RTI-Kit

V 0.2 Specification

Richard Fujimoto

18 March 1998

INTRODUCTION

RTI-Kit is a collection of libraries designed to support development of Run-Time Infrastructures (RTIs) for parallel and distributed simulation systems, especially federated simulation systems running on high performance compute platforms. Each library is designed so it can be used separately, or together with other RTI-Kit libraries, depending on what functionality is required by the user. It is envisioned that these libraries will be embedding into existing RTIs, e.g., to add new functionality or to enhance performance by exploiting the capabilities of a high performance interconnect. Alternatively, the libraries can be used in the development of new RTIs.

Multiple implementations of each library are envisioned that are targeted for different platforms, ranging from workstations interconnected with conventional networking technologies, to compute clusters using high speed interconnects, to shared or distributed memory multiprocessors. The initial implementation focuses on cluster computing platforms composed of Sun workstations interconnected via Myrinet switches.

The following, initial set of libraries are currently under development:

MCAST: provides group communication services

TM-Kit: provides time management services

MB-Lib: a simple library for allocating and releasing message buffers

It is envisioned that this set of libraries will be enhanced and grow over time.

An architecture diagram showing how RTI-Kit might be embedded into an existing RTI is shown in � REF _Ref405696085 * MERGEFORMAT �Figure 1�. The existing RTI will generates calls to MCAST to utilize the group communication services. Specifically, it will call MCAST to create, join, and leave groups, as well as to send and receive messages. If it wishes for these communication services to operate under a time management protocol, it will also generate calls to TM-Kit to initiate LBTS computations, and to provide TM-Kit with the information it needs to compute LBTS. For example, TM-Kit must be notified whenever a time stamped message is sent or received, in order to account for transient messages. For buffer allocation, the existing RTI can utilize its own memory management services by embedding callbacks into MCAST, or it can use MB-Lib for buffer allocation, as shown in � REF _Ref405696085 * MERGEFORMAT �Figure 1�.

MCAST and TM-Kit both require the use of basic communication services, defined in a module called FM-Lib. This communication layer software acts as a multiplexer to route messages to the appropriate module. If the existing RTI wishes to bypass MCAST for certain communications that it requires, it can either utilize FM-Lib directly, or use an altogether different mechanism. The latter option assumes, of course, this alternate mechanism can co-exist with FM-Lib. The current implementation of FM-Lib utilizes an API based on the Illinois Fast Messages (FM) software for its basic communication services, and provides only slightly enhanced services beyond what FM provides.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �1�. Architecture for RTI-Kit (for a single processor) embedded into an existing RTI.

The RTI-Kit Interface

A few conventions and procedures are used for all RTI-Kit libraries. In the current version, RTI-Kit assumes the number of processors used during the execution does not change, and all are available during initialization and throughout the entire execution. RTI-Kit automatically assigns processor numbers. If there are N processors, they are numbered 0, 1, … N-1. For the most part, RTI-Kit applications need not be concerned with the processor numbers that are assigned because they are used primarily for the internal operation of the library, and applications may use their own processor identification scheme independent of what RTI-Kit uses. The processor numbers used by RTI-Kit are available to RTI-Kit users through the following definitions:

RTIKIT_numnodes: number of processors in system

RTIKIT_nodeid: number of the local processor

These values are also available in individual libraries (e.g. MCAST, using the MCAST prefix, and TM-Kit, using the TM prefix) for convenience.

A few procedures than span multiple libraries are defined in RTI-Kit itself. The following procedure must be called during the initialization phase of each processor.

void RTIKIT_Init(void)

Initializes the libraries that are being used. See also the discussion concerning initialization of each of the individual libraries discussed below.

void RTIKIT_Tick (void)

This procedure services the wire. Incoming messages for each of the libraries being used are handled. For example, if MCAST is being used, message handlers may be invoked as a result of calling this procedure. If TM is being used, procedure calls may be made indicating LBTS computations have been completed.

MCAST: GROUP COMMUNICATION Library

MCAST provides reliable group communication services. A group is the central abstraction used in the this communication library. A group contains a list of subscribers to the group. Whenever a message is sent to the group, each subscriber is notified by a call to a procedure (a message handler) defined by the subscriber. A single processor may hold multiple subscriptions to a group, in which case it receives a call back for each one when a message for the group is received. Any processor can send a message to any group; in particular, one need not be subscribed to the group in order to send a message to it. If the processor sending a message to the group is also subscribed to the group, it will still receive a call back for each subscription, i.e., processors can send messages to themselves using this service. Of course, the message handler can simply ignore messages sent by a processor to itself if this is the desired semantics.

Each group has two unique names that are used to identify it: (1) a unique ascii string name, and (2) an internal handle (of type MCAST_Handle) that serves as a pointer to the group. The internal name is required to send/receive messages to/from the group. A name server is provided that maps the ascii names of groups to their internal name. To maximize performance, the ascii name should only be used to initially obtain a handle to the group, and the handle should be used thereafter.

Initialization

Each processor must call the following procedures when it begins executing in order to ensure proper initialization of the library. These procedures must be called before RTIKIT_Init() is called.

void RTIKIT_UsingMCAST (void)

This procedure sets a flag in RTI-Kit to indicate the MCAST library will be used.

void RTIKIT_MCASTParameter (parameter, value)

This procedure sets a parameter to be used by MCAST. Specific MCAST parameters have not yet been defined.

Creating and Obtaining Pointers to Groups

The following types are defined by MCAST:

MCAST_Handle: internal name for a group

MCAST_Addr: pointer to a memory location (an address)

The procedures defined below are available for creating and obtaining handles to groups:

int MCAST_Create (char *Name, MCAST_Handle *Handle, long TransportType)

MCAST_Create creates a new group. It allocates memory for a group handle, fills it in, and returns a pointer to the handle in Handle. It is the caller’s responsibility to reclaim memory for the handle if it is no longer needed. Name is the unique, case sensitive, ascii string name assigned to the group. It is an error to create two groups with the same ascii string name. TransportType should be MCAST_RELIABLE if reliable communication is to be used, or MCAST_BEST_EFFORT if best effort delivery is to be used. The value returned by this procedure is one of the following values:

0 indicates the operation completed successfully

MCAST_MemoryError indicates memory could not be allocated for the handle.

MCAST_DuplicateName indicates another group with the same name already exists.

In the current implementation, performance will be maximized if the processor creating the group is also the one that most frequently sends messages to the group.

int MCAST_GetHandle (char *Name, MCAST_Handle *Handle)

MCAST_GetHandle is used to obtain the handle for the group who’s ascii string name is Name. If the group exists, memory for a handle is allocated, and a pointer to the handle is returned to the caller in Handle. If the group does not exist or an error occurred, the value returned in Handle is not specified. The integer returned by this procedure is one of the following values:

0 indicates the operation completed successfully.

MCAST_MemoryError indicates memory could not be allocated for the handle.

MCAST_NoGroup indicates no group with this name could be found.

Joining and Leaving Groups

A handle for the group must be obtained before joining that group. Once the handle has been obtained, procedures are provided for joining and leaving the group. A single processor may subscribe to a group multiple times, e.g., there may be multiple entities within the processor wanting to subscribe to the group. As will be described later, a message handler is associated with each subscription.

long MCAST_Subscribe (MCAST_Handle Handle, long *MsgHandler(), MCAST_Addr *Context, long *ID)

MCAST_Subscribe subscribes the caller to the group referred to by Handle. MsgHandler() is a procedure that is called each time a message arrives for that group. Context is a pointer to application defined information pertaining to this subscription; the value specified here is passed to MsgHandler() each time it is called. ID returns an identifier for this subscription that is needed to later unsubscribe to the group. The group’s WhereProc() procedure (discussed below) must be set by the processor before subscribing to the group. The integer returned by MCAST_Subscribe() is one of the following values:

0 indicates the operation completed successfully

MCAST_CommError indicates communications with the Owner was required to subscribe to the group, but this communication failed.

MCAST_MemoryError indicates memory could not be allocated to accommodate the new subscription.

MCAST_GroupFull indicates the subscription failed because the maximum number of subscriptions to the group has already been reached.

long MCAST_UnSubscribe (MCAST_Handle *Handle, long ID)

MCAST_UnSubscribe() drops a subscription to the group specified by Handle. ID indicates the subscription number, returned by MCAST_Subscribe(), that is being cancelled. The integer value returned by MCAST_UnSubscribe is one of the following values:

0 indicates the operation completed successfully

MCAST_CommError indicates communications with the owner was required to cancel the subscription, but this communication failed.

Sending and Receiving Messages

A sequence of calls to application defined procedures is made when a message arrives that has been sent to some group:

an application defined where-procedure is called to specify where the incoming message is to be stored; this is invoked only once for each incoming message, even if the processor holds multiple subscriptions to the group. Each processor must specify exactly one where-procedure for each group to which it has subscribed.

an application defined message handler procedure is called for each subscriber when a message arrives. A single message arrival may generate several calls to message handlers, one for each subscriber that resides on the processor receiving the message.

an optional application defined end procedure is called after all invocations of the message handler for the incoming message have been made.

The where-procedure enables all buffer management functions to be realized outside of MCAST, allowing the application to taylor buffer management to its own needs. It also avoids an extra copy in loading the incoming message into an MCAST buffer, and then transferring it to where the application really wants it loaded. Rather, MCAST will load the incoming message directly into where the application specifies it should be loaded via the where-procedure. For example, a where-procedure might allocate one of the application’s internal memory buffers to hold the incoming message, and return a pointer to this buffer. Alternatively, it may specify incoming messages should always be directly loaded into some fixed memory locations, e.g., in the case the application is only interested in the most recent message to arrive on the group rather than being bothered by every message that is received.

MCAST only creates one copy of each incoming message that is shared among all of the subscribers to the group residing on the processor. Thus it is important that each subscriber not modify the copy of the message passed to it, unless it is certain it is the only subscriber. Again, this is done to limit memory copying to only those situations where it is necessary. If a subscriber needs a private copy of an incoming message because it wishes to modify it, its message handler must generate this copy.

Thus, when a message is received, MCAST will look up the group for the message, and call the where-procedure once to determine where the message should be written. The message is then written to that location, and the message handler is called, once for each subscriber to the group that resides on this processor. Finally, the end procedure is called once.

void MCAST_Send (MCAST_Handle Handle, MCAST_Addr *Msg, long MsgSize, long MsgType, long*Count)

This procedure sends a message pointed to by Msg that is of MsgSize bytes to the group specified by Handle. The message is treated as an array of bytes, and is sent, uninterpreted, to the destination. Data marshaling must be performed by the sender/receiver. MsgType is an application defined value specifying the type of message being sent, and is passed uninterpreted to subscribers to the group. This procedure returns the number of physical processors to which the message is sent in Count. If Count is NULL, no value will be returned.

One physical copy of the message will be sent to each processor subscribed to group, even if a processor has subscribed to the group multiple times (e.g., for multiple entities modeled in the processor).

int MCAST_SetWhereProc(MCAST_Handle Handle, MCAST_Addr *WhereProc(), MCAST_Addr *WContext)

This procedure sets WhereProc() as the procedure that is called whenever this processor receives a message for the group specified by Handle. WhereProc() is called exactly once for each incoming message (even if the processor has subscribed to the group multiple times), and must return a value indicating where the incoming message should be stored. There is only one WhereProc() procedure defined per group per processor. WContext is a pointer to context information that is passed to WhereProc() on each invocation.

int MCAST_SetEndProc (MCAST_Handle Handle, MCAST_Addr *EndProc(), MCAST_Addr *EContext)

This procedure sets EndProc() as the procedure that is called whenever this processor receives a message for the group specified by Handle. There is only one EndProc() procedure defined per group per processor. EContext is a pointer to context information that is passed to WhereProc() on each invocation.

The application must define the following procedures:

MCAST_Addr *Appl_WhereProc (long MsgSize, MCAST_Addr *WContext, long MsgType)

This procedure is called when a message arrives, and must indicate where the incoming message is to be stored. It returns a pointer to the location of the message. MsgSize indicates the size of the incoming message in bytes. WContext is a pointer to application information concerning the group (defined by the caller). This information can be used by the WhereProc() to decide where to write the incoming message. MsgType is also an application defined parameter, specified by the sender of the message. This procedure returns either a pointer to the location where the message should be written, or zero to indicate the application has no where to put the message. In this case, the message is discarded. This procedure is called only once for each incoming message, even if there are multiple subscribers to the group residing on this processor.

int *Appl_MsgHandler (MCAST_Addr *Message, long MsgSize, MCAST_Addr *Context, long MsgType)

This is the message handler procedure called for each subscriber when a message arrives for a group. Message is a pointer to the message (the value returned by the WhereProc() procedure called when the message arrived), MsgSize is the size of the message in bytes, and Context is a pointer to context information concerning the group to which the message was sent. MsgType indicates the type of message that was sent, as specified by the sender of the message.

int Appl_EndProc (MCAST_Addr *Message, long MsgSize, MCAST_Addr *EContext, long MsgType)

This procedure is called after all of the message handlers for the incoming message have been called. The parameters are identical to those passed in the message handler procedure.

There are certain limitations on what operations can be performed with a handler. In the current implementation, recursive calls to FM’s “tick” procedure (called FM_extract) are not allowed. This means a handler cannot invoke primitives that require RTI-Kit to wait until a new message is received. For instance, MCAST_GetHandle may require MCAST to wait for a “reply message” to be sent from another processor. This will cause MCAST to lock up. In the current implementation, the following primitives cannot be called with a handler: RTIKIT_Tick, MCAST_Create, MCAST_GetHandle, MCAST_Subscribe, MCAST_UnSubscribe, and MCAST_Barrier. Sending a message within a handler is allowed.

MCAST also defines the following procedures that can be invoked by message handler procedures (these are not implemented in the current version, however):

long MCAST_HandlerNumber (void)

This procedure returns an integer i indicating that the message handler now executing is the ith message handler to be invoked as a result of the incoming message. i ranges from 1 up to the number of handlers that are invoked as a result of receiving a message.

long MCAST_NumberOfHandlers(void)

This procedure returns an integer indicating the total number of handlers that are called in the current message receipt.

Barrier Synchronization

The following barrier synchronization primitive is provided:

void MCAST_Barrier(void)

The calling processor is blocked until all processors have executed MCAST_Barrier(). When all have done so, MCAST_Barrier() returns, allowing the caller to continue execution.

Queued Communications

Note: Queued communications are not implemented in the current version of RTI-Kit.

Rather than using message handlers to receive messages, a simpler interface can be used where incoming messages are placed into a queue, and the application can poll the queue to determine if any messages have been received. MCAST provides its own handler that is called to automatically queue incoming messages.

To use this facility, a different subscription procedure is used that does not require specification of a message handler, and a separate procedure is defined to poll the message queue. All incoming messages arriving on this group will be placed into the queue. Other MCAST primitives (e.g., where-procedures) must still be used to allocate memory for the message. If a processor subscribes to the group more than one time, only a single physical copy of the message will be generated for each receiver.

int MCAST_QSubscribe (MCAST_Handle *Handle, long *ID)

MCAST_QSubscribe subscribes the caller to the group referred to by Handle. ID returns an identifier for this subscription that is needed to later unsubscribe to the group. The group’s WhereProc() procedure must be set by the processor before subscribing to the group. All messages arriving from all groups using queued subscriptions will be placed into a single queue. The integer returned by MCAST_QSubscribe() is one of the following values:

0 indicates the operation completed successfully

MCAST_CommError indicates communications with the Owner was required to subscribe to the group, but this communication failed.

MCAST_MemoryError indicates memory could not be allocated to accommodate the new subscription.

MCAST_GroupFull indicates the subscription failed because the maximum number of subscriptions to the group has already been reached.

The following procedure is used to retrieve messages from the queue.

MCAST_Addr MCAST_GetMsg(long *MsgType)

Get the next message from the message queue, if there is one. This procedure returns a pointer to the message, if one was found, or 0 is the queue was empty. If a message was found, MsgType indicates the type of message that was received.

TM-Kit: Time Management Services

The services in TM-Kit provide the basic primitives necessary for time management in distributed simulations. At the heart of TM-Kit are algorithms for computing LBTS information, i.e., a lower bound on the time stamp of future messages that can be received in the future by each processor. The other procedures, for the most part, are there to provide enough information to compute LBTS, and do not actually perform any real services. For example, the “communication primitives” TM_Out() and TM_In() do not actually send and receive messages. They only inform the TM software that messages have been sent/received.

TM-Kit users must do the following to an existing RTI to use these services:

Make calls to initiate LBTS computations and define handlers that are called when a LBTS computation initiated by another processor has been detected, or when an LBTS computation has completed.

Add calls to TM-Kit on message sends and receives so that TM-Kit can properly account for transient messages. In particular, the current version of TM-Kit requires the caller to specify the number of destinations receiving each message. “Destinations” is defined below. This is a non-trivial issue if multicast communications are used. MCAST provides this information on each message send.

The type for time values must be defined, as well as functions operating on time values. These definitions are compiled into TM-Kit when the library is built.

TM-Kit requires that certain information be piggybacked onto time stamped messages. This information must be added each time a message is sent, and extracted and passed to TM-Kit when messages are received.

TM-Kit needs to know the topology (which processors send messages to which others) and the lookahead for connections. Thus, calls to TM-Kit are required to initially specify this information and indicate when the topology or lookahead changes. This aspect is not implemented in the current version of TM-Kit.

In the current specification, TM-Kit does not directly handle time stamped messages. Thus, message queueing and determining when it is “safe” to deliver time stamped messages is performed outside of TM-Kit. TM-Kit should essentially be viewed as a calculator that computes LBTS values.

The underlying computation model for the simulation is viewed as a collection of processors that communicate through message channels. A parallel computer could be designated as a single processor if it provides its own internal time management mechanism (e.g., a Time Warp implementation), or each processor within the parallel computer can be viewed as a separate processor, in which case TM-Kit provides time management among processors in the parallel machine. Channels are used only for the purpose of determining which processors communicate with which others. Each channel can have multiple senders and multiple receivers. A point-to-point connection is a special case of a channel.

Initialization

Each processor must call the following procedures when it begins executing in order to initialize the library. These procedures must be called before RTIKit_Init() is called.

void TM_UsingTM (void)

Sets a flag in RTI-Kit to indicate the TM-Kit library will be used. It must be called before calling RTIKIT_Init().

void TM_Parameter (parameter, value)

This procedure sets a parameter to be used by TM-Kit. It must be called before calling RTIKIT_Init(). Parameter values are defined below. The name indicates what should be specified in the parameter field above, and the type specified in parentheses indicates the type of the parameter itself:

TM_FanOut (long): This is the fanout of the tree used internal to TM-Kit for performing reduction operations. The default value for this parameter is two.

This procedure is not implemented in the current version. A default fan-out value is always used.

Time Values

Different applications may use different representations of the logical time type. In particular, the time field may contain multiple fields (e.g., priorities, tie breakers, etc.). The LBTS algorithm must be able to do comparisons of time values. Thus, the software using the TM services must specify the format of the time type, and provide functions for performing certain operations on time values. These functions can be implemented by macro definitions to maximize performance.

The application using TM-Kit must define the following that are compiled with TM-Kit when the library is built, if the default time representation (type double) is not used:

TM_Time

Type used for time values. Normally, this will be defined as a primitive data type (e.g., double) or a structure.

TM_Time TM_Min(TM_Time A, TM_Time B)

This function compares two time values A and B, and returns the smaller of the two.

TM_Time TM_Add(TM_Time A, TM_Time B)

This function adds two time values A and B, and returns their sum.

TM_LT (TM_Time A, TM_Time B)

TM_LE (TM_Time A, TM_Time B)

TM_GT (TM_Time A, TM_Time B)

TM_GE (TM_Time A, TM_Time B)

TM_EQ (TM_Time A, TM_Time B)

These function define standard logical comparison operators. TM_LT returns TRUE if A < B, else it returns FALSE. Similarly, TM_LE, TM_GT, TM_GE, and TM_EQ return TRUE if A<=B, A>B, A>=B, or A==B, respectively.

TM_Time TM_IDENT

This is a constant defining the identity operator for the TM_Min operation. In other words, TM_Min (TM_IDENT, X) returns X for any value of X. TM_IDENT is normally defined as the largest representable time value.

In the current implementation, these functions and constants are defined as macros in the file Òtimedefs.hÓ. TM_Time is defined as a double precision floating point number (type double). To change the time definition, a new version of this file should be created, and RTI-Kit recompiled to use the new definitions. TM_IDENT is often an architecture dependent value. If this is the case, it is recommended TM_IDENT refers to a value defined in the Òarch.hÓ file where architecture dependent definitions are declared.

Communication Topology and Lookahead

Note: These functions are not implemented in the current version of TM-Kit.

The LBTS computation must be able to determine the topology indicating which processors can send message to which other processors, and the lookahead associated with each connection. It should be emphasized that the TM primitives defined here merely inform the TM software of potential and actual communications among processors. These primitives do not actually perform the communication functions. For example, TM_Subscribe() indicates that the node can receive messages from a particular connection. This procedure does nothing to actually enable the node to receive messages, it only informs the TM software that messages could arrive, since this is important in computing LBTS.

An underlying theme in TM-Kit is the assumption that the application is using some form of group communication service (e.g., MCAST) for communications. Thus, the semantics for specifying interconnections has the flavor of group communication services rather than point-to-point links. The latter can trivially be emulated by (for example) defining a group for each pair of processors with at most one publisher and subscriber to the group. A fully connected topology (any node can send messages to any other) with a single lookahead value for each processor can be specified by defining a single channel to which every node publishes and subscribes.

Communications are specified by defining communication channels, and specifying subscriptions and/or the ability to send messages (publish) to the channel. The following type is defined for this purpose:

TMChannelID

type of a unique identifier for a communication channel, used to specify the topology among processors.

The following procedures are defined to provide topology information to the TM software.

TM_ChannelID TM_Channel (char *Name)

Creates a new communication channel identified with the unique ASCII string Name, and return an ID for that channel.

TM_ChannelID TM_GetChannel (char *Name)

Return the ID for the specified communication channel.

TM_Publish (TM_ChannelID Channel, TM_Time AsOf)

Specifies that the processor calling this procedure is able to send messages on Channel starting at simulation time AsOf.

TM_UnPublish (TM_ChannelID Channel)

Specifies that the processor calling this procedure is no longer able to send messages on Channel.

TM_Subscribe (TM_ChannelID Channel)

This procedure indicates the caller can now receive messages sent on the specified communication channel.

TM_UnSubscribe (TM_ChannelID Channel)

This procedure indicates the caller will no longer receive messages sent on the specified communication channel.

TM_SetLookahead (TM_ChannelID Channel, TM_Time Lookahead)

Modify lookahead on a Channel to the specified value. The initial, default lookahead for every channel the processor can send to is zero.

TM_SetConnectionLookahead (TM_ChannelID Channel, TMTime Lookahead)

Set the minimum amount of time into the future a processor can indicate its ability to publish to the specified channel. This lookahead is used in LBTS algorithms that exploit the topology among processors.

Notification of Message Sends and Receives

The time management software must be notified of message sends and receives so that transient messages can be taken into account by the LBTS computation. In addition, the TM software may need to piggyback information onto messages. The following are defined for this purpose:

TM_TagType

This is the type of information piggybacked onto each time stamp ordered message. The caller need not be concerned with the definition of this type, but must provide a field of this type in each time stamp ordered message.

TM_PutTag (TM_TagType *Tag)

This procedure must be called prior to sending a time stamped message so TM-Kit can place information into the message. Tag is a pointer into the outgoing message buffer indicating where TM-KitÕs information is to be written. The size of information placed into the message is fixed, and may be determined by sizeof (TM_TagType).

TM_Out (long Count)

This procedure must be called after sending a time stamped message so TM-Kit can account for transient message. Count indicates the number of destinations that will receive the message (see definition of ÒdestinationÓ below).

TM_In (TM_Time TimeStamp, TM_TagType *Tag)

The caller indicates it has just received a message with time stamp TimeStamp. Tag is a pointer to the information placed in the message by TM-Kit through the TM_PutTag procedure when the message was sent. Each destination must call this procedure exactly once.

A ÒdestinationÓ may be a physical destination, e.g., a processor, or a logical destination, e.g., an entity (there could be several entity destinations per processor). Usually, it will be most efficient to define a destination as a processor receiving a message. The main criteria in defining a destination is that the total number of message sends (as specified in the Count parameter of TM_Out) matches the total number of calls to TM_In when all messages have been received.

When using the MCAST library, each call to MCAST_Send returns the number of processors that will receive the message. Thus, each processor receiving the message should call TM_In exactly once when the message is received. One way to accomplish this is to attach a handler to each group on which time stamp ordered messages can be received. This handler can be used to call TM_In once when a message arrives on that group.

LBTS Computation

An LBTS computation is initiated by one or more processors calling the TM_StartLBTS procedure, at which time a local time value must be specified. The LBTS computation will compute a global minimum among (1) the local minimum value provided by each processor, and (2) the time stamp of all transient messages in the network while the LBTS computation is being performed. TM-Kit is made aware of the latter by calls to TM_Out and TM_In. The local value provided by each processor will typically be the processor’s lookahead plus the minimum among all unprocessed or partially processed messages within that processor, i.e., lookahead plus the minimum among all messages stored in the RTI’s local queues, and the current logical time of the simulator at that processor if it is not blocked waiting for a time advance. Note that TM-Kit does not automatically add lookahead to time values in computing LBTS.

Each global LBTS computation is assigned a unique transaction number; transactions are numbered sequentially starting with zero. If two processors simultaneously initiate a new LBTS computation, only one new LBTS computation will actually be initiated and both initators will be given the same transaction number. A new LBTS computation can be started while one or more other LBTS computations are in progress, so there can be multiple LBTS computations in progress at one time. The LBTS computations may not necessarily complete in the order in which they were initiated.

After an LBTS computation is initiated by one processor, it is propagated by TM-Kit to other processors. If an LBTS computation spreads to a processor that has not already initiated an LBTS computation via a TM_StartLBTS call, an application defined ÒLBTS-StartedÓ handler is called to notify the processor an LBTS computation has been initiated, and to request that processorÕs local minimum. The LBTS-Started handler must either:

accept the initiation of the LBTS computation and return a local minimum value to TM-Kit; this is equivalent to calling TM_StartLBTS), or

defer responding to the LBTS computation; in this case, the processor must eventually respond to the LBTS computation by invoking TM_StartLBTS or else the LBTS computation will never complete.

When the LBTS computation has completed, an ÒLBTS-DoneÓ handler is called in each processor to notify that processor of the new LBTS value. Each processor will be called exactly once for each LBTS computation that completes.

At most one LBTS-Started handler can be defined at one time for a processor, however this handler can be changed at any time during the execution. A different LBTS-Done handler can be used for each LBTS computation.

Different approaches may be taken to start LBTS computations. For example, a central controller can be designated that is responsible for starting all LBTS computations. Alternatively, a distributed asynchronous approach may be taken where each processor initiates an LBTS computation when it feels it needs an updated value.

The following procedures are defined:

long TM_StartLBTS(TM_Time MinTime, TM_LBTSDoneProc LBTSDone(), long *TransactionID)

Initiate an LBTS computation. MinTime is the value used in computing LBTS. It is typically the processorÕs lookahead plus either the minimum logical time of any entity within the processor if the processor is not blocked, waiting for LBTS to advance. If the processor is blocked, MinTime is usually the minimum time of the next local event plus that processorÕs lookahead. The LBTSDone() parameter is a procedure that is called when the LBTS computation has completed. If this parameter is NULL, the processor is not notified when the computation has completed. TransactionID returns the transaction number assigned to the new LBTS computation. This procedure returns:

TM_Success if the LBTS computation was successfully initiated.

TM_Failed if the computation could not be initiated. This could happen if the maximum number of pending LBTS computations are already in progress.

TM_SetLBTSStartProc (TM_LBTSStartedProc StartHandler)

This procedure sets the processorÕs LBTS-Started handler to StartHandler. An execution error occurs if no handler has been defined when TM-Kit discovers another processor has initiated a new LBTS computation.

The application using TM-Kit must define the following procedures.

long StartHandler (long TransactionID, TM_Time *MinTime, TM_LBTSDoneProc *DoneHandler())

This procedure is called when the processor detects an LBTS computation was initiated by another processor, and this processor has not already initiated its participation in the computation by calling TM_StartLBTS. TransactionID indicates the number assigned to the transaction. The procedure must return:

TM_ACCEPT if it is accepting the new computation. In this case, MinTime returns this processorÕs local minimum value, and DoneHandler returns a pointer to the handler that should be called when the computation has completed. If DoneHandler is NULL, the processor is not notified when the computation is completed.

TM_DEFER indicates the processor wishes to defer providing its local minimum value. The local minimum must be provided on a subsequent TM_StartLBTS call, or the LBTS computation will never complete. In this case, the values returned in MinTime and DoneHandler are ignored by TM-Kit.

void DoneHandler (TM_Time Result, long TransactionID)

This procedure is called when an LBTS computation has completed. Result is the LBTS value that was computed. TransactionID indicates the transaction number of the LBTS computation that just completed.

Typically, TM_StartLBTS will initiate an LBTS computation that is completed at some later time. However, it is possible the LBTS computation will be completed within the TM_StartLBTS procedure itself. In other words, it is possible the applications DoneHandler procedure will be called before TM_StartLBTS has returned. This would happen if the LBTS computation is essentially finished, and is just waiting for this processor to initiate, in which case only a local computation is required.

MB-Lib: Message Buffer Library

MB-Lib is a simple library providing modest memory allocation services. This can be coupled with MCAST’s where-procedures to allocate memory for incoming messages, or applications using RTI-Kit can utilize their own memory management facilities. The initial version of MB-Lib can be used to create one or more pools of fixed sized buffers. The following type is defined

MB_BufferPool

Type for a pool of buffers.

The following procedures are defined:

MB_BufferPool MB_MakePool (long NBuffers, long BufferSize)

Create a new buffer pool with NBuffers, each of size BufferSize bytes. A handle to the buffer pool is returned. 0 is returned if the operation failed and the buffer pool could not be created.

ADDR_TYPE MB_GetBuffer (MB_BufferPool Pool)

Allocate a single buffer from buffer pool Pool. Return a pointer to this buffer, or the value 0 if the buffer could not be allocated because the pool is empty.

void MB_FreeBuffer (MB_BufferPool Pool, ADDR_TYPE Buffer)

Return the memory buffer pointed to by Buffer to the pool Pool.

FM-LIB: A SIMPLE COMMUNICATIONS INTERFACE

The current implementations of TM-Kit and MCAST interface to the communications system through FM-Lib. FM-Lib is essentially identical to the Illinois Fast Messages (FM 2.0) API, as described in (Pakin et al., 1996), with modest additional functionality. Key features of FM include:

FM provides point-to-point, reliable, ordered communications between processors.

FM is designed for low latency, low overhead communications, especially in cluster computer environments interconnected by MyriNet (Myricom 1996). It is particularly well suited for parallel computation applications that send many small messages. The FM documentation reports typical one-way latency on a pair of SPARCStation 20s with LANai 4.1 boards of 14.4 microseconds, and peak bandwidth of 17.1 MB/s. We have measured one-way latencies (round trip latency in a ping-pong application divide by two) to be approximately 25 microseconds on a pair of SPARC-20s with LANai 4.0 boards, and 13 microseconds on a cluster of eight UltraSparc-1 workstations with LANai 4.1 boards.

Message sends are performed by opening a stream to the destination, sending individual parts of the message, and then closing the stream.

Message receives are performed through message handlers. Each message that is sent specifies a handler (i.e., a procedure) that is automatically called by FM when the message is received at the destination. The handler is specified by having each processor set up a table during initialization containing procedure pointers. The index into this table is transmitted in the header of the message so the receiver knows which handler to call. The message handler then calls FM_receive() to receive the message.

To service the wire, the application must call a procedure called FM_extract(). This procedure will then call message handlers for any incoming messages.

When a message comes in off the wire, FM must have some means of knowing which handler to call. This is accomplished as follows.

Each processor defines an array that maps integer handle numbers (the index into the array) to a pointer to the message handler function.

When a message is sent, the sender specifies an integer handler number that identifies which handler is to be called at the receiving end.

When the message is received, FM removes the handle ID and calls the procedure in its handler table.

FM requires the application to fill in the handler array in each processor to map handle IDs to function pointers. The array must be set up in a consistent fashion in each processor to ensure a common, global mapping of handler IDs to handle functions is achieved.

If there are a set of separate modules using FM, as is the case here, there must be some means for each module to map handler IDs to message handlers so there are no conflicts in assigned IDs. To address this problem, FM-Lib augments FM by providing a procedure that allocates handler IDs, and binds them to handler functions by filling in the appropriate FM array. Specifically, to bind a handler function to an ID, the following procedure should be used:

void MCAST_RegisterHandler (unsigned int *HandleID, FM_handler hfunction())

The procedure allocates the next available handle number and sets that entry in the handler table to point to the function hfunction(). Handler numbers are assigned sequentially, starting from zero. The assigned handle ID is returned to the caller in HandleID. This establishes the linkage so that messages of type HandleID will result in calls to hfunction(). Message sends must specify HandleID when invoking the FM function to send a message to cause the appropriate handler to be called at the receiving end. An error message is generated and the program is aborted if the application attempts to register more handlers than there are entries in the FM array.

Each processor must call this function for each handler, and in the same order, in order to ensure identical handler tables are set up across all of the processors. Since this binding of handle numbers to functions normally occurs during initialization, this means each processor using RTI-Kit libraries must initialize the libraries it is using in the same order. Users of RTI-Kit need not be concerned with this because RTI-Kit’s RTIKIT-Init() automatically takes care of this. This is an important detail, however, for applications that bypass RTI-Kit and use FM-Lib directly.

References

Myricom, Myrinet User’s Guide, 1996.

S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, J. Prusakova, A. Chien, Fast Messages (FM) 2.0 User Documentation, Department of Computer Science, University of Illinois at Urbana-Champaign, Sept 1996.

�PAGE �

�PAGE �15�

