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ABSTRACT: In this paper, first, an overview is given about the whole scenario of analogic
CNN computing. Next, two areas on CNN Computing Technology are considered briefly: (i) the
architectural advances, especially the variable resolution and adaptation in space, time, and
value  and (ii ) the computational infrastructure from high level language and compiler to
physical implementations. Three basic physical implementations are supposed : analogic CMOS,
emulated digital CMOS and optical. The computational infrastructure  is the same for all
implementations, except the physical interfaces.

1. Introduction
A few months ago, Intel  shipped  the first Tera FLOPS supercomputer consisting almost ten thousand  200 MHz

Pentium microprocessors. In many image processing applications we really need this trilli on operations per second,
except the operations are special and do not require the 32 bit floating point accuracy. The alternative is the analogic
CNN array computer performing about Tera equivalent operations per second, however, on a single chip.

Ten years ago, in the seminal, paradigm forming, and now historic paper L.O.Chua and L.Yang  [1] introduced
the Cellular Neural Network (CNN), now we call  also Cellular Nonlinear Network, as  a 2D or 3D regular array of
locally interconnected nonlinear dynamic systems called neurons, or cells, whose global functionality is determined
by a small number of parameters. These parameters define the local interconnection pattern, called cloning template.
Once the cell i s given the cloning template, or simply the template,  specify the operation of the whole array. The
cloning  template is the protagonist in CNN. It is like a gene for spatio-temporal dynamics. Using  very simple cells,
even first order ones, practically all the simple and exotic spatio-temporal dynamic phenomena can be generated by
„engineering” the cloning template. Like genes, cloning templates can define a whole universe of phenomena.
Designing this template we can engineer this universe. Many useful templates were designed to implement useful
image processing functions and it was shown early that quite a few neuromorphic models of the visual pathway can
be represented by CNN models [8]. Due to local connectivity, CNN is very convenient in VLSI design.

The invention of the CNN Universal Machine architecture [3] put the CNN dynamics into a different perspective:
the CNN spatio-temporal dynamics, via the cloning template, became the atom, the elementary instruction of a stored
program in this new computational paradigm. A new world of analogic algorithms and software has been developing.

In this paper, first, an overview is given about the whole scenario of analogic CNN computing. Next, two areas on
CNN Computing Technology are considered briefly: (i) the architectural advances, especially the variable resolution
and adaptation in space, time, and value  and (ii ) the computational infrastructure from high level language and
compiler to  physical implementation. Three basic physical implementations are supposed : analogic CMOS,
emulated digital CMOS, and optical.

In section 2, the main areas in forming the analogic CNN computing paradigm are described and their relation is
shown. The main message is: three facts and trends, namely, (i) the implementation of morphology and PDE based
algorithms, (ii ) the present understanding  of the living  visual pathway, especially the retina, and (iii ) the physical
limitations of computing devices, all prove the need of  this new computational  framework. Section 3 deals with
natural extension of the CNN-UM architecture to incorporate variable resolution and adaptation in space, time and
signal values. In Section 4, the computational infrastructure is outlined; the same high level language, called Alpha, is
used for all the different implementations.
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2. The world of  analogic CNN computing
 In Figure 1, the main areas underlying and forming the analogic CNN computer are shown.

                                                      ===>>>   PRODUCTS
Figure 1. The main interacting areas in forming the analogic CNN computing paradigm
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The three main pill ars are

•  the nonlinear spatio-temporal dynamics defined by the CNN (see e.g. the very recent account [29]),

•  the CNN-UM architecture [3] as the computing framework and the analogic algorithms executed on this platform,

•  the physiologically faithful CNN models of the visual pathway, especially the retina, embedded in the „Bionic Eye”
multimodal framework implemented on the CNN-UM [6].

Recently, it became clear that the classical and well developed framework in image processing is not enough
powerful to solve complex  image processing and pattern recognition tasks. The new mathematical techniques,
mathematical morphology and especially the PDE related methods [22,24], however, need enormous computing
power when implemented on standard, even parallel digital computers. On the other hand, it turned out that most of
these methods are almost native in the analogic CNN computers [19, 14-16].

Computational complexity has been well studied and is directly related to the standard digital computers. Recently,
computational complexity studies on reals (due to Blum, Shub,and Smale) challenged this framework by showing its
limits when numerical algorithms on reals are considered. The Universal Machine on Integers (UMZ) is replaced by a
Universal Machine on Reals (UMR) using the so called Newton Machine, which (by nature) remains iterative. The
CNN-UM is , however, a continuous time, continuous value machine operating on flows (UMF) . The starting studies
show the relation between UMZ, UMR, and UMF [21].

The first physical implementations of the CNN-UM architecture [4,5] proved  the physical realizabilit y of the
concept. The 22x20 chip [4] has been able even  to robustly classify slightly different textures [28 The new, more
complex chips [25,26] increase the complexity into the 50x50 array domain and the forecasts for 1999 pointing
towards chips over the 100x100 barrier. In addition, the first analog buffer data storage, the ARAM, has also be
designed [27] providing the omly missing, non-standard chip in the CNN chipset and Engine Board [7].

The hardware and software development systems and software library provide the same computational infrastructure
as for standard digital computing, and the chipset architecture and Engine Board make this technology completely
transparent to digital systems as well as to bigger sensor arrays, respectively. We will deal with these questions in
more details in Section 4.

After the first application case studies [17,18,20, etc.], real-li fe applications has already been started using emulators
and prepare the way to products using more complex chips and Engine Boards.

3. Variable resolution and local adaptation
In what follows, we are introducing:

spatially global   Variable Resolution in
• space

• time

• signal value, and

• cell dynamics

as well as

locally Adaptive Space-variant templates by four ways:

• global template control by downloading images

• time invariant local control via local template control memories (TCM)

• slowly time varying plasticity via local template control signals (TCS)

• real - time  local  adaptation

It is emphasized that all these features are introduced in such a way that the basic advantages of the CNN UM

architecture remains valid. Recent studies on associative memory, learnong, and fuzzy CNN [9,10,17] show the need

for these possibiliti es.
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3.1 Variable resolution

Variable resolution is defined as follows:
• space

 variable grid size (fine/coarse); a few switches are needed in the analogic CMOS implementation, typical

values for  the grid ratios are 1: 3-5

• time

 fast and slow CNN time constants; typical values   τCNN = 1  and 5(10)

• signal value

multi shade , multi spectral (color), multi polarization  in the analogic and/or optical implementation,

multiple bit length and exponent length in the emulated digital implementation

• cell dynamics

 complex cells; 1st , 2nd, 3rd order     or  multi-layer first order cells are defined in a complex cell containing

one, two or three state variables (capacitors). In the CNN-UM , the complexity of the extended cells are only

slightly increased; using more LAM units, it will even remain constant.

3.2 Adaptive space variant templates

The introduction and definition of the locally Adaptive Space-variant templates is given as follows.

• global template control  is made by downloading images, e.g. areas with predetermined different bias

terms.

• time invariant local control is made via local template control memories (TCM).

The TCM values are calculated by template operations, then used in a Plasticity Rule to determine local template

elements, e.g. local illumination is calculated and set to the local bias terms (z). The key issue is that the number of

independently adapting values are small; instead of 19, one or two. For example, in a 4-element LAM if we have 2

TCM values (c1, c2) in a LAM:                     LAM [1-4] :  a1    a2     c1      c2

then we may use       e.g.        z = c1

or  A or B =

c2 c1 c2

c1 aoo  or  boo c1

c2 c1 c2

• slowly time varying plasticity is governed by local template control signals (TCS).

During, or within, a finite potentiation time Tp, a Potentiation Rule operator (implemented in the LAOU) will

determine the TCS value. Then this value is used in the Plasticity Rule to determine the change of the template

element values. For example,  decreasing or increasing the template value via the TCS, as a result of Short Term

Potentiation (STP) or Long term Potentiation (LTP) in neuromorphic models as typical Potentiation Rules.

As in case of TCM,  there is only one or two TCS value. For example, in a 4-element LAM we may have one TCM

and one TCS value:

LAM [1-4]:  a1    a2     c1       p1

                                   TCM    TCS
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The Potentiation Rule operator is implemented in the Local Analog (Output) Unit,  e.g. by a  Potentiation Rule

circuit controlled  by the CNN cell variable (input, state, or output), and resulting in the Template Control Signal p1.

Again, p1 controls the template elements locally via the Plasticity Rule.

• real - time  local  adaptation means the local template control signal acts immediately, for example,
the local ill umination value controls the bias term

4. Computational infrastructure

The analogic CNN computers are built up using the CNN Chip set architecture shown in Figure 2.

           analog bus

                               ….

                                                                        digital bus

                                                       instruction  bus
Figure 2. The CNN Chipset Architecture
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UM chip, or a software simulator, etc..
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For the time being, the CNN Applications Development Environment and Toolkit (CADETWin ) [11] and the
CNN Chip Prototyping System (CCPS) [12] are the designer’s frameworks and tools for  using  the Alpha language.
On Figure 3 we show the various levels of descriptions and controls representing an analogic CNN algorithm.

Figure 3. The levels of the software and the core engines

On the lowest level, the chips are embedded in their physical environment The AMC code will be translated into
firmware and electrical signals.

The CNN chips can be tested and prototyped for specific applications by using the CNN Chip Prototyping
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design their own Platforms and then the whole arsenal of Alpha programs, subroutines , etc. can be used to program
their chips.
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