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Figure 1: An example of a human video texture generated from 6 separate sets of motion capture data and video. The transition frames are
shown clearly while the others are faded out for clarity. Colors correspond to specific clips which are interleaved between transitions.

Abstract

This paper describes a data-driven approach for generating photo-
realistic animations of human motion. Each animation sequence
follows a user-choreographed path and plays continuously by seam-
lessly transitioning between different segments of the captured data.
To produce these animations, we capitalize on the complementary
characteristics of motion capture data and video. We customize our
capture system to record motion capture data that are synchronized
with our video source. Candidate transition points in video clips are
identified using a new similarity metric based on 3-D marker tra-
jectories and their 2-D projections into video. Once the transitions
have been identified, a video-based motion graph is constructed.
We further exploit hybrid motion and video data to ensure that the
transitions are seamless when generating animations. Motion cap-
ture marker projections serve as control points for segmentation of
layers and nonrigid transformation of regions. This allows warping
and blending to generate seamless in-between frames for anima-
tion. We show a series of choreographed animations of walks and
martial arts scenes as validation of our approach.
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1 Introduction

The ability to produce photo-realistic animations of humans in a
controllable manner is highly desirable for interactive games. For
example, in the genre of side-scrolling fighter videogames, the
game Mortal Kombat was one of the first to employ photographs
of actors rather than the animated synthetic characters employed
by its leading predecessor, Street Fighter. The heightened realism
provided by Mortal Kombat’s early form of image-based rendering
likely contributed to its vast popularity. Other applications include
the creation of interactive celebrity animations which capture the
realism of a well-known actor or actress but provide for interac-
tive control. Photo-realistic avatars are also potentially well-suited
for training systems specializing in negotiation and other strategic
person-to-person interaction scenarios. Current model-based 3-D
training systems lack the subtle nuances of body language which re-
quire photorealism to be most effective. Crowd synthesis for games
is another domain in which photo-realistic controllable animations
could prove useful.

While both motion capture and video data can capture aspects of re-
alistic human movement, current techniques for manipulating this
data fall short of the goal of creating photorealistic controllable hu-
mans. Motion capture data encodes the realistic dynamics of hu-
man movement and can be used to synthesize realistic animations,
but the task of endowing the resulting 3-D characters with a photo-
realistic appearance is still quite challenging. Likewise, video data
implicitly captures the complex relationships between movement,
lighting, and appearance, but existing techniques for synthesizing
novel video sequences from captured video have not been success-
fully applied to complex human movement. Techniques based on
stereo or multi-view geometry have been used to provide interac-
tive camera control during the replay of captured movement se-
quences [Zitnick et al. 2004; de Aguiar et al. 2008], but these tech-
niques do not address the problem of synthesizing novel movement
sequences from a corpus of examples.

A promising approach to generating photo-realistic video output is



to rearrange the frames in a captured video sequence, thereby pro-
viding a limited ability to generate controlled animations [Schödl
et al. 2000; Schödl and Essa 2002; Agarwala et al. 2005; Celly and
Zordan 2004]. Frame rearrangement depends upon the ability to se-
lect good transition points and interpolate video frames across these
transitions without introducing visual artifacts. Unfortunately, stan-
dard image-based similarity metrics, such as squared pixel differ-
ences, fail to choose good transition points when applied to video
clips of human motion. These metrics do not capture the complex
changes in appearance that are characteristic of humans in motion,
especially with related articulations and non-rigidity. Furthermore,
secondary motions like hair tousling and the crumpling of clothing
add to the complexity of measurement of similarity.

Figure 2: (A) Transition cost matrix computed using figure silhou-
ette alone. (B) Cost matrix computed from a traditional motion
graph distance metric. Black bars indicate clip boundaries in time.
Note how many local minima are evident in (A) in comparison to
(B). Also, note that there are low cost regions in matrix (B) that cor-
respond to relatively high costs in matrix (A) (e.g. red highlighted
region).

A plausible human video texture should only contain transition
images generated from similar pose sequences. However, robust
tracking of limbs and loose clothing while accounting for self-
occlusions remains an open problem. As an improvement on the
SSD metric used in video textures, we computed a similarity ma-
trix based on the figure silhouette (Fig. 2A). Each matrix entry is
the sum of matte pixels following rigid registration (using silhou-
ette centroid and height) and XOR intersection, aggregated over
1.5 seconds of video. Figure 2 illustrates the differences between
a silhouette-based and motion capture-based cost matrix (which
represents ground truth). Our silhouette-based similarity matrix is
clearly inadequate for identifying plausible transitions for human
video textures. There are many more local minima in Figure 2A
than 2B and a local minima in one matrix does not always corre-
spond to a local minima in the other.

To further complicate issues, the highly structured nature of human
movement and our sensitivity in observing them makes small mis-
alignments during transitions immediately visible (e.g. the ghosting
artifacts at silhouette boundaries if the limbs are misregistered) as
illustrated in Figure 3.

In this paper, we address the challenge of synthesizing photore-
alistic human motion by leveraging the complementary character-
istics of motion capture data and video. We use motion capture
data that is synchronized to our video source to identify candidate
transition points in video clips. By leveraging accurate positional
information from markers, these metrics succeed where standard
video-based ones fail. Once the transitions have been identified,
a video-based motion graph (video graph ) is then constructed by
registering, segmenting and blending source video clips to compute

transition clips. By utilizing the image-plane projections of motion
capture markers as ground control points, we can accurately sepa-
rate occluding body parts into separate layers and composite layers
across transitions in a seamless manner. Finally, animation frames
are sequentially generated from a traversal of the video graph by
concatenating source and pre-computed transition clips.

Figure 3: (A) One of the challenging goals of transition synthesis is
to interpolate two frames from incoming and outgoing video clips.
(B) Transitions face ghosting artifacts on both the exterior and in-
terior silhouette regions when cross-fading following rigid registra-
tion of the figures. (C) Our method addresses ghosting outside the
silhouette using iterative silhouette deformation and interior ghost-
ing using a novel approach to layered segmentation.

The primary contributions of this paper are:

• A method for simultaneously capturing marker and video data
of human movement and constructing a video graph, which
enables the creation of human video textures.

• A technique for synthesizing seamless transitions for human
video textures. This technique uses marker reprojections to
control a moving least-squares image warp, and

• A novel graph cut algorithm for the segmentation of human
motion into layers which exploits marker flow and a super-
pixel representation of the image data.

To demonstrate the viability of our approach at synthesizing chore-
ographed human movement videos, we present several sets of re-
sults (Section 5) including: (1) gait motions, to test our system in
its detection of transitions and rendering motion on the most basic
of human movements, and one for which we are most sensitive to
irregularities and (2) an extreme martial arts expert with significant
self-occlusion, motion in the depth direction and secondary motions
of his clothes.

2 Related Work
There are three categories of previous work that are related to our
goal of video-based synthesis of human movement: (a) novel view
synthesis for captured motions, (b) video texture-based human mo-
tion synthesis and (c) video synthesis from mocap data.

A number of works capture high-quality representations of hu-
man movement, which enable the replay of captured content from
novel 3-D viewpoints. Zitnick et al. [2004] use a segmentation-
based stereo algorithm to generate a two-layer representation of
video frames and compute mattes near depth discontinuities. They



demonstrate the ability to synthesize high quality in-between views.
Another common approach to the capture and reconstruction of hu-
man motion in 3-D is based on the multi-viewpoint construction of
the visual hull [Carranza et al. 2003; Sand et al. 2003]. While all
of these works support the free viewpoint replay of captured human
motion in 3-D, they do not address the problem of manipulating
captured content to resynthesize completely new sequences.

Our approach is an extension of video textures [Schödl et al. 2000].
In particular, we relate to the method of video sprites [Schödl and
Essa 2002], an extension of video textures which supports flexible
control of transitions by the user, resulting in controllable anima-
tions. The frame-level similarity measures used in standard video
textures limits them to relatively simple nonrigid or stochastic mo-
tions such as waving flags or walking hamsters. As we have il-
lustrated in Figure 2, these methods cannot be applied directly to
human video content.

In [Celly and Zordan 2004], Zordan et. al. describe an extension of
video textures for a carefully-chosen subset of human movements.
Their approach employs the ratio of width to height of human sil-
houette bounding boxes as a feature for identifying transitions. This
approach can easily identify motions that generate similar ratios,
such as a kick from the right leg versus left leg. For a sufficiently
large database of movements, however, this metric will not be suf-
ficiently selective and will require extensive manual intervention.
Furthermore, their synthesis technique is based on morphed transi-
tions [Beier and Neely 1992] using the bounding box information.
In contrast, our method exploits motion capture data and performs
layered motion segmentation to more robustly identify transitions
and overcome the ghosting artifacts that result from morphing.

Our use of motion capture data draws from a substantial body of
work on data-driven synthesis of 3-D animations of human charac-
ters [Kovar et al. 2002]. In this paper, we propose a representation
of captured video and mocap content which we call the video graph.
This data representation allows us to jointly leverage mocap and
video data to synthesize novel human motions with articulations,
and nonrigid variations due to the secondary motion of clothes and
hair.

There are two additional works on image-based animation of hu-
man movement which are related to our approach. A technique
described in [Cobzas et al. 2002] addresses the problem of captur-
ing and animating the fine-scale clothing deformations of a moving
arm. In contrast, we address the re-synthesis of the entire figure.
The method of [Hornung et al. 2007] animates a single image of
an articulated creature from motion capture data using manually
specified correspondences between image features and 3-D motion
features. Like our approach, their method handles limb occlusions
using a layered representation of the image and hole-filling using
in-painting techniques. However, the crucial step of fitting an ini-
tial layered mesh to the image is done with manual intervention.
Furthermore, their method does not handle video content.

The related work which is perhaps the most similar to ours is the
method of Starck et al. [2007]. This approach combines recon-
struction using a visual hull method with the re-synthesis of human
motions. They employ a spherical matching algorithm based on the
3-D mesh of the reconstructed figure to identify good transitions.
This approach enables them to construct a type of motion graph us-
ing video information alone. However, their technique is limited to
genus zero surfaces and relies on accurate 3-D reconstruction. As
a consequence, it tends to smooth geometric features (such nose,
ears, hair, and clothing) due to reconstruction error and limited ge-
ometric resolution. In contrast, our goal is to manipulate source
pixels directly with minimal loss of fidelity. This is necessary to
preserve crucial details such as loose hair and the folds in clothing.

By supplementing video with motion capture data, we obtain the
ability to easily identify transitions and synthesize non-genus zero
poses.

3 Identifying Video Graph Transitions
The original motion graphs paper [Kovar et al. 2002] computed
transition candidates as a function of clouds of points over a win-
dow of frames in time. Likewise, our method computes motion
similarity from the markers directly, instead of from a fitted skele-
ton, by computing the L2 distance of their positions and trajectories
from frame to frame over a fixed window of 0.25 seconds worth of
3-D marker positions. We use a fixed threshold on this distance
metric and hand-select this metric to balance the quality of the tran-
sitions with the number of candidates.

Since we are using a single video camera in our capture setup, there
is only one viewing direction into the scene for which we have video
data. As a consequence, the construction of the video graph must
be constrained to preserve the continuity of motion with respect to
this viewing direction. This has two consequences for the detection
of transitions in building the video graph. First, in computing the
cost of a potential transition, we align the two candidate clips by
pure translation of the marker points, rather than the rigid body
rotation and translation which is used in a standard motion graph.
This is because we cannot rotate the captured figure in 3-D without
extrapolating the effect of that rotation to our video, a process which
is unlikely to produce the realism that we desire.

The second difference is that we prune the set of initial 3-D-based
transitions by examining only the 2-D projections of the marker
data into the video camera plane. Following camera calibration (see
Appendix for details), we match clips when they are compatible
with respect to the projected positions and velocities (marker flow)
of their marker sets in 2-D, not in 3-D. More specifically, we prune
transition candidates if any corresponding marker flows form an
angle greater than a threshold (which we set to 90 degrees).

In our Kung Fu dataset, we picked an initial motion graph threshold
that generated approximately 100 transition candidates. The fol-
lowing transition pruning step left about 20 transitions in the Kung
Fu video graph and we use these in the paper and video results.

4 Generating Transitions for Video Graphs
A human video texture is generated by traversing the video graph,
replaying the stored clips and previously synthesized transition
clips in an analogous manner to a motion graph1. Synthesis of
natural-looking transitions is the key technical challenge. Any mis-
registration of the limbs or torso in transitioning between clips will
result in highly visible artifacts such as ghosting and popping. In
order to generate believable transitions, we must compute the cor-
respondence between the figure in a pair of clips, warp the video
frames so as to bring the images of the figures into alignment, and
blend the two clips together in the transition region. We will show
that these video-manipulation tasks can be simplified considerably
through the use of marker data.

Transitions are generated over a 15 frame window, as illustrated in
Figure 4. The set of synthesized frames are organized into three
groups of five frames each, called pre-transition, transition, and
post-transition. In the transition region, pixels from both clips are
combined to produce the final output. We found that the addition
of pre- and post-transition warping resulted in smoother transitions.
In these regions there is no blending, and the final output pixels are

1This approach is well-suited for real-time rendering because all frames
are computed and stored before run-time.



Figure 4: Transition Synthesis: Transition synthesis involves interpolating an incoming clip (top row) with a corresponding outgoing clip
captured at a different point in time (bottom row). By linearly interpolating 2-D marker projections from an incoming (or outgoing) frame,
a moving least squares warp may be computed to bring marker projections into alignment in the synthesized result (middle row). At the
halfway point (8th column), the interpolant value (ranging from 1

16
to 15

16
) is 0.5 and the warped frames are 50-50 blended. Note that the

arm exhibits self-occluding motion – we segment limbs into layers for separate warping and blending from the background layer. Frames in
the pre- and post-transition regions (red and blue boxes) are warped and added to the output without blending. This pre- and post-warping
reduces warping distortion in the transition region (green box). Arrows denote frames that contribute pixels to the synthesized transition clip.

taken from a single clip (the incoming clip for the pre-transition re-
gion and the outgoing clip for post-transition). However, by warp-
ing the pre- and post-transition frames towards their corresponding
frames we reduce the amount of warp that is needed in the transi-
tion region, which in turn reduces visible artifacts. The total warp
that aligns a pair of frames can be broken down into two component
warps, one for each frame. These component warps are depicted by
arrows in Figure 4.

The key step in the synthesis of a transition is the computation of a
pair of warps from a pair of frames. This process can be divided into
two conceptual steps: registration and layer segmentation. The reg-
istration step identifies correspondences between the figure regions
in both frames and computes the pair of warps, one from each direc-
tion. For frames in the transition region, where the magnitude of the
warp is the largest and pixels from both clips are blended together,
it is important to take into account the fact that different parts of the
body (e.g. the arms and torso) may be undergoing self-occluding
motions. For example, in the case where the right arm moves across
the torso, a single smooth warp for the entire frame will not suffice
(the warp would need to “tear” at the occlusion boundary). Column
8 in Figure 4 illustrates such a case: the right hand is outside the leg
in the incoming clip and partly inside the leg in the outgoing clip.
We address this challenge by automatically segmenting the body
parts into layers. In the given example, we segment the right arm
pixels from the rest of the body. The arm then comprises a fore-
ground layer while the remaining figure pixels constitute a back-
ground layer. We can then compute separate smooth warps for the
corresponding segmented layers in a pair of frames and composite
the warped layers together in generating the final output.

The complete image synthesis process for a pair of transition frames
consists of the steps illustrated in Figure 5. In the first step, rigid
translation and scaling of the two video clips produces a coarse
alignment between pairs of corresponding frames. Then for each
frame, we compute a nonrigid warp using moving least squares
(MLS) [Schaefer et al. 2006]. The MLS warp uses a set of con-
trol points which consist of reprojected markers and a set of point
samples from the silhouette boundary. Thus the registration step

aligns the silhouette boundaries between the frames. The third step
performs a layer-based decomposition of the input video so that
moving limbs can be segmented out and warped separately from
the background layer. In the final step, the output clips are blended
and composited, and any remaining holes are filled by inpainting,
to produce the output clip. We now describe each of these steps in
more detail.

4.1 Iterative Silhouette Deformation

In order to produce an accurate alignment of figure regions from
two frames, we proceed in two stages. In the first stage, we begin
by identifying the point correspondences corresponding to the pro-
jected positions of background layer markers which are visible in
both frames. We do an initial MLS warp with these marker pro-
jections as control points. Because we know which body part each
marker is attached to, we can trivially assign each visible marker to
its corresponding layer.

The initial warp brings the background layer body shapes into ap-
proximate alignment, but it is insufficient for full body warping.
This is because such control points do not provide explicit informa-
tion about the boundary. If the boundary is not taken into account,
ghosting invariably occurs in the interpolated frames. Therefore, in
the second stage we perform additional warping of the two body
shapes in order to bring their silhouette boundary curves into align-
ment.

Our alignment method is essentially an application of the Iterated
Closest Point algorithm [Besl and McKay 1992]. It has the advan-
tages of being simple to implement and very effective for curves
which are already in close proximity to each other. This will al-
ways be the case in our application due to the reliability of the initial
warp using the projected markers. We apply additional silhouette
alignment constraints to the MLS warp by sampling control points
from the silhouette curves and incrementally updating the MLS so-
lution. We can measure the degree of overlap between body shapes
by computing the Sum of Absolute Differences (SAD) between the
warped mattes in the two frames. This measure counts the number



Figure 5: Transition Image Synthesis Pipeline: The following
steps generate output SD from incoming image IA and outgoing
image OA: (A) IA and OA are rigidly registered to align root
marker projections and silhouette height, producing SA. (B) It-
erative silhouette deformation is applied to IA and OA, producing
IB and OB - note the reduced ghosting behind the legs in SB from
SA. (C) IA and OA are segmented into motion (limb) layers which
are warped, blended and composited onto the background layer in
back to front order, producing SC . (D) Finally, image in-painting
is applied to SC to fill holes between composited layers, resulting
in SD .

of pixels that lie outside the overlap region. We identify point corre-
spondences between contours that minimize the SAD error measure
and add them to the control point set for the MLS estimate. After
reaching convergence, the intersection of the registered mattes is
computed and used for final composition to eliminate remaining
exterior ghosting artifacts (Fig. 5 shows the registered result before
matte intersection to illustrate how ghosting outside the silhouette
is reduced before it is eliminated with intersection).

4.2 Layered Motion Segmentation
A key step in the accurate treatment of self-occluding motion (e.g.,
when an arm moves in front of the torso) is to decompose the fig-
ure region into layers that can be warped separately. In general,
the problem of automatically decomposing an arbitrary video se-
quence into an appropriate set of layers is quite challenging and has
received considerable attention. In our application, we can lever-
age the context and motion estimates obtained from our reprojected
marker set to solve for the layer segmentations using a novel appli-
cation of MRF labeling via graph cuts.

The first step in our process is to segment the figure pixels in each
frame, resulting in a set of pixel regions known as superpixels. We
use the method of [Felzenszwalb and Huttenlocher 2004] to gen-
erate the superpixels. We then generate a Markov Random Field
(MRF) [Li 1995] model for the segmentation problem, where the
observation nodes are superpixels and the hidden labels are either
foreground or background. After performing MRF inference via
graph cuts (we use the method of [Boykov and Kolmogorov 2004]),
we assign the label for each superpixel to all of the image pixels that
it contains. The superpixel approach reduces the number of nodes
that are required in the MRF, thereby reducing the memory and
computation requirements.

Our assignment of edge costs in the graph is illustrated in Figure 6
and specified in Equation 1 below. We leverage the initial warps
obtained from the limb-labeled marker projections to separate the
foreground and background layers effectively. In this example there
is one foreground layer corresponding to the arm and one back-
ground layer. Assume we are warping from outgoing frame B to
incoming frame A. We first compute two separate warps of im-
age B based upon the foreground and background visible marker
sets. The results of applying these warps to the image B are illus-
trated in the middle column of Figure 6. The cost of associating
a superpixel in image A with the background (torso) label is com-
puted by comparing the superpixel color with the corresponding
region in the background-warped output (Fig. 6(3)). The cost for a
foreground layer assignment is similarly computed using the fore-
ground warped output (Fig. 6(2)).

Figure 6: Graph cut based motion layer segmentation: In this
example, image A represents the image to segment and image B
represents the corresponding image in the transition pair. (1) Im-
age A with cyan superpixel P to be labeled as foreground (limb)
or background (torso). (2) Image B is warped towards image A
using foreground (limb) markers, producing B

′
(limb), (3) Image

B is warped toward image A using background (torso) markers,
producingB

′
(torso). (4) Fragment of MRF model showing the or-

ganization of the cost terms, where thick lines denote high capacity.
Following graph cut, superpixels connected to the source (sink) are
labeled as foreground (background).

More specifically, we minimize the following energy function over
all candidate binary labelings L of image A:

E(L) =
∑
p∈A

(
1

| p |
∑
i∈p

‖Ai −B
′
i(Lp)‖2

)
(1)

+β
∑

pq∈N

T (Lp 6= Lq) · exp
(
−‖Ap −Aq‖2/2σ2)

where p is a superpixel, Ai is the RGB color of pixel i in image
A and B

′
i(Lp) is the color of the corresponding pixel in image B

under the MLS warp specified by label Lp. In the third summation
term, which penalizes discontinuities between neighboring super-
pixels pq ∈ N with similar color, function T (Lp 6= Lq) is 1 if the
condition inside parenthesis is true and 0 otherwise. Also in the
third summation, β is a design parameter (which we set to 30 in our
experiments), Ap and Aq are the mean colors of superpixels p and
q respectively and σ is a noise parameter.

The intuition behind this formulation is that superpixels that belong
to a particular layer in one frame of a pair will be well-matched to



the pixels in the corresponding frame, once the layer-specific warp-
ing has been performed. Note that if the relative motion between
foreground and background is very small, or if the foreground and
background colors are very similar, it may not be possible to seg-
ment the layers accurately. Fortunately, in that case an accurate seg-
mentation is not needed since ghosting artifacts will only be visible
if there is a color mismatch. Otherwise, when the wrong warp is
applied it is quite unlikely that the superpixel will find significant
support in the image pixel values. In general we deal with multiple
possible foreground layers by doing a series of binary segmenta-
tions, one for each possible foreground. In each case we used the
limb-labeled marker sets to compute the appropriate warps. Fol-
lowing graph cut segmentation for each layer, we enforce segmen-
tation consistency between image A (B) and B (A) by eliminating
foreground-labeled superpixels in image A (B) that do not overlap
by a threshold amount (0.3) in area with corresponding foreground-
labeled superpixels in image B′ (A′).

4.3 Rendering the Transition Frames
Given a set of segmented and warped layers for each frame in the
transition region from each video clip, we perform compositing and
hole-filling to render the final video sequence. First we add the
pre- and post-transition frames to the output sequence by applying
a global warp to each frame. Then we composite the segmented
layers from each pair of frames in the transition region. We use the
painters algorithm and composite the layers from back to front (i.e.
background layer followed by foreground). There will be a separate
foreground layer for each MRF segmentation. We use the average
distance from the camera of the mocap markers in each layer to
determine their order.

A significant problem in compositing the foreground layers is the
presence of holes due to missing background pixels. For exam-
ple, in order to align the right arm across a pair of images, we
may need to shift the arm up slightly in one frame and down in
the other. These shifts will create holes at the trailing edge of the
warp because we are uncovering background layer pixels which are
not present in the source imagery. We address this problem in two
ways. First, we differentiate between overlapping and nonoverlap-
ping pixels in compositing the layers. Overlapping pixels belong to
the intersection of the corresponding foreground layers from both
frames (incoming and outgoing), while nonoverlapping pixels be-
long to one layer and not the other. We crossfade overlapping pix-
els in order to generate a smooth transition in appearance. We then
composite the nonoverlapping pixels directly into the output buffer.
This allows us to use all of our foreground layer pixels and mini-
mizes the number of background holes that must be filled.2 Finally,
any remaining holes in the background layer are filled automatically
using in-painting [Efros and Leung 1999].

5 Results

In this section, we present results from applying our method to three
different datasets resulting from three capture sessions with two dif-
ferent subjects. For each dataset, we constructed the video graph
and generated synthetic video sequences. The full sequences are
available in the video accompanying this paper. In this section we
highlight specific transitions from these sequences in order to illus-
trate some of the results of our method.

The first result consists of backflips performed by an acrobatic mar-
tial artist. The second result features the same martial artist per-
forming a range of Kung Fu fighting moves. The third result ex-
hibits female gait motion.

2This strategy does have the property of making the foreground layers
“fatter,” but it does not seem to be a significant source of artifacts in practice.

5.1 Martial Arts Demonstration
Figure 7 shows three example transition composites from a mar-
tial arts expert captured wearing two separate costumes: (a) flow-
ing black shorts and (b) baggy red pants. Our system identified a
transition during punches toward the camera from a set of captured
backflips. This is an example of a non-trivial transition that would
be difficult to identify by hand. Despite significant self-occluding
motion from his left arm, the transition result displayed Figure 7(C)
shows his hand in focus. One side effect of our method leaves
neighboring pixels to a moving layer blurry, which is caused by
a combination of hole removal and non-overlapping regions of the
layer.

5.2 Gait Motion
We also captured a woman performing simple walks which serve
as tough examples since people are used to observing gait. Normal
gait also provides clear sources of self-occlusion as people swing
their arms. As evidenced in Fig. 7(B) and 7(E), our layered segmen-
tation method significantly reduces texture mismatch caused by the
arms moving beside the body.

We have chosen to leave the visible markers in all but one of the
results we present in this paper. This facilitates the comparison be-
tween frames and ensures that any visible artifacts are the result
of our core algorithm. In practice, marker removal would be per-
formed on each frame to generate the final output and we show an
example of this manual correction in Fight Sequence 2 in the in-
cluded video. This is a standard operation in many production sce-
narios [Borshukov et al. 2007] and commercial software is available
to facilitate it.

6 Limitations and Discussion

The key challenge in synthesizing photo-realistic human motion
from video is the need to establish correspondences between re-
gions of pixels across the video sequence. These correspondences
are needed to (a) estimate the extent of motion between frames
(to identify potential transitions) and (b) to segment, warp, and
align images between frames to create seamless transitions. Stan-
dard computer vision methods for video analysis are unable to re-
liably identify the correct correspondences with sufficient accuracy
to support our application.

Our solution to the correspondence problem is to leverage motion
capture technology to obtain accurate and reliable correspondence
information in the form of marker data. While we believe this ap-
proach has enabled us to obtain synthesis results which would be
difficult to achieve through any other method, it is worthwhile to
discuss the practical limitations of our current solution. One set of
issues center around the capture environment, which must be tai-
lored to the conflicting needs of video- and motion-capture. Cos-
tume design and marker placement must be carefully thought-out.
Clothing was tightened and adjusted appropriately to ensure marker
visibility and stability during the sessions. The motion of the actors
themselves was not choreographed in a precise manner, but they
were certainly aware of the need to conform to the motion style of
a side-scrolling video game.

Because we currently employ a single video camera, we are sensi-
tive to parallax effects (parallax can be observed, for example, in
the relative motion of the shoulders with respect to the center of
the chest). Fortunately there has been significant progress in multi-
camera technology for 3-D capture of human motion, and we be-
lieve that we can leverage these results to extend our system’s capa-
bilities to 3-D. This would also enable 3-D visualizations of newly
synthesized content and open up additional application domains.



Figure 7: Transition Composites: Images in the top row show transition frames cross-faded after rigid registration. Note the ghosting
artifacts inside and outside the figures’ overlapping silhouettes. The bottom row shows the result of applying our transition synthesis method.

Another issue that we plan to address in future work is relighting
the synthesized content to reduce changes of intensity across tran-
sitions, which is evident in the results, and animation in new envi-
ronments.

7 Conclusion and Future Work

In conclusion, we have presented a method for creating control-
lable photorealistic animations of human movement. By capturing
video and motion capture data in tandem, we have demonstrated
that video clips of similar pose sequences from different points in
time may be identified from 3D and 2D projected marker trajecto-
ries. We have shown how to render synthetic video clips for tran-
sitioning video across gaps in time via novel registration and seg-
mentation algorithms.

We found that transition video clips may be easily noticed in the
presence of ghosting artifacts and discontinuities in motion. Our
system’s exploitation of marker data in addition to captured pixels
was vital for the elimination of these artifacts. While our method
is capable of generating transition clips which are difficult to de-
tect during video playback, careful examination of still transition
frames reveals subtle artifacts such as blurriness and non-smooth
layer boundaries that expose their synthetic nature.

Also, as in the case of motion graphs, we identified some transi-
tions that were surprising in the sense that they could not have been
easily predicted by a capture session director. For example, the two
transitions composed using transition frames shown in Fig. 7(A)
and 7(C) would have been difficult to identify by hand. Therefore,
the transition discovery capabilities of motion graphs carry over to
the video domain in our computation of video graphs.

A number of interesting extensions to our work are possible. First,
our layered motion segmentation could be improved by adding a
second video camera and incorporating additional stereo cost terms
in the MRF. This would introduce depth discontinuity information
in finding limb boundaries in addition to the information provided
by oversegmentation (in a similar fashion to [Zitnick et al. 2004]).
Second, our method faces the challenges of trading transition qual-
ity for motion responsiveness (graph connectivity) which is com-
mon to all motion graph-like interactive animation systems. By
expanding motion and video data via interpolation of subsequences
between similar foot placement events [Zhao and Safonova 2008],
more transitions may be introduced to improve character respon-
siveness to interaction. Finally, we are excited about the possi-
bilities for re-animating videos of humans using separate motion
capture of alternate characters. The technique of [Hornung et al.
2007] for animating a still picture using motion capture data could
be extended to video using the methods presented in this paper.

8 Appendix: Data Capture and Calibration

The hardware basis of our setup is a commodity motion capture
system and video camera. Our motion capture setup is a 12 camera
Vicon system capturing 3-D marker trajectories at 120Hz. Video
was recorded using a single Panasonic HVX200 camera captur-
ing 1280 x 720 images at 60Hz. In order to synchronize motion
capture video signals in software following capture, actors were
asked to clap twice in a characteristic manner before and after each
performance. These events were used to solve for a simple scale
and translation transformation. Because the motion capture frames
were captured at twice the sampling rate of the video, motion cap-
ture data was accurately resampled in time for each frame of video.



(a) (b)

Figure 8: (a) Capture volume with blue screen and mocap cameras.
(b) Fluorescent lighting and co-located mocap and video cameras.
Note the lack of a standard mocap suit on the subject, and the use
of mocap markers attached to clothing as well as skin.

For calibration purposes, a custom calibration target was designed
to strobe infrared and visible green light in lockstep with the mo-
tion capture cameras. The calibration target is a lit ping pong ball
mounted at the tip of a wand. In the video camera images, a green
LED inside the ball causes it to appear as a bright green spot against
a black background. It can be automatically segmented from the
video frames using a simple thresholding operation in HSV color
space. The ball also contains an IR LED and appears as a single
large marker which can be localized in 3-D using the standard Vi-
con video processing pipeline. The corresponding 2-D projections
of each 3-D ball position are obtained through color space analysis
of the video frames. Using this set of normalized 2-D to 3-D corre-
spondences, the camera projection matrix is resectioned using the
Gold Standard Algorithm 6.1 described in [Hartley and Zisserman
2004].

Another fundamental issue is to determine, in each frame captured
by the video camera, which markers are actually visible. The stan-
dard Vicon software can compute the projections of each marker
along the camera viewing axis, but since it sees the markers from
multiple views it cannot guess the visibility of a particular marker
with respect to an arbitrarily-chosen viewing direction. We imple-
ment this visibility test in hardware by positioning an extra Vicon
camera next to our video camera, in attempt to colocate their view-
ing axes.
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