CHAPTER 11

TRACKING AND THE 2-DAFT SOFTWARE
FRAMEWORK

In this chapter, we define some terms related to articulated figure tracking and place our
tracking approach within the existing body of tracking research. Then we go on to describe
2-DAFT - short for “2-D Articulated Figure Tracker” — a software framework we have

developed for tracking.

2.1 Articulated Figure Tracking

An articulated figure is a figure made up of a number of connected “links,” each of which
can move relative to the other links. The human body is an articulated figure where the
links are the torso, head, and limbs. Human figure tracking is therefore a special case of
articulated figure tracking. Articulated figure tracking stands in contrast to “rigid body”
tracking, where all parts of the tracking target remain rigid with respect to one another.

There are a great variety of approaches to articulated figure tracking. In this section we
will define some terms related to tracking, review some of the approaches to figure tracking,
and place our own approach in the context of the field.

Some tracking techniques use multiple videos from different views to try to recover the
body pose in 3-D [2] or just to improve recovery of the 2-D pose [16]. Others use just
a single view of the motion. We are concerned with the latter technique: tracking from
monocular video.

A kinematic model describes the degrees of freedom of the links and the connections
between them. For example, a kinematic model of the human body might dictate that
each joint can rotate in three dimensions, and that the foot is connected to the tibia which
is connected to the femur and so on. A kinematic model serves two purposes. First, it

describes the desired description of the body pose. If the kinematic model describes the

degrees of freedom as one 3-D rotation per joint, then we are saying that we want to recover
the body pose as a list of joint angles. Second, the kinematic model imposes constraints
on the motion of the figure. If the tibia is connected to the femur, then wherever the tibia
goes the femur must follow. Other constraints, such as “the knee can only bend backwards”
may also be included in the kinematic model, although often they are not.

A variety of kinematic models for both 2-D [6] and 3-D [9] tracking have been used. We
use the Scaled Prismatic Model (SPM) [13], which is a “2.5-D” kinematic model. We say
“2.5-D” because although an SPM is embedded in 2-D, it models the foreshortening caused
by limbs rotating towards or away from the camera by allowing the length of links to shrink
or grow. (Note that this makes the name 2-DAFT a misnomer; technically, it should be
2.5-DAFT. But a little inaccuracy is a small price to pay for a catchy acronym.) Figure 2.4
illustrates two SPM links. The SPM model will be described more in Section 2.2.1.

An appearance model describes the appearance of the tracking target. A very simple
appearance model is a patch-based model, where the appearance of each link is described
as a patch of pixels. These patches can be copied from the regions of one frame of the
video corresponding to each link. Another alternative is to use a contour-based model. In
this case, the appearance of each link is described by its silhouette. This silhouette can be
described parametrically. Alternatively, an edge detector may be applied to one frame of
the video to generate an edge image. The edge pixels associated with each link can then be
copied from the edge image.

2-DAFT allows for the implementation of different types of appearance models. In the
experiments presented here, we have used a contour-based appearance model. Section 2.2.2
describes our appearance model in greater detail.

Most tracking techniques take a “top-down” approach. That is, they estimate the overall
configuration of the kinematic model and then use that estimate as the starting point for
a local optimization in the state space of the kinematic model that attempts to match the
appearance model to features in the image. This is the approach 2-DAFT takes. However,
some recent work, e.g. [12, 15], takes a “bottom-up” approach. First, they apply head,

torso, and limb detectors to detect likely locations of body parts in the image. They then

combine the information from these detectors to make a hypothesis about the configuration
of the entire body. This approach has certain advantages — such as the ability to initialize
itself — and is gaining popularity, but we will not deal with it here.

Besides the top-down versus bottom-up question, another question any tracking algo-
rithm must answer is how to represent the probability density function of the body pose
given the image data, and how to propagate such probabilistic information from frame to
frame. A classical approach to this problem is the Kalman filter. However, the Kalman
filter is limited to dealing with unimodal distributions. The properties of real-world scenes
— e.g. background clutter and occlusions — typically lead to a multimodal distribution on
the probability of the body pose. This can be explained in simple terms by observing that
several different regions of the image may resemble the appearance model. One approach
to representing multimodal densities is multiple hypothesis tracking, which was applied to
figure tracking in [1]. Another common technique is the use of Monte Carlo methods, such
as Isard and Blake’s CONDENSATION algorithm [5].

Since we are mainly interested in investigating properties of the dynamic model, we
adopt a very simple, unimodal representation of the probability density.

Having given an overview of articulated figure tracking in general and our approach to

human figure tracking in particular, we now go into detail about the 2-DAFT framework.

2.2 The 2-DAFT Software Framework

2-DAFT (2-D Articulated Figure Tracker) is a software framework for implementing monoc-
ular, 2.5-D articulated figure tracking algorithms. 2-DAFT takes an object-oriented ap-
proach, dividing functionality and data involved in tracking into a number of different
modules. This makes 2-DAFT flexible, allowing the implementation of tracking algorithms
using various kinematic models, image features, and dynamic models with a minimum of
new coding.

2-DAFT consists of five main modules: kinematic model, appearance model, image
registration, dynamic model, and control/GUI module. Figure 2.1 shows the relationships

between the different modules. An arrow from module A to module B indicates that A

Kinematic Dynamic

Model Model
Control/GUI
Appearance —
Model

Figure 2.1: 2-DAFT modules

makes function calls to B. In the following sections, we describe each of these modules in

turn.
2.2.1 Kinematic Model

2-DAFT’s kinematic models consist of a number of Scaled Prismatic Model (SPM) links. A
“kinematic tree” describes the connections between the links in the articulated figure. We
refer to the link at the top of the tree as the “root” link. Figure 2.2 shows an example of a
kinematic tree for tracking a human body. In this case, the torso is the root link.

The entire kinematic tree is embedded in a “world” coordinate frame. In addition, each
link has its own local coordinate frame. The x-axis of the local coordinate frame lies along
the length of the link, and the y-axis lies along the width of the link (see Figure 2.3). Points
in the link coordinate frame are specified in relative coordinates. (0.0,0.0) is defined to be
the center of the base of the link. 1.0 is defined to be equal to the length of the link on the

x-axis, and one-half the thickness of the link on the y-axis. See Figure 2.3 for an illustration.

Torso

Head L. UpperArm R. Upper Arm R. Upper Leg L. Upper Leg

L. LowerArm R. Lower Arm R. LowerlLeg | Lower Leg

R. Foot L. Joot

Figure 2.2: A kinematic tree structure for the human body

Y

A
(0.0, 1.0) (1.0, 1.0)
(0.0, 0.0) . X
(0.0, -1.0) (1.0, -1.0)

Figure 2.3: The local, relative coordinate system of a link

\thickness

L
"parent link —

Figure 2.4: The degrees of freedom of a link

Each link can have up to five degrees of freedom: rotation, length, thickness, and x,y
offset. Rotation is specified as an angle relative to the parent link (except for the root link,
for which rotation is specified relative to the world coordinate frame). Length, specified in
pixels, is a scaling factor that scales the link along its x-axis; similarly, thickness scales the
link along its y-axis. Offset gives the location of the link relative to its parent. Offset consists
of an x and y translation. For the root link, these are specified in the world coordinate frame.
For other links, the offset is specified in relative coordinates in the parent’s coordinate frame.

See Figure 2.4 for an illustration of a link’s degrees of freedom.
2.2.1.1 File Format

2-DAFT uses a simple text file to specify kinematic models. By way of example, Figure 2.5
shows a file that specifies a kinematic chain with two links: a root link and a child link.

In a kinematic tree file, the name of a link is followed by the link’s specification enclosed
in braces. The specification includes a number of parameters, as well as the specifications
of any children of the link. The parameters are organized into three blocks.

The first block consists of boolean (1 or 0) parameters that specify which of the possible

Root {

% isStateAngle

% isStateLen

% isStateThickness
isStateOffset

% canSetAngle

% canSetLen

% canSetThickness
% canSetOffset

0 % default angle

50 % default len

20 % default thickness
300 % default offset x
300 % default offset y

Link2 {

R R RO
==

% isStateAngle

% isStateLen

% isStateThickness
% isStateOffset

% canSetAngle

% canSetLen
canSetThickness
% canSetOffset

.0 % default angle

0 % default len

0 % default thickness
0 % default offset x
.0 % default offset y

ORPFPWO RPRrRFPErEFE OOF -
==

Figure 2.5: Sample kinematic tree file

degrees of freedom are part of the state of this link.

The second block also contains boolean parameters that relate to the degrees of freedom
of the link. This time, though, the parameters specify whether or not the corresponding
degree of freedom can be “set.” A degree of freedom that “can be set” is one which the
user may modify when he or she is setting the initial state or setting the appearance model
(see Section 2.2.2). However, only those degrees of freedom which are part of the state will
be modified during image registration (see Section 2.2.3).

The final block specifies initial values for all of the degrees of freedom (regardless of
whether or not they are part of the state). The default angle is given in radians and is
relative to the parent link’s angle (or to the world coordinate frame for the root link). The
default length and thickness are given in pixels. For the root link, the default x and y offsets
are specified in pixels in the world coordinate frame. For other links, the default x and y
offsets are specified in relative coordinates in the frame of their parent link. For instance,
in Figure 2.5, Link2’s offset of (1.0, 0.0) will place its origin at the endpoint of its parent,

Root.
2.2.1.2 Kinematic Jacobian

In order to conduct image registration (see Section 2.2.3), it will be necessary to compute

the kinematic Jacobian; that is, the matrix:

061 002 90,
61 00> 90,

where z and y are the world coordinates of a point attached to one of the links and the 6;
are the degrees of freedom of all the links. The kinematic Jacobian describes the change in
the location of the point (z,y) due to a change in the state of the kinematic model. Note
that the global position of a point (z,y) on link 7 will be influenced by changes in the state
of all links in the chain between ¢ and the root link, including ¢ and the root link. The
position of (z,y) will not be affected by changes in the state of any other links. Hence the
columns in the kinematic Jacobian that correspond to the state of links not in the chain

between 7 and the root will contain zeroes.

10

In the remainder of this section we derive expressions for the partial derivatives of z
and y with respect to the various degrees of freedom. These formulas are partially based
on [13].

First, we note the equations for calculating = and y, the world coordinates of the point

we are interested in obtaining a kinematic Jacobian for:

x = lzjcos(0y) — %ylsin(ew) + 04 (2.1)
y = lzysin(0y) + %ylcos(ew) + oy (2.2)
where:
l = length of link 4, in which the point is embedded
z;,y; = local, relative x- and y-coordinates of the point in link
0y = rotation, relative to the world frame, of link ¢
t = thickness of link ¢
0z,0y = x- and y-coordinates of the origin of link 4 in world coordinates

By differentiating (2.1) and (2.2), we can find expressions for the various partial derivatives.

For rotation degrees of freedom, where 6; represents the rotation of link 7, we have:

g—gj = —l:vlsin(ﬁw)—%ylcos(ﬂw) = —y+oy
g—;’i = Izcos(by) — Lysin(0y) = T — o4

The formulas for the effect on (z,y) due to links up the chain between i and the root are

the same.

For length degrees of freedom, we have:

g—z = x7c05(0y) g—Z = 1;81n(0y)

For link 7, where j is a link between ¢ and the root and j + 1 is the immediate successor of
7 on the chain between j and 7, the formulas are the same except that x; is replaced by the
x-coordinate of the position of 7 4+ 1’s origin in j’s coordinate frame.

For thickness degrees of freedom, we have:

o — —Jusin(6w) = uicos(0u)

11

A similar situation as for lengths applies for links j: the equations are the same, but y; is
replaced by the y-coordinate of the position of j + 1’s origin in j’s coordinate frame.

For offset degrees of freedom, we have a special case for the root link, since its offset is
given in global coordinates while other links’ offsets are given in local coordinates of their

parent links. For offsets (0;,0,) in the root, we have:

Oz _ 9y _
8om_1 3030_0
or __ 9y __
o, = 0 Bo, = 1

For non-root links %, the appropriate partial derivatives depend on the length (I/;) and global

rotation (0, k) of i’s parent link, k.

ol = lkcos(Ou) sol = lpsin(Ou)
6?& = _%tkSin(aw,k) affﬂ, = %tkcos(ew,k)

The same equations hold for links j on the path between ¢ and the root.
2.2.1.83 Code Structure

Two classes in 2-DAFT implement the kinematic model. SPMLink stores the parameters of
each link as well as pointers to its parent and children. KinematicTree stores all of the

links in an array. Most calls into the kinematic model code are made to KinematicTree.
2.2.2 Appearance Model

AppearanceModel is an abstract 2-DAFT class that defines the interface for appearance
models. New appearance models can be created by writing subclasses of AppearanceModel.
In our experiments, we used a contour-based appearance model, implemented in the class
EdgeAppearanceModel.

The appearance models we have implemented so far use static features, although it would

be possible to implement a dynamic appearance model within the 2-DAFT framework.
2.2.2.1 Appearance Model Initialization

Most static appearance models require a manual initialization step. To demonstrate 2-
DAFT’s initialization algorithm, we will give an example of initializing an edge appearance

model.

12

Figure 2.6: Initializing the appearance model

First, the user specifies a frame of the input video to be used for model initialization.
2-DAFT runs an edge detector on the specified frame, then displays the edge image in
a window. On top of the edge image, an outline of each link in the kinematic model is
superimposed (Figure 2.6). Initially, the configuration of the kinematic model is defined
by the initial values given in the kinematic tree file (see Section 2.2.1.1). The user can use
the mouse to modify the kinematic state by dragging the circular control points so that the
links are each aligned with the corresponding part of the image.

Next, 2-DAFT copies the region of the image covered by each link. It displays a window
containing the edge pixels in each link one by one. At this point, the user can use the mouse
to turn individual pixels on and off. This can be used to eliminate background edges that
should not be considered part of the appearance model.

Finally, for each link 2-DAFT stores the locations of that link’s edge points in the link’s

coordinate system. Now, given a kinematic model state, 2-DAFT can map the appearance

13

Figure 2.7: Transforming the appearance model to a new configuration

model into the image, as in Figure 2.7.

2.2.2.2 The Residual and Its Jacobian

2-DAFT’s standard registration algorithm seeks to minimize the objective function RT R,

where R is the residual vector [r1,72,...,rm|’. The definition of the residual vector depends

on the appearance model. For the edge appearance model, there is one residual per point

in the model. Given a target image, each residual is defined to be the “chamfer distance”

of a model point transformed according to the kinematic state. The chamfer distance is the

distance to the nearest detected edge pixel in the target image.

The minimization algorithm requires the computation of the Jacobian of the residual:

ory
90,

Ory
90,

Orm
001

ory
905

Ora
905

ory
96,

Ory
90,

Orm
a0,

Let p;(0) be the x,y-position, in global coordinates, of point ¢ in the appearance model.
p; is a function of @, the state of the kinematic model. r;, the ith residual, is a function of
position: r;(p;(#)). We can use the chain rule to break the partial derivatives in J into two

pieces:

Oz Oz | Oz

. . 29, 00 20

Vot O) =W Vo= g1 gy || G
20, 905 " 90n

This decomposition allows us to neatly divide the computation of J between two modules.
The first part, Vj,r; is computed by the appearance model, using finite differences. The
second part, Vgp;, is the kinematic Jacobian described in Section 2.2.1.2 and is computed
by the kinematic model.

In order to compute each row of the residual Jacobian given an image, the appearance
model computes Vyp; for each 7. It then calls the kinematic model to get Vyp;. The

Jacobian row is the product of these two matrices.
2.2.3 Registration Module

Given an image, a kinematic model with associated state, and an appearance model, the
registration module performs a local search in the kinematic model state space to try to
match the appearance model to the image as closely as possible. It does this by minimizing
the score, RT R, of the appearance model given the kinematic state and image. The regis-
tration module conducts this minimization using the Levenberg-Marquardt method ([11],
pp.542f). Given a state z, the Levenberg-Marquardt method calculates a descent direction
s as

s=(A+e)7'V

where A is the Hessian of the objective function evaluated at and V is the gradient of
the objective function evaluated at z. In this case the objective function is R R. Thus
the Hessian is J7J, where J is the residual Jacobian described in Section 2.2.2, and the

gradient is J7 R. Making these substitutions we have:

s=JTT+el)HJTR

15

In the normal Levenberg-Marquardt method we would choose z = x + s. However, in
this case we find it works better to use s as a direction, and conduct a golden ratio search
([11], pp.293f) in the direction s. Golden ratio search is a line search algorithm that finds
the minimum value along the line from z to x + s. The next z value in the iteration is
chosen to be the result of the golden ratio search.

This procedure — the calculation of s followed by a line search — is repeated until the
value of the gradient at z is reduced sufficiently or a limit on the number of iterations is

reached.
2.2.4 Dynamic Model

Given an observation about the current state of the kinematic model, and perhaps some
other information gleaned from past observations, the dynamic model predicts the state at
the next time instant. The 2-DAFT class Dynamics is an abstract class that defines the
interface for a 2-DAFT dynamic model. To define a new dynamic model that works with
existing code, one simply has to create a new subclass of Dynamics. A number of such
subclasses have already been written.

The interface of Dynamics is designed to parallel the predictor-corrector interpretation of
the Kalman filter, although there is no need to actually use a Kalman filter — this structure
can accommodate different types dynamic models. Dynamics contains four main methods:
estimateX0(ys)

Initializes or estimates the initial hidden state variable, possibly using the param-
eter ys which will normally be a list of observations from different frames.
predict ()
Predicts the value of the hidden state variable at the next time step.
correct (y)
Based on the parameter y, an observation of the state, correct the prediction x of
the hidden state.
observe()

Return an estimate of what the current observation should be, based on the current

16

estimate of the hidden variable.

As an example, let’s look at how these methods would be defined for a Linear Dynamic
System with Kalman filtering and for a constant velocity model.

First, for a Linear Dynamic System:
estimateX0(ys)

ys is a list of the observations from the first few frames. x, the hidden state of the
LDS, can be estimated using ys and the impulse response of the system.
predict ()
The next hidden state is predicted by x = A*x, where A is the plant matrix of the
LDS. The error covariance matrix prediction is also calculated here.
correct (y)
Given the observation y, the Kalman gain matrix is calculated and the hidden
state x is corrected according to the standard Kalman filter equations. The error
covariance matrix estimate is also corrected.
observe()
Return an estimate of observation calculated as C*x, where C is the observation
matrix of the LDS.
Now we consider how a constant velocity model might fit into this framework. In a
constant velocity model, the velocity from frame ¢ to frame 7 + 1 is assumed to be the same
as that observed from frame ¢ — 1 to frame 3.
estimateX0(ys)
ys is a list of the observations from the first two frames. In this case, the “hidden
state” is the estimated velocity, which is calculated as vel = ys[1] - ys[0]. The
observation from the most recent frame, ys[1], is also saved as yc.

predict ()
The next observation is predicted by adding the expected velocity to the previous
observation: yn = yc + vel.

correct (y)

Given the observation y from the current frame, calculate the new velocity, vel =

17

y - yc. Set yc = y.
observe()
Return the last observation, yc, if predict() has not been called yet, or return
the estimate of the next observation, yn, if predict() has been called.
How does the SLDS model fit into this framework? We could imagine creating an
SLDSDynamics class that would include several Dynamics objects, one for each of the LDS’s

in the SLDS. It would also include other data and functionality needed by an SLDS.
2.2.5 Control Module

The control module contains the code that knits the other modules together to form a
tracking algorithm. We also include much of the GUI code under the heading of “control
module.” 2-DAFT’s control code is mostly encapsulated in the Project (for “tracking
project”) class. The Project class also includes code for setting various tracking parameters
and viewing the output of the tracking process.

Each tracking application built using 2-DAFT will have its own implementation of the
Project class. The Project class will contain the meat of the tracking algorithm. This
includes, for example, building and propagating a representation of the probability density
function on the state space, and estimating the kinematic model configuration in each frame.
The 2-DAFT source code includes a “generic” Project class that can be customized, usually
with minimal effort. We have implemented a number of tracking applications using 2-DAFT,
each with its own Project class.

Figure 2.8 describes a simple, generic tracking algorithm and shows how the various
modules work together in tracking. This algorithm, or something like it, would be imple-

mented in the Project class for a particular tracking application.
2.2.5.1 GUI

In this section we highlight some of the aspects of the generic GUI for a 2-DAFT application.
Figure 2.9 shows the 2-DAFT main dialog, which is displayed when a 2-DAFT applica-

tion starts. The center column contains buttons for loading the kinematic model, loading

18

Allow the user to load a video, a kinematic model file, and the dynamic model parameters
Allow the user to initialize the appearance model
Allow the user to initialize the kinematic model configuration
n = # of frames in the video
Fori=2.n
Get the current state, 8, from the kinematic model.
Call the dynamics model to predict 8 for frame i.
Load frame i.
Call the registration module to match 6 to the image.
Treat the registration result as an observation; use it to correct the dynamic model’s

hidden variables.
Call the dynamic model to get the current best estimate of 0, 6'. Set § = ' in the

kinematic model.
end

Figure 2.8: Generic tracking algorithm

the AVI video file to be tracked, initializing the appearance model (as described in Sec-
tion 2.2.2), setting the initial state, and loading parameters of the dynamics model (e.g.
the various matrices that define an LDS). On the left are buttons for loading and saving
“projects.” A project file contains all information about the setup of a tracking experiment:
the kinematic model, video file name, appearance model description, etc. Project files make
it easy to repeat an experiment without having to go through all the setup steps again.

The “Track” button (bottom center) brings up the tracking dialog shown in Figure 2.10.
The four buttons grouped at the top of the dialog control the progress of the tracking
algorithm. The “Step” buttons display results of registration one iteration at a time. The
“Frame” buttons cause all iterations of image registration to be done at once. “Track All
Frames” attempts to perform registration for every frame in the video, and writes the output
to a video file specified by the user. Tracking results are not displayed in the GUI when this
feature is used. “Save History” writes the estimated kinematic model configuration vector
of each frame to a text file.

The “Background” and “Foreground” sections of the tracking dialog allow the user to
specify the type of graphical output that is displayed as tracking progresses. Figure 2.11

shows some examples of the output options. To specify the output, the user chooses a

19

#= 2-DAFT Tracker

Figure 2.9: 2-DAFT main dialog

Figure 2.10: 2-DAFT tracking dialog

20

background, which represents the current video frame, and a foreground, which represents

the current estimated state of the kinematic model. The background options are:

Color: Display the original video frame.

Edges: Display the output of an edge detector applied to the video frame.

Distance: Display the chamfer distance image of the original video frame. The chamfer
distance of a point in an edge image is the distance from that point to the nearest
edge pixel. In the chamfer distance image, the lighter the color of a pixel the greater
its chamfer distance.

The foreground options are:

Edges: Display the edges of the appearance model, projected into the image according to
the kinematic model state. (This option only makes sense when the edge appear-
ance model is used.)

Boxes: Draw rectangles around the projected locations of each kinematic link.

Stick Figure: Draws a “stick figure” representation of the kinematic model: a circle is
drawn on each joint center position, and lines connect joint centers.

These are the main features of the generic 2-DAFT GUI. Other features may be added
as needed. Or, if desired, 2-DAFT may of course be used to build a “command-line” type

program.

21

I project window

(a) (b)

-t

(c)

Figure 2.11: Some output options in 2-DAFT. (a) The original video frame, with the
appearance model — in this cases the target edges — overlaid. (b) Output of an edge detector
on the original frame, with boxes representing the location of kinematic links. (¢) Chamfer
distance map of original image, with a stick figure representation of the kinematic model
configuration.

1]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

CHAM, T.-J. and REHG, J. M., “A multiple hypothesis approach to figure tracking,”
in CVPR, 1999.

GAVRILA, D. M. and Davis, L. S., “3-d model-based tracking of humans in action:
a multi-view approach,” in CVPR, 1996.

GHAHRAMANI, Z. and HINTON, G. E., “Switching state-space models,” Tech. Rep.
CRG-TR-96-3, Dept. Comp. Sci., University of Toledo, 6 King’s College Road, Toronto
M5S 3H5, Canada, 1998.

Hopeins, J. K., WooTeEN, W. L., BRoGAN, D. C., and O’BRIEN, J., “Animating
human athletics,” in SIGGRAPH, 1995.

IsArRD, M. and BLAKE, A., “Condensation — conditional density propagation for visual
tracking,” The International Journal of Computer Vision, vol. 29, no. 1, 1998.

Ju, S., BLACK, M., and YACOOB, Y., “Cardboard people: a parameterized model of
articulated motion,” in Int. Conf. on Automatic Face and Gesture Recognition, 1996.

L1, Y., WANG, T., and SHUM, H.-Y., “Motion texture: a two-level statistical model
for character motion synthesis,” in SIGGRAPH, 2002.

OVERSCHEE, P. V. and DEMOOR, B., Subspace Identification for Linear Systems:
Theory-Implementation-Applications. Kluwer Academic Publishers, 1996.

Pavrovi¢, V., REuGg, J. M., CHAM, T.-J., and MURPHY, K. P., “A dynamic
bayesian network approach to figure tracking using learned dynamic models,” in ICCYV,
1999.

PAaviLovi¢, V., REHG, J. M., and MACCORMICK, J., “Learning switching linear mod-
els of human motion,” in NIPS, 2000.

PrEss, W. H., VETTERLING, W. T., FLANNERY, B. P., and TEUKOLSKY, S. A,
Numerica Recipes in C. Cambridge University Press, 1990.

RAMANAN, D. and ForsyTH, D., “Finding and tracking people from the bottom up,”
in CVPR, 2003.

REHG, J. M., MoRRIs, D. D., and KANADE, T., “Ambiguities in visual tracking
of articulated objects using two- and three-dimensional models,” The International
Journal of Robotics Research, vol. 22, June 2003.

SHUMWAY, R. H. and STOFFER, D. S., “Dynamic linear models with switching,” J.
of the American Statistical Association, vol. 86, Sept 1991.

Si1GAL, L., BHATIA, S., ROTH, S., BLACK, M., and ISARD, M., “Tracking loose-limbed
people,” in CVPR, 2004.

54

[16] SmiNcHISESCU, C. and TRrIGGS, B., “Covariance scaled sampling for monocular 3d
body tracking,” in CVPR, 2001.

[17] SoATTO, S., DORETTO, G., and WU, Y. N., “Dynamic textures,” in ICCV, 2001.

[18] WREN, C. R. and PENTLAND, A. P., “Dynamic models of human motion,” in Proc.
3rd International Conference on Automatic Face and Gesture Recognition, 1998.

55

