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Abstract

Videos of multi-player team sports provide a challenging
domain for dynamic scene analysis. Player actions and in-
teractions are complex as they are driven by many factors,
such as the short-term goals of the individual player, the
overall team strategy, the rules of the sport, and the current
context of the game. We show that constrained multi-agent
events can be analyzed and even predicted from video. Such
analysis requires estimating the global movements of all
players in the scene at any time, and is needed for modeling
and predicting how the multi-agent play evolves over time
on the field. To this end, we propose a novel approach to de-
tect the locations of where the play evolution will proceed,
e.g. where interesting events will occur, by tracking player
positions and movements over time. We start by extract-
ing the ground level sparse movement of players in each
time-step, and then generate a dense motion field. Using
this field we detect locations where the motion converges,
implying positions towards which the play is evolving. We
evaluate our approach by analyzing videos of a variety of
complex soccer plays.

1. Introduction
Understanding complex dynamic scenes in team sports is
a challenging problem. This is partly because an event in
a game involves not only the local behaviors of individual
players but also structural global movements of players. We
are interested in automated analysis of such complex scenes
with multi-agent activities, and consider that the tracking of
multiple agents can be used to analyze these scenes, extract
interesting events, and even predict what is likely to hap-
pen. We draw motivation from a quote by Wayne Gretsky,
the legendary hockey player, “A good hockey player plays
where the puck is. A great hockey player plays where the
puck is going to be.” Our work is based on the assumption
that the players themselves have the best view and clearest
understanding of the development of a game during play.
The players’ movement on the field reflects their interpre-
tation, and possibly their intent, based on their role in the
game, which we should leverage for interpreting the state
of the game.

Our hypothesis is that higher level information can be
deduced by tracking and analyzing the players movements,
not only individually but also as a group. In this paper we

Figure 1. Examples of how players movement indicates play evo-
lution in a dynamic sport scene. The motion field on the ground
is denoted as white arrows, and the locations where play evolution
is predicted are denoted as red iso-contours. Ball location is high-
lighted with a circle. Top: The goalkeeper passes the ball to the
last defender (red box) while an offender (yellow box) is moving
to intercept him. Bottom: One second (30 frames) later, at the
moment of interception (position 1), the goalkeeper and another
defender (yello boxes) are moving in the direction of position 2.
This indicates the possible location of a future event.

describe a method to build a global flow field from players
ground-level motions. We propose the novel concept that
the flow on the ground reflects the intentions of the group
of individual players based on the game context, and use
this for understanding and estimating future events.

In this work, we specifically focus on the sport of soc-
cer (i.e. football). For example, consider the soccer scene in
Fig. 1, which demonstrates play evolution. The goalkeeper
passes the ball to a nearby defender (top), but one of the
offensive players sees an opportunity to intercept/steal the
ball. One second later (bottom) we see the goalkeeper and
another defender start moving to location 2 to prepare to re-
spond to an offensive interception. The players are tracked
on the ground plane to generate a flow field (shown by the
white vector field) which in turn is used to infer possible lo-
cations of future events, noted by red circles. Our primary
contributions in this work are: (1) Extracting ground-level
motion from individual players movement from multiple-
views. (2) Generating a dense flow field from a sparse set
of individual players motions, a motion fields on the ground.
And, (3) Detecting the locations where the motion field con-
verges and inferring the play evolution.

In the next few sections we present the technical details
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Figure 2. Geometric Constraints: (Upper row) Each view (Ik)
has a vertical vanishing points (vk). (Bottom left) In the top-view
warped image (Itop

k ), players are distorted in the direction of the
projected vanishing points (v̂k) of each view. (Bottom right) The
location of a player on the ground is identified by the intersection
of these projections on the ground plane.

of our approach followed by a brief overview of some of the
related work. Then we present a variety of results, conduct
a series of evaluations, and discuss some applications of our
approach.

2. Motion Field Construction from Video
The first step in constructing a motion field is extracting
tracks of individual players on the field. While single cam-
era tracking is possible for soccer [15], and could be useful
for our approach, for this work, we have decided to rely on
more robust multiple player tracking using multiple views.

View dependent analysis for player tracking using multi-
ple camera suffers from a data fusion problem. In addition,
flow analysis may be sensitive to the perspective distortion
of different views. To address these issues, our approach is
to analyze the game scenes from a top-view warped image
of the ground plane. The top-view is constructed by com-
bining the warped footage of each of the multiple cameras.
We then extract a multi-view consistent player location in
the top-view by optimizing the geometric constraints shown
in Fig. 2. This allows us to create the individual players’
ground level motion. (Sec. 2.1).

Through spatial and temporal interpolation we combine
the tracked player motions to create our motion field on the
ground-plane (Sec. 2.2). Finally, we analyze this motion
field to detect and localize important regions (Sec. 2.3).

We first define some notations. Assume that we have N
cameras. Let Ik (1 ≤ k ≤ N) refer to a frame of each cam-
era and Itop

k is a top-view image where each Ik is warped
through the homography Htop

k . Additionally, x ∈ Itop de-
notes that x is in the coordinate space of a top-view (ground
field).

2.1. Extracting Individual Ground-Level Motion

To construct our flow field, we first extract the ground-level
motion of individual players. At each time t this motion is

(a) (b) (c)
Figure 3. Position Confidence in top-view: (a) Overlapped top-
view of warped views from each angle (each view of a player is
warped over the direction of vertical vanishing points) (b) Nor-
malized probability of the summation of the warped foreground
probabilities. Note that the region which is close to the ground has
higher probability (c) In the presence of shadow.

defined as the velocity vector [u v]T representing a player’s
movement on the ground at a 2D location x(x, y) ∈ Itop.
To find the motion, our algorithm first detects the ground
position (optimized location near the feet) of each player x
at a given time t. Then, we search for a corresponding po-
sition in a previous frame at time t − a (where a > 1 for
stability and is usually set to 5 frames). The motion velocity
at time t is the difference between these two positions. Note
that the individual motion is reconstructed at each time sep-
arately and does not require explicit tracking since it is only
used to construct our flow field.

To find the 2D location of players on the ground we make
use of the fact that each view has its own vertical vanishing
point (VVP) vk. We denote the projected VVP onto the
ground view as v̂k = Htop

k vk (1 ≤ k ≤ N). Each v̂k gives
us a unique direction in any location on the ground (see
Fig. 2). Using background subtraction we define for each
pixel in each view a confidence measure of that pixel being
part of the foreground (i.e. player) or background (i.e. grass
field) [12]. We combine all measures from all views on the
ground plane by summing their projections and normaliz-
ing to get the position confidence map PC : Itop → [0, 1],
where PC(x) is the probability that x ∈ Itop is part of the
foreground (Fig. 3).

Since the the region around each player’s foot is located
on the ground plane where the homographies for each view
are extracted, the probability of foreground in those regions
will be higher than in other regions (Fig. 3(b)) [10]. How-
ever, if there are cast shadows, the shadow region will also
have high foreground probability (Fig. 3(c)). Therefore, we
consider the highest PC position only as an initial location
of the player. We define a window Winit around the initial
position and refine it based on geometric constraints.

The geometric constraints are included by searching for
the intersection point of the foreground projection of all N
directions, where N is the number of views. This inter-
section is the weighted centroid of all foreground samples
(x s.t. PC(x) 6= 0) along each projected VVP in all N
directions (Fig. 4(b)). We define the player ground loca-



(a) (b) (c)
Figure 4. Finding the optimal location using Geometric Con-
straints: (a) Samples (x̃ij) along lines from the evaluating point
x and each projected VVPs v̂k. Since the number of foreground
samples is small, the window moves to top-right. (b) Evaluate
Eq. 1 at each point xij inside Winit. (c) Optimized location.

tion cost function G(x) and search for its minimum inside
Winit. G(x) is the weighted summation of the distance
between a set of foreground sample points x̃i,k and a line
axis established by x ∈ Winit and each projected vertical
vanishing point v̂k,

G(x) =
N∑

k=0

nk∑
i=0

PC(x̃i,k) · d (x̃i,k, (v̂k − x)) , (1)

where nk is the number of foreground samples based on
each direction k, and we use PC(x̃i,k), the probability of
being foreground, as the weight for each of the foreground
sample points.

As shown in Fig. 4, the evaluation based on G(x) is
performed over all directions simultaneously (in this case
N = 3). The optimal ground-level position of the player is
xopt = arg minx∈Winit

G(x).
Note that the set of sampling points x̃i,k for each x ∈

Winit are organized along the line axis (v̂k − x). The sam-
pling range is calculated by finding the average height of
players using vanishing points [8]. If the summation of all
weights PC(x̃i,k) for all views is too small (Fig. 4(a)), this
is interpreted as a wrong initialization or a false-positive de-
tection of the player and discarded.

To find the corresponding position xt−a
opt of the player in

the previous frame t−a we establish a search window Wopt

centered around xopt. We use a combination of the geo-
metric constraints G(x)t−a on the previous top-view frame
Itop
t−a using Eq. 2, and a color proximity measure C(x)t−a:

xt−a
opt = arg min

x(x,y)∈Wopt

(
G(x)t−a + βC(x)t−a

)
(2)

C(x)t−a is a normalized Bhattacharyya distance of the
color (HSV) histogram between the two sets of foreground
samples used for xt

opt and xt−a ∈ Wt−a
opt respectively

(Fig. 5). The weighting factor β is usually very small (0.1).
The use of color similarity reduces the chance that we are
matching a different player. Once xt−a

opt is found, we can
define the motion (velocity vector) at xopt as:

[u, v]T = ∂x(x,y)
∂t

∼=
(
xt

opt − xt−a
opt

)
/a (3)

(a) (b) (c) (d) (e) (f)
Figure 5. Visualizing the components for evaluation of player lo-
cation at time t and t − a. The player in the upper row remains
in same location, and the one in bottom row moves. Colors range
from blue (low) to red (high). In each row: (a) Values of G(x) in
Winit, (b) Values of G(x)t in Wopt at current frame t, (c) Val-
ues of G(x)t−a in Wopt at previous frame t − a, (d) Distances
of the color histogram between frame t and t − a within Wopt,
(e) Weighted sum of G(x)t−a and C(x)t−a, and (f) A player of
the evaluation and sampled colors. We extract velocity vectors be-
tween t and t − a by subtraction of minima between (b) and (e).
This vectors are shown in (b) as white arrow.

2.2. Dense Motion Field Construction

Using our method for tracking player motion, we obtain a
sparse set of motions on the ground plane. To generate a
dense ground-level flow field we combine these sparse mo-
tions using radial basis function interpolation [2]. We also
temporally interpolate the flow using a weighted set of mo-
tions over time.

As described in Section 2.1, the motion at a location
x(x, y) ∈ Itop is defined by a velocity vector [∂x

∂t
∂y
∂t ]T =

[u v]T . If we detect Nk individual players at a given
frame k, then the set of the positions is denoted as
{xk

1 ,xk
2 , . . . ,xk

Nk
}, and the corresponding sets of velocities

for each direction are denoted as {uk
1 , uk

2 , . . . , uk
Nk
}, and

{vk
1 , vk

2 , . . . , vk
Nk
} for x and y directions respectively.

We define a temporal kernel of size p, using a half Gaus-
sian function. By applying the kernel to each entry of ve-
locity over time, we can construct two n× 1 vectors which
are temporally smoothed versions of uk

i to uk−p+1
i and vk

i

to vk−p+1
i respectively: U = [U1, U2, . . . , UNk

, . . . , Un]T

and V = [V1, V2, . . . , VNk
, . . . , Vn]T , where Ui and Vi

(1 ≤ i ≤ n) are scalar velocities for each direction.
The matching for each entry over time is set deterministi-
cally [18] (e.g. minimum distance and orientation). Note
that commonly n = Nk when the number of detected play-
ers does not vary over time. However, when there are less
number of entries in a given frame k, compared to previous
frames, n becomes larger than Nk.

Now, our problem may be stated as follows: given a
collection of n scattered 2D points {x1,x2, . . .xn} on
the ground plane, with associated scalar velocity values
{U1, . . . , Un} and {V1, . . . , Vn}, construct a smooth veloc-
ity field that matches each of these velocities at the given
locations. Consider the scalar-valued functions f(x) and
g(x) so that f(xi) = Ui, and g(xi) = Vi respectively, for



Figure 6. Motion Field Φ: White arrows represent the dense mo-
tion field generated from a sparse set of motions of players move-
ments. Note that for visualization purposes the dense field is dis-
played sparsely by averaging the flow at each block.

1 ≤ i ≤ n. For the case of interpolating velocity in the
x-direction, we can express the interpolation function as:

f(x) = c(x) +
∑n

i=0
λiφ(‖x− xi‖), (4)

where c(x) is a first order polynomial that accounts for the
linear and constant portions of f , λi is a weight for each
constraint, and xi are the locations of the scattered points
(nodes). Specifically, the radial function φ was chosen as
the thin-plate spline, φ(r) = r2 log r, as it gives us C1 con-
tinuity for smooth interpolation of the velocity field1.

To solve for the set of weights λi so that the inter-
polation satisfies the constraints f(xi) = Ui, we solve
the equation by evaluating each node at Eq. 4 (e.g. Ui =
c(xi) +

∑n
j=0 λjφ(‖xi − xj‖)).

Since the equation is linear in the unknowns, it can be
formulated as a linear system:[

A Q
QT 0

] [
λ
c

]
=

[
U
0

]
, Q =

 1 x1 y1

...
...

...
1 xn yn

 ,

where λ = [λ1, . . . , λn]T , c = [c1 c2 c3]T and the n × n
matrix A = (aij) = φ(||xi − xj ||).

Once we solve the system, the interpolated velocity
of the x-direction at any location xa(xa, ya) ∈ Itop

can be evaluated as: ua = c1 + c2xa + c3ya +∑n
i=1 λiφ(‖xa − xi‖). The velocity of y-direction is in-

terpolated similarly. To generate temporally smoother tran-
sitions the flow is finally smoothed using a 1× 5 box filter.
We refer to this flow as the motion field on the ground, and
denote it as Φ(x) = f(x)i + g(x)j = ui + vj. See Fig. 6.

2.3. Detecting Points of Convergence

The motion field reflects the local and global player motion
representing the play (i.e. the strategy or intention of the
players). We now define a point of convergence (POC) as

1Thin-plate spline minimizes the energy function : E =
∫
< ( ∂2f

∂x2 )2 +

2( ∂2f
∂x∂y

)2 + ( ∂2f
∂y2 )2dxdy over all interpolants [3, 17].

Figure 7. Points of Convergence detection: (a) Starting from
the position xij and another point having a different magnitude of
motion vector as an example. The magnitude of ρij is propagated
through the point (i + uij , j + uij). (b) An importance table Ψ is
updated by adding propagated confidence along Φ. (c) Pink circles
at bottom are the location where the accumulated importance is
high enough (larger is higher confidence). (d) Meanshift clustering
and Guassian mixture modeling detects two POCs in this case.

the spatial location that play evolution is proceeding toward
in the near future. In this section, we provide a method
to detect POCs of the game by finding locations where the
motion field merges.

Point of convergence detection is implemented in two
steps. First, the motion field on the ground Φ, is used to
propagate a confidence measure forward to calculate an im-
portance table Ψ whose size is the same as Itop. Then,
the accumulated confidence in Ψ are clustered and a Gaus-
sian Mixture Model is used to detect POC clusters. Fig. 7
shows an example of how POCs can be automatically de-
tected from a motion field Φ.

We introduce a confidence value, defined as the local
magnitude of velocity at any location on the ground. In the
first step, we propagate (copy) this value at a fixed time t
from each starting location through Φ. Then, we accumu-
late these values along the trace in an importance table Ψ.
Given a location x(i, j) ∈ Itop

t , Ψ is calculated by perform-
ing a forward propagation recursively based on the motion
field Φ. The magnitude of the velocity ρ2

ij = u2
ij + v2

ij is
propagated by updating Ψ as follows: Ψ(i+uij , j +vij) =
Ψ(i + uij , j + vij) + ρij . We continue this forward prop-
agation along the motion field until the attenuation which
is proportional to ρi,j is smaller than ε. Consequently, lo-
cations having a large ρ in Φ can have a large influence on
far away locations as long as the motion field moves in that
direction.

We compute the accumulated distribution of confidence
Ψ (Fig. 7(c)), by computing confidence propagation for any
location in Itop. To determine the location and the number
of POCs at a given frame k, we apply mean-shift cluster-
ing [5] to find an optimal number of clusters. Based on the



Figure 8. Divergence and Points of Convergence: Upper row:
Red regions denote the regions where ∇Φ < 0, and blue regions
denote regions where ∇Φ > 0. Lower row: Φ in (a) has specific
singular sink, while Φ in (b) has no specific singular region. In
both cases our approach detects the POCs (red elipses).

initial mean and the number of clusters (modes), we fit a
Gaussian Mixture model to the distribution of those regions
using Expectation Maximization (EM) (Fig. 7(d)).

Note that our POC detection is different than classical
singular (critical) points detection. Primarily, POC is a
global measurement of the flow, while the critical point is
a local extremum of the velocity potential and the stream
functions [7].

The divergence of the motion field Φ(x) at the location
x ∈ Itop is defined as div(Φ(x)) =∇Φ = ∂u

∂x + ∂v
∂y . If ∇Φ

is negative, the flux of the motion field across the boundary
of the region is inward, while positive is outward. Thus, if
the motion field flows to the boundary of a specific region,
the divergence of that region becomes negative (see Fig. 8).

In practice, many of the detected POCs exist in regions
where the local measurement of divergence becomes nega-
tive because the POC proceeds in the direction of the motion
field flow. Therefore, in many cases, a POC exists where
there is a significant singular sink point (Fig. 8(a)). How-
ever, if the majority of flows in a specific scene are not
regular enough to construct an apparent local extremum,
determining a POC by detection of singularities will fail
(Fig. 8(b)). In such cases, our forward-propagation method
can still locate regions of major global flows which signify
positions where the play evolution may proceed to.

3. Related and Motivating Past Work

Our approach described in the previous sections, is moti-
vated by previous efforts in tracking, flow estimation, mod-
eling from data and motion field analysis. In this section we
briefly highlight some of this relevant work.

The multi-view tracking element of our algorithm is sim-
ilar to Kim and Davis’s [11] person tracker that uses multi-
ple views. In this approach, they first detect a person as a
blob, and use the vertical axis of the blob to aid in seperated
occluded people. Thus, they explore the data fusion prob-

lem from measurements of each view, while we look for an
optimal solution at the merged top-view. Eshel et al. [9]
introduced homography-based head tracking using multiple
views to track a dense crowd. Khan and Shah [10] pro-
pose a method that is similar to our initialization step. They
refer to this as a “synergy map” which corresponds to our
position confidence map. However they do not provide an
optimizing step, so their approach works best when the data
is sparse and there are no significant shadows.

In our work on motion field analysis, our task is simi-
lar identifying critical points in a flow field. Previous work
has considered detecting critical points in optical flow ex-
tracted from satellite image sequences [6] and used topo-
logical structure for identifying the points in global orien-
tation field extracted from images [19]. Rao and Jain [14]
make use of a symbolic descriptor of orientation texture for
detecting critical points for finger print recognition. While
these methods work well for their specific applications, their
local criterion are not robust to noise and they are not ideal
for our task of analyzing multi player motions and flow.

Corpetti et al. [7] introduced a robust method to de-
tect singular points from synthetic and real dense motion
fields generated from optical flow of satellite cloud im-
ages. They decompose irrotational and solenoidal compo-
nents from dense flow and extract velocity potentials to find
a local extrema for finding critical points. Tong et al. [16]
also proposed a robust method to detect critical points by
decomposing a vector field into curl free, divergence free,
and harmonic fields with Hodge Helmholtz decomposition.
Methods using vector field decomposition report very stable
results from image and video data, yet are still computation-
ally expensive, and the output only has local measurement.
None of their methods detect the target location of harmonic
motion, such as linear movements or curved motion which
occur often in sports scenes, of particular interest here.

Our work has direct impact on generating automatic
broadcasts from a series of videos. Similar efforts have been
explored in the context of an Intelligent Studio for cook-
ing shows using scripts and simple vision techniques [13],
and for sports using player location for rule-based framing,
Araki et al. [1]. The Pajama channel [4] explores a simi-
lar concept by measuring horizontal flow of the game from
a mosaic video. None of these applications consider the
detection of future events, which can aid in planning and
controlling camera moves, as shown here.

4. Results and Evaluation
We collected a data set by recording a soccer match between
a local college team and a local amateur team using three
synchronized HD cameras. Each camera was mounted on
top of an approximately 12m high scaffold. Most of our
results are also presented in the accompanying video, which
is perhaps a more compelling way to view the output.



Figure 9. Example 1 of play evolution. In all figures, the the pink circles are the location of the ball, the arrows denote the initial direction
of the movement of the ball, white arrows denote the motion field on the ground, and red contours are the distribution of POC where play
evolution aims. In this example - interception & goal keeping. (Left) Goalkeeper 1 passes a ball to the last defender 2. A POC appears
near the defender, (Middle) While the ball is still on the way to the defender 2, another POC appears at different location as offender 3
approaches and the goalkeeper and defender 4 decide to defend. (Right) The ball is intercepted by offender 3 and the POC event in the left
region actually occurs. Finally, the ball was saved by the goalkeeper. Note that two POCs appear in both possible directions.

Figure 10. Example 2 of play evolution - center pass: (Left) Offender 1 dribbles towards the upper corner while offender 2 runs toward
the other corner (two POCs). (Middle) Offender 1 kicks a center pass. While the ball is travelling the POC near offender 2 becomes larger.
(Right) Defender 3 intercepts and the ball changes its direction. Offender 2 and another defender approach to the ball.

Figure 11. Example 3 of play evolution - back-door and through pass: Upper row: (Left) Offender 1 dribbles forward (a POC is
in front of the player). (Middle) Offender 1 passes the ball to offender 2 as part of a back-door strategy. A POC appears near offender
2. (Right) While the offender 2 waits to receive the ball, offender 1 and the defenders are running toward the goal-post. Another POC
appears near goal. Lower row: (Left) Before offender 2 kicks the ball, the POC near the goalpost becomes larger. (Middle) Offender 2
through-passes to offender 1. (Right) Offender 1 attempts to score.

To evaluate the ground-level motion detection we back-
project our automatic detection results onto each view and
manually tracked them to find discrepancies (Fig. 13). We
evaluated 14,814 individual players in 2,000 frames from
one of our data sets. As we only track the players cov-
ered by at least two views, players seen in only one camera
were not evaluated. Table. 1 summarizes our results. Note
that the false-negatives for two views are three times larger
than using three views. This is due to the reduced num-

ber of constraints (vanishing directions) and fewer sample
points that often results in a solution which is less confi-
dent. This tendency is also reported in other multi-view ap-
proaches [11, 10].

Qualitative evaluation of the dense motion field genera-
tion and POC detection is demonstrated in Figs 9, 10 and 11.
The distributions of POC clusters are shown as red contours,
and the motion field on the ground as white arrows. These
figures, and more examples in the accompanying video, il-



Figure 12. Distances between the location of the detected POC in the current frame and the location of the ball in future frames:
For both graphs, x-axis is the frame number, and y-axis is a pixel level distance (100 pixels is approximately 4 meters). The measurement
varies from blue (4 frames later) through red (120 frames later). In the upper graph, we partitioned the measurement into two types of the
prediction: short term and long term. In the bottom graph, more information extracted from the game scene is shown.

Figure 13. Evaluation of automatic player location on the
ground: We back-project the position onto each view for eval-
uation. Each R, G and B line with yellow circle denotes the di-
rection of the vertical vanishing points for each view (geometric
constraints).

Views FP (E1) FN (E2) Total
3 0.7162% 0.5649% 1.2811% (128/9913)
2 1.1000% 1.8120% 2.9120% (143/4901)

Table 1. Detection error: False Positive (FP) and False Negative
(FN) for each test. Two-views have larger FN error due to fewer
constraints.

lustrate how our motion fields and POC detection can reveal
interesting game events and foresee important future posi-
tions on the field.

Quantitative evaluation of our approach is not an easy
task since, (1) the position of important regions in the game
can be subjective, and (2) there is no ground truth for defin-
ing these regions. To give some quantitative measure, and
since ball location is one of the important regions (espe-
cially in soccer), we evaluate the results of trying to predict
the location of the ball using POCs. We assume that the
current POC will be a good indication to where the ball will
be in future frames, and then compare the two by collecting
ground truth of the ball position manually. To investigate
how well our estimated region reflects the future, we vary
the temporal offset for measuring the ball location from 4

frames to 120 frames from the current frame.
Fig. 12 (upper) shows the distance between the current

POC and the ground truth future position of the ball (de-
termined manually in video) over several frames. We ob-
serve that sometimes the prediction difference is smaller in
temporally closer frames than more distant frames, while at
other times this trend is reversed. We denote the former as
“short-term prediction” and the later as “long-term predic-
tion”.

To investigate when short-term or long-term prediction
occur, we track additional information from the video. The
plots in Fig. 12 (lower) show the height, velocity and deriva-
tive of the angle of direction of the ball. Additionally, we
add high-level game states such as “in-bound”, “out-bound”
and “goalkeeper-got-the-ball (GGB)” as horizontal color
bars in Fig. 12 (lower). Based on these information, we
observe that, (1) short-term prediction happens during in-
bound states, (2) it is more likely to have long-term predic-
tion in out-bound and GGB states, and (3) during in-bound
states, if the ball position is high and speed of the ball is
slowing down, long-term prediction is more likely.

These data-derived observations appear physically plau-
sible. For example, during in-bound states, the game speed
is faster, and players do not have time to estimate longer du-
rations. If the ball position is high in the air, players have
more time to evaluate where the ball will fall in the long-
term. In summary, if we take the minimum distance over all
offsets, the average distance between estimated POCs and
the corresponding position of the ball is 6.6 meters on av-
erage over all time offset, and 4.5 meters excluding GGB
states when all players just go back in the field.

The computational time for each part of our approach
are given in Table 2. Note that the computation is highly
dependent on the resolution of the field (Itop). Our current
implementation is not real-time, but it could be optimized.

5. Applications

In the accompanying video, we demonstrate two possible
applications for our work:



Field Resolution Motion Motion Fields POC
670×500 166.33 ms 15.5 ms 65.10 ms
945×700 325.5 ms 36.5 ms 254.4 ms

1350×990 871.2 ms 93.5 ms 568.24 ms

Table 2. Computational time with various sizes of top-view:
Test results using an Intel Core i7-965, 3.2GHz with 3GB RAM.

Figure 14. Applications: (a) Simulation of automated broadcast-
ing: Red rectangle indicates the field of view of main camera, and
an image at bottom-right shows the output image (virtual crop).
(b) Top-view Visualization. More application results can be found
in the accompanying video.

Automatic Camera Control: Estimating where the im-
portant events will happen without accessing future video
frames is very important for automated live broadcasting.
To mimic human camera operators, an automatic broadcast-
ing algorithm needs to control the pan and zoom of cameras
and direct them towards regions of importance while main-
taining smooth transitions and good field of view (FOV)
framing. We use our POC detection to forecast future im-
portant events, and demonstrate control of a virtual camera
by using cropped windows (Fig. 14(a) and the accompany-
ing video). We assume that the red rectangle represents the
field of view of a camera and move it to follow the position
of our POC. Note, that the ball is not always centered in the
frame providing richer context of the scene, and the move-
ment of the FOV is smoothed based on the play evolution.
Sports Visualization and Analysis: Tracking the location,
the number, and the size of POC may provide a good indi-
cation for interesting and important events during a game.
This can be a useful tool for analyzing games offline by
coaches and trainers, or by broadcasters during a live game
to show novel views of the game (Fig. 14(b)).

6. Summary and Future Work

We introduce a novel approach for play evolution anal-
ysis using multiple views. We detect and track the ground-
level motion of players through optimization of geometric
constraints. Using these sparse sets of tracks, we generate
a dense motion field on the ground-plane and detect points
of convergence in the field as possible future interesting lo-
cations of play evolution. We evaluate our approach both
quantitatively and qualitatively.

In the future we plan to develop more efficient ways to
extract the motion fields and reduce the computational cost.
We are interested in pursuing robotically controlled cameras
to realize our goal of automated broadcasting [15].
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