. For MA2, stall

3



Table 1: Verification times and statistics for the direct and com-
positional verification of the deep pipelined example.

Verification Time [sec]Processor CNF Vars CNF Clauses
Siege Total

F6 40,083 119,083 13.5 20.6
F7 53,441 159,010 128.4 138.2
F8 95,456 284,557 582.6 599.6
F9 143,954 429,700 2139.2 2165.7
F10 566,784 1,696,156 FAILED NA
6-7 855 2,341 0.01 0.22
7-8 442 1,180 0.01 0.17
8-9 337 916 0.01 0.15
9-10 3351 9754 0.01 0.78

introduces a bubble in the 3rd latch. Branches are resolved in the
memory stage and mispredicted branches introduce bubbles in the
first 4 latches. Based on the above observations, we implement 3
invariants, and also check that they are inductive. The invariants
are 1) if latch 1 is invalid, then latches 2, 3, and 4 are invalid; 2) if
latch 1 is valid and latch 2 is invalid, then latches 3, 4, and 5 are
invalid; 3) if both latches 1 and 2 are valid, and latches 3 and 4 are
invalid, then latches 5 and 6 are invalid. We required invariant 1 to
prove invariant 2 and both invariants 1 and 2 to prove invariant 3.
These invariants reduce the reachable MA2 states, allowing us to
simplify the refinement map.

MA1 stutters with respect to MA2 when a branch mispredict oc-
curs, as the number of cycles required for MA1 and MA2 to recover
from a branch mispredict are 3 and 4, respectively. Therefore, the
proof obligation requires both safety and liveness components and
is identical to the “core theorem”. The refinement map from MA2
to MA1 is defined considering 3 cases. In all the cases, the last 3
latches, the register file, and the data memory in MA2 map to the
last 3 latches, the register file, and the data memory in MA1. Case
1 occurs if in MA2, the first latch is invalid, or the first latch is
valid and the second latch is invalid, or the first 2 latches are valid
and latches 3 and 4 are invalid. For case 1, the program counter
and the first 2 latches in MA2 map to the program counter and the
first 2 latches in MA1. The rank function is assigned a value 1.
Since latch 3 in MA2 is invalid in the first case, we ignore it. Case
2 occurs when latches 1 through 3 in MA2 are valid and latches 4
through 6 are invalid. In this case, MA2 has stuttered. So we assign
a rank value 0, and we project the history of the program counter in
latch 1 of MA2 to the program counter in MA1. Latches 2 and 3 in
MA2 map to latches 1 and 2 in MA1, and we throw away latch 1 in
MA2. Case 3 occurs when both case 1 and case 2 do not hold. In
case 3, the mapping of states is the same as in case 2, but MA2 is
assigned a rank value of 1. The other refinement maps are defined
in a similar fashion.

Table 4 presents the results for this example. Prefix “F” refers to ap-
plying flushing as a refinement map using the direct technique. “6”,
”7”, “8”, “9”, and “10” refer to the 6 stage, 7 stage, 8 stage, 9 stage,
and 10 stage MA machines, respectively. The models are expressed
in the CLU logic, which are then translated to CNF formulas using
UCLID. The Siege SAT solver is used to check the CNF formu-
las. The experiments were conducted on an Intel XEON 2.20GHz
processor with an L1 cache size of 512KB.

Figure 4 depicts the verification time required for both the direct
and the composition methods for each of the intermediate models

10

100

1000

10000

6 7 8 9 10

V
er

ifi
ca

tio
n 

T
im

e 
us

in
g 

S
ie

ge
 [s

ec
]

Number of Pipeline Stages

Compositional approach
Direct Approach

Figure 1: Comparison of direct and compositional approach
for the deep pipelined example.

and for the final 10 stage pipeline. As can be seen from Figure 4,
the verification cost is exponential (the y-axis is a logarithmic scale)
for the direct method for each new pipeline stage, whereas, for the
composition technique, the verification cost is almost a constant.
Notice that the state-of-the- art SAT solver Siege failed to produce
a result when applying the direct method to the 10 stage pipelined
machine, and the composition technique required just 22 seconds
for this example. Siege has been shown to have a speedup of a 20
over the Chaff SAT solver [11].

5. VERIFICATION OF INSTRUCTION CACHE,
DATA CACHE AND WRITE BUFFER

We use the compositional property of WEB-refinement to verify a
complex processor model in stages. We compare the compositional
approach to verifying the processor model using the commitment
approach. The model has 7 stages and features such as instruction
cache, data cache, and a write buffer. We prove the correctness
of the 7 stage model, and then the instruction cache, data cache
and write buffer in stages. In the following discussion, we use ISA
for the specification, “7S” for 7 stage model, “IC” for the model
with instruction cache, “DC” for the model with instruction and
data cache, and “WRB” for the model with instruction cache, data
cache and write buffer.

We model a direct mapped instruction and data cache. The instruc-
tion cache is modeled using three memory elements ICache-Valid,
ICache-Tag, and ICache-Block that take an index as input
and returns a predicate indicating if the entry in the instruction
cache is valid, the tag, and the data block, respectively. Three unin-
terpreted functions GetIndex, GetTag and GetBlockOffset, that take
the program counter as input, are used to obtain the index, tag, and
the block offset, respectively. Another uninterpreted function Se-
lectWord is used to extract the instruction from the data block. The
instruction memory is modeled as a lambda expression that takes
2 arguments, an index and a tag, and returns a block of data. This
way of modeling the instruction memory allows the us to match up
the contents of the instruction memory and the instruction cache.

The state components of IC and 7S are identical except that IC
has an instruction cache. Therefore 7S and IC do not stutter with
respect to one another. Let 7S be MA1 and IC be MA2. The WEB-

4



PC IC

ICPC
DC

DC

WB

ICPC

PC

WRB

DC

IC

7S

Figure 2: Refinement map projecting WRB on DC, DC on IC,
IC on 7S.

refinement proof reduces to:

s = r(w) ∧ u = MA1-step(s) ∧ v = MA2-step(w)

=⇒ u = r(v)

where, s and u are MA1 states, w and v are MA2 states, r is the re-
finement map from MA2 to MA1, and MA1-step and MA2-step
are the functions corresponding to stepping MA1 and MA2, respec-
tively. The above theorem is applicable to any MA1 and MA2 that
do not stutter. All the state components, including the program
counter, data memory, register file and pipeline latches, in IC are
identical to the state components in 7S, except that IC has an in-
struction cache. Therefore, a refinement map from IC to 7S can be
obtained by dropping the instruction cache state and retaining all
other state components. We use the following invariant.

ICache-Valid(I) ∧ ICache-Tag(I) = T

=⇒ICache-Block(I) = IMemory(I,T )

In the above formula, I is an arbitrary index value and T an arbitrary
tag value. The invariant states that if I and T are the index and tag
for a particular memory address, if the entry corresponding to index
I in the instruction cache is valid and the tag in the cache is equal
to T, then the data block in the cache should be equal to the data
block from the instruction memory. The idea is that valid instruc-
tion cache entries should be consistent with those in the instruction
memory. We also prove that the instruction cache invariant is in-
ductive, i.e., we prove that if the invariant holds for an arbitrary IC
state w, then it holds for v, where v is obtained by stepping w once.

The data cache is direct mapped and modeled similar to the in-
struction cache. Writes to the data memory are implemented as
write-through, and update the data cache. The proof that DC (the
implementation with an instruction and data cache) refines IC is
identical to the proof that IC refines 7S. The refinement map from

Table 2: Verification times and statistics for direct and com-
positional verification of the instruction cache, data cache, and
write buffer.

Verification Time [sec]Processor CNF Vars CNF Clauses
Siege Total

C7S 12,495 36,925 29 32.3
CIC 41,486 122,617 98.9 106.4
CDC 70,090 206,701 208.1 230.2

CWRB 101,065 298,780 324.5 360.5
CM-IC 96 229 0.01 0.06
CM-DC 154 379 0.01 0.08

CM-WRB 247 613 0.01 0.17

DC to IC is defined by ignoring the data cache state and retaining
all other state elements in DC, including the instruction cache. An
invariant similar to the instruction cache is required for the data
cache that all the valid entries in the data cache are consistent with
the data memory.

The write buffer is implemented as a queue and has 4 entries. Each
entry has a data part, an address part and a valid bit. Store instruc-
tions do not update the data memory directly, but write to the tail of
the write buffer queue. The head of the write buffer queue is read
and used to update the data memory. Reads from the data memory
have to take into account the valid entries in the write buffer, as
the write buffer has the most recent data values. Among the write
buffer entries, priority is given to the entries closer to the tail. WRB
(the implementation with instruction cache, data cache, and write
buffer), is identical in structure to DC, other than the write buffer.
WRB and DC do not stutter with respect to each other and so the
proof obligation that WRB refines DC reduces to the proof obli-
gation for the example with the instruction cache. The refinement
map is defined by updating the data memory with valid entries in
the write buffer, ignoring the write buffer states and retaining all
other state elements including the instruction and data cache states.
We require an inductive invariant for the write buffer that the com-
bined state of the write buffer and the data memory is consistent
with the state of a data memory that was updated directly by the
implementation, without going through a write buffer. A combined
data memory and write buffer state can be obtained by updating
the data memory with all the valid entries in the write buffer. If D
is the data memory in WRB, R, is a memory that is similar to D
except that store instructions directly update R instead of moving
through the write buffer, U , is the memory state obtained after writ-
ing all the valid write buffer entries to D, then the invariant states
that R = U .

Table 5 presents the results for the composition example with the
instruction cache, data cache, and write buffer. Prefix “C” refers
to the use of commitment approach as a refinement map, “CM-IC”,
“CM-DC”, and “CM-WRB” refer to the composition steps between
IC and 7S, DC and IC, and WRB and DC. The experimental setup
and tool flow are identical with the previous example. It can be
seen from Table 5 that when comparing the verification times, the
compositional approach has a speedup of about 11 over the direct
approach for WRB.

Probably the most difficult part of the verification effort is under-
standing bugs. Since the compositional approach reduces the veri-
fication problem into simpler subproblems, the debugging process
is much simplified. In the example of the instruction cache, one

5



can determine that a bug is not due to the instruction cache simply
by noting that another stage of the composition fails. Similarly, if
the bug occurs in the composition step involving the cache, then
the bug is due to the instruction cache. This is impossible to do
when verifying the complex processor in a monolithic fashion. As
a concrete example of how compositional verification makes de-
bugging simpler, we note that when trying to verify a buggy variant
of the instruction cache (while determining whether a cache hit has
occurred, the design did not take into account if the cache block
is valid), we found that the counter example generated by UCLID
for the direct approach is 4429 lines in size while the counter ex-
ample generated from the composition step is 390 lines. Obviously
the shorter counterexample was much simpler to understand and,
consequently, fixing the bug was much easier. This aspect of com-
positional verification may well be more important than the impov-
ement we get in verification times.

6. CONCLUSIONS AND FUTURE WORK
Our main contribution was to show how to use compositional rea-
soning to automatically prove that pipelined machine models sat-
isfy the same safety and liveness properties as their correspond-
ing instruction set architecture models. This allowed us to rea-
son about deep pipelines in an efficient way, obtaining exponential
savings in verification times over previous monolithic approaches,
and, in fact, we can easily verify models that state-of-the-art tools
cannot currently handle. As a further example of our composi-
tional method, we showed how to verify a complex pipelined ma-
chine with branch prediction, instruction and data caches, and a
write buffer, in stages, thereby, reducing the verification time by
more than a factor of 10 over current state-of-the-art monolithic
approaches. We also showed how to integrate compositional rea-
soning into the design cycle and how this leads to faster verification
times, shorter and clearer counterexamples, and enhanced design
understanding by verification engineers. For future work, we plan
to apply compositional reasoning to more complex processors.

7. REFERENCES
[1] R. E. Bryant, S. German, and M. N. Velev. Exploiting

positive equality in a logic of equality with uninterpreted
functions. In N. Halbwachs and D. Peled, editors,
Computer-Aided Verification–CAV ’99, volume 1633 of
LNCS, pages 470–482. Springer-Verlag, 1999.

[2] R. E. Bryant, S. K. Lahiri, and S. Seshia. Modeling and
verifying systems using a logic of counter arithmetic with
lambda expressions and uninterpreted functions. In
E. Brinksma and K. Larsen, editors, Computer-Aided
Verification–CAV 2002, volume 2404 of LNCS, pages 78–92.
Springer-Verlag, 2002.

[3] J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessor control. In Computer-Aided
Verification (CAV ’94), volume 818 of LNCS, pages 68–80.
Springer-Verlag, 1994.

[4] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of
correctness of a processor with reorder buffer using the
completion functions approach. In N. Halbwachs and
D. Peled, editors, Computer-Aided Verification–CAV ’99,
volume 1633 of LNCS. Springer-Verlag, 1999.

[5] Omitted for blind review.

[6] M. Kaufmann and J. S. Moore. ACL2 homepage. See URL
http://www.cs.utexas.edu/users/moore/-
acl2.

[7] S. Lahiri, S. Seshia, and R. Bryant. Modeling and verification
of out-of-order microprocessors using UCLID. In Formal
Methods in Computer-Aided Design (FMCAD’02), volume
2517 of LNCS, pages 142–159. Springer-Verlag, 2002.

[8] Omitted for blind review.

[9] Omitted for blind review.

[10] Omitted for blind review.

[11] Omitted for blind review.

[12] K. L. McMillan. Verification of an implementation of
Tomasulo’s algorithm by compositional model checking. In
A. J. Hu and M. Y. Vardi, editors, Computer Aided
Verification (CAV ’98), volume 1427 of LNCS, pages
110–121. Springer-Verlag, 1998.

[13] P. Mishra and N. Dutt. Modeling and verification of
pipelined embedded processors in the presence of hazards
and exceptions. In IFIP WCC 2002 Stream 7 on Distributed
and Parallel Embedded Systems (DIPES’02), 2002.

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient SAT solver. Design
Automation Conference (DAC’01), pages 530–535, 2001.

[15] V. A. Patankar, A. Jain, and R. E. Bryant. Formal verification
of an ARM processor. In Twelfth International Conference
On VLSI Design, pages 282–287, 1999.

[16] L. Ryan. Siege homepage. See URL
http://www.cs.sfu.ca/∼loryan/personal.

[17] J. Sawada. Formal Verification of an Advanced Pipelined
Machine. PhD thesis, University of Texas at Austin, Dec.
1999. See URL http://www.cs.utexas.edu/-
users/sawada/dissertation/.

[18] Omitted for blind review.

[19] J. Sawada and W. A. Hunt, Jr. Processor verification with
precise exceptions and speculative execution. In A. J. Hu and
M. Y. Vardi, editors, Computer Aided Verification (CAV ’98),
volume 1427 of LNCS, pages 135–146. Springer-Verlag,
1998.

[20] Omitted for blind review.

6


