

Rhythmic Similarity through Elaboration

Mitchell Parry and Irfan Essa {parry, irfan}@cc.gatech.edu

www.cc.gatech.edu/cpl/projects/elaboration/

Computational Perception Laboratory
GVU Center, College of Computing
Georgia Institute of Technology

Goal

• Create similarity metric that identifies good transitions for music audio.

Application

- Automatic disc-jockey system
- Sonic browsing of music database

Elaborations

- Good for transitions
- Dissimilar (according to standard metrics)
- We employ elaboration as similarity metric

Single Song

Transition Matrix

Proposed Approach

- Partition audio into measure-length segments
- Extract beat envelope
- Compare segments s_i and s_j by elaboration,

$$elab(s_i, s_j) = 1 - \frac{\min(s_i \cdot s_j, s_j \cdot s_j)}{\max(s_i \cdot s_j, s_j \cdot s_j)}$$

• Complexity (light rows + dark columns),

$$complexity(s_i) = \sum_{j} elab(s_i, s_j) - elab(s_j, s_i)$$

• For comparison, cosine distance

$$dcos(s_i, s_j) = 1 - \frac{s_i \cdot s_j}{\|s_i\| \|s_j\|}$$

Transition quality,

$$trans(s_i, s_j) = \min(elab(s_i, s_j), elab(s_j, s_i))$$

Between Songs

White indicates row is nearly identical to column

Overlapping beat envelopes at varying transition ratings (lower is better)

