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Abstract—We present an algorithm for creating realistic animations of
characters that are swimming through fluids. Our approach combines
dynamic simulation with data-driven kinematic motions (motion capture
data) to produce realistic animation in a fluid. The interaction of the artic-
ulated body with the fluid is performed by incorporating joint constraints
with rigid animation and by extending a solid/fluid coupling method to
handle articulated chains. Our solver takes as input the current state
of the simulation and calculates the angular and linear accelerations of
the connected bodies needed to match a particular motion sequence
for the articulated body. These accelerations are used to estimate the
forces and torques that are then applied to each joint. Based on this
approach, we demonstrate simulated swimming results for a variety of
different strokes, including crawl, backstroke, breaststroke and butterfly.
The ability to have articulated bodies interact with fluids also allows us to
generate simulations of simple water creatures that are driven by simple
controllers.

Index Terms—Physically Based Animation, Fluid Simulation, Motion
Capture

1 INTRODUCTION
The field of computer graphics has recently witnessed sig-
nificant maturity in the use of physics-based simulation and
data-driven methods for generating realistic animations. In
part, use of physical simulation has provided for some very
good approaches for animating fluids (see [1], [2], [3], [4]
for a review). Character animation either remains in the hands
of talented animators with good tools for key-framing or is
performed using data-driven animation. Motion capture tech-
nologies are now in wide use to capture data of performances
to animate characters. A major benefit of motion capture is
that it provides many of the details and nuances of live motion.
The usability of motion capture for animation has been further
enhanced by some practical approaches for the adaptation
and reuse of already captured data (see [5] [6], [7], [8]).
However only a few efforts make the data of character motion
interact with the surrounding physical environment, especially
a complex simulated environment with fluids. For example,
it would be interesting to take a kinematic motion of a fish
and put it in simulated water to animate the effects that the
fish and the water have on each other. Similarly, it would
be of great benefit for animators if motion capture data of a
person performing swimming actions in the air could be put in
simulated water to generate swimming animations, affecting
both the character and the fluid.

We propose a method for simulating the interaction between
an articulated character and a simulated fluid. Using our
approach an animator can take any form of motion trajectory
associated with a geometry, either in the form of a motion
capture sequence or a related kinematic animation, insert it
into a physical simulation of water, and animate the effects
that they have on each other. In our method, we use the motion
trajectories from an articulated character to calculate joint
forces that closely mimic the input data when applied to the
physical model. Once we have this simulation of the character,
we make it interact with the fluid. To achieve this interaction,
we turn to some of the recent efforts on simulating two-way
interactions between rigid bodies and fluids. Specifically, we
build on the Rigid Fluid method for full two-way coupling
between the rigid bodies and fluids [9]. As we are interested in
articulated character animations, we need to extend the Rigid
Fluid approach to incorporate rigid bodies with joints.

Our method consists of two main steps:

1) Force/torque extraction: Given motion capture data,
we calculate the forces and torques that must be applied
to our articulated body joints during simulation so
that it follows the motion capture data as closely as
possible. We use a constraint-based method discussed
in Section 3, for this purpose.

2) Fluid-Body coupling: Once we have the joint forces
and torques, we simulate the articulated body in the
fluid environment using our extension of the Rigid Fluid
method. This interaction changes the fluid environment,
(e.g., creates splashes) and also affects the articulated
body simulation (e.g., a person doing a swimming action
is pushed forward).

The above two steps are repeated to form a feedback
mechanism. The overall flow diagram of our approach is
shown in Figure 1. The forces due to fluid/body coupling may
cause the simulation to deviate from the motion capture data,
but the force/torque extraction step tries to bring the articulated
figure back into step with the data. Thus, the swimmer closely
follows the motion capture data in terms of the relative joint
angles, but at the same time is given a global translation and
rotational motion that represents the net force and torque from
the fluid to the swimmer. This completes the two-way coupling
of the swimmer with the fluid environment.



2

Articulated 

Character

Extended

Rigid Fluid

Torque/Force

Extractor

Geometry
(at initialization only)

Motions at Joints
(Joint angles, updating 

at each step)

Feedback

Loop

Motion Captured, Key-framed, or 

actuated by a simple motor

Interacting Fluid  Simulation with Articulated Motion

Forces/Torques

at the Joint

Forces/Torques

from the Fluid

Fig. 1. Flow diagram of our approach.

Our work broadens the range of objects that can interact
with simulated fluids. In prior work, examples have been
created in which a ball or feet have caused splashes in
fluids [1], [2], [10]. In such cases, the trajectory of the ball
is not affected by the fluid. Examples have also been created
that simulate buoyant objects that are floating on the surface
of the water [11]. In these situations the object does not
cause any changes to the water. Only recently have we seen
animations where the motion of the object affects the fluid
and vice-versa [3], [9], [12]–[17]. We use a full two-way
solid-fluid coupling enabling us to demonstrate effects that
were not viable before. For example, the two-way simulation
allows us to simulate surface effects like splashing while
impacting the motion of the object in the fluid. Our articulated
structures impart complex forces on the fluid and in return
the fluid propels the structure in the ways that we expect.
Using our approach, we are able to dynamically simulate
characters swimming in water. Using a simple controller, we
also demonstrate the validity of a result due to Purcell about
simple swimmers at low Reynolds numbers [18].

Fig. 2. A simulated swimmer that is driven by motion
capture data. The forward motion of the swimmer is due
to the interactions between the figure and the simulated
fluid.

2 RELATED WORK

Most of the work in motion capture research is focused on
reusing already captured data either to synthesize new anima-
tion by copying pieces from a database and reassembling them,

or to generate new motions by using kinematics constraint
satisfaction to search for new variations on existing data.
Recently however, some researchers have tried to combine
motion capture and simulation so that motion captured char-
acters can dynamically interact with a physically simulated
environment.

Oshita and Makinouchi [19] use simulation to allow a char-
acter to respond to a mass being dropped on its back. Zordan
and Hodgins [20] create simulations from motion capture data
that are able to hit and react to collisions. This work is closest
to ours in spirit. They choose to model motion capture data
with proportional-derivative (PD) servos, and allow passive
dynamics to take over during impacts. The stiffness parameters
of the servo are interpolated to smoothly switch between
tracking and passive control. Unlike this transition between
tracking motion capture data and passive dynamics, since we
are interested in interacting with fluids, our articulated figure
is continuously interacting with the physical environment at
all times.

Recently Yang et al. [21] developed a layered strategy to
control swimming motions. In their approach, they employ a
simple viscous drag model and do not perform a full fluid
simulation. They specifically state that “A full CFD [com-
putational fluid dynamics] with unsteady flow is, however,
necessary to truly capture the motion of swimming characters.”
[21]. [22] demonstrate coupling of the fluid with flexible
bodies, with details to be published, including results for
simulating free swimming motion of fish in a viscous fluid.

Previous work on characters that interact with fluids use
simple models for calculating forces between fluid and solids.
Tu and Terzopoulos [23] compute forces on a fish surface
using the surface normal and relative velocity between the
surface and water. Their simulation does not affect the water
at all and hence surface phenomena like splashing could not
be demonstrated. Along the same lines, Wu and Popovic [24]
use a simple model of aerodynamics to create the lift and drag
forces on birds.

Several methods have been used in graphics to allow
modeling of full two-way coupling between fluids and solids.
Yngve et al. [25] simulate destructive explosions with two-
way coupling of breakable rigid bodies and compressible high
speed fluid. Génevaux et al. [12] implement two way coupling
between incompressible fluid and deformable solids modeled
by mass/spring systems. Takahashi et al. [26], [27] model
the interaction of incompressible fluids and rigid bodies by
setting the velocity of the rigid body as boundary conditions
to the the fluid solver, and using the fluid’s pressure to
calculate a normal force acting on the surface of the rigid
body. Guendelman et al. [13] use a similar object velocity/fluid
pressure coupling to animate the interaction of incompressible
fluids with zero volume deformable and rigid shells. [3],
[15]–[17] solve simultaneosly for the fluid pressure and solid
velocity to obtain a fully implicit two-way solid-fluid coupling.
We chose to use the Rigid Fluid method from Carlson et al. [9]
to model our rigid bodies interacting with incompressible fluid.
This method affords an easy translation of forces between
the simulations and was straightforward to implement. The
method scales linearly, and it adds very little over-head com-
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Fig. 3. A simple 2- body articulated structure shown to
clarify notation. The two bodies are acted upon by forces
from the fluid and other forces, in addition to the internal
forces due to the joint.

pared to the cost of the fluid simulation. We recognize that
other coupling techniques for solid/fluid interaction such as
[3] may also be appropriate for our goals. We believe that our
constraint-based solver will work equally well with the other
approaches listed above.

Much attention has been given to modeling the dynamics
of articulated figures. Methods for defining controllers for
complex behaviors [28] to learning simple controllers [29]
have been proposed. However, most of these methods are more
suitable for forward dynamic simulation [30] improving on
efforts in dynamic robotic manipulation [31].

3 FORCE/TORQUE EXTRACTION

Our goal is to create a physical system that is modeled on
the articulated data (and its motion) so that the articulated
character can exert and react to forces. For this purpose, we
have devised an approach to compute joint forces and torques
that allow the simulation to model (and mimic) the motion
data as accurately as possible. Since our character simulation
continuously interacts with the fluid, the forces applied by the
fluid also need to be accounted for while calculating these
joint forces and torques.

3.1 Constraint based Force/Torque Solver

For simplicity of exposition, consider the 2D case in which
the orientation of a body can be represented by a scalar angle
θ (measured counter-clockwise with respect to the x-axis).
Details regarding the extension to the 3D case, which requires
dealing with quaternions, are described in the next section
(Section 3.2).

We model the motion data by constraining the angles of
the simulated joints to closely follow the corresponding angles
in the motion data. For instance, consider a joint j between
bodies b1 and b2 at some time t, with angles θ1(t), θ2(t),
angular velocities ω1(t), ω2(t), and angular accelerations
α1(t),α2(t), respectively, as in Figure 3. The angle of the joint
θ( j,1−2)(t) [for notational simplicity, we refer to θ( j,1−2)(t) as
θ j(t)] can then be defined as the angle of b2 as seen by b1:

θ j(t) = θ2(t)−θ1(t) (1)

The equation of evolution of the joint angle can then be written
as:

d
dt

θ j(t) =
d
dt

θ2(t)−
d
dt

θ1(t) = ω2(t)−ω1(t) = ω j(t) (2)

where ω j(t) = ω2(t)− ω1(t) is defined to be the angular
velocity of the joint j at time t, which is also same as the
angular velocity of b2 as seen by b1. The equation for the
evolution of ω j(t) can be written similarly

d
dt

ω j(t) = α2(t)−α1(t) = α j(t) (3)

where α j(t) = α2(t)− α1(t) is defined to be the angular
accelerations of the joint j at time t.

We want to apply forces and torques on the bodies such that
the joint angles of our simulation will closely match the motion
data joint angles at some future time t̃. The forces/torques
we apply to the bodies at time t will affect the angular
accelerations at that time. Thus in our explicit forward Euler
approximation, the forces and torques applied now will affect
the joint angle θ j two time steps later:

θ j(t +2∆t) = θ j(t +∆t)+ω j(t +∆t)∆t (4)

where θ j(t +∆t) = θ j(t)+ω j(t)∆t .

Since we want our simulation to model the motion data, we
set θ j(t + 2∆t) above to be equal to the desired joint angle
θ̂ j(t + 2∆t) as calculated from the motion capture data; with
this substitution, equation (4) gives

ω j(t +∆t) =
θ̂ j(t +2∆t)−θ j(t +∆t)

∆t
. (5)

This gives us an estimate of the desired angular acceleration
α j(t):

α j(t) =
ω j(t +∆t)−ω j(t)

∆t
. (6)

With the desired α j(t)’s, the forces/torques to be applied at
each joint can be calculated using the following three sets of
equations:

1) Equations relating angular acceleration of joint j to that
of its constituting bodies b1, b2.

α j(t) = α2(t)−α1(t). (7)

2) Equations due to Newton’s third law. Suppose a joint
j between bodies b1, b2 applies forces F( j,1), F( j,2) and
torques τ( j,1), τ( j,2) to the bodies b1 and b2, respectively.
As these are internal forces (body b1 applying force on
b2 and vice versa), they have to be equal and opposite:

F( j,1) =−F( j,2). (8)

A similar relation will hold true for the torque about
a fixed internal point, say po, the origin for our global
coordinate system, if we assume the strong form [32]1

of Newton’s third law.

1. Strong form of Newton’s Third Law requires that in addition to being
equal and opposite, the forces must be directed along the line connecting the
two particles
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τ( j,1) |po=−τ( j,2) |po . (9)

3) Equation relating angular acceleration of a body, bi to
all the forces acting on the body. The forces/torques,
(Fbi ,τbi) acting on each body include all the joint
forces/toques, fluid forces/torques and forces due to
gravity and collisions.

Ibiαi = τbi − rbi ×Fbi , (10)

where Ibi is the moment of inertia of the body and rbi

is the vector to center of mass of the body bi
Using this formulation, our solution takes into account
these external forces automatically, which allows us
to follow the motion data more accurately. Since PD-
Servos do not take these external forces/torques into
consideration, using them to model motion data in a
complex fluid environment is complicated.

Note that if the current state of the articulated body differs
considerably from the desired state, then the controller might
cause very large torques. This could be easily fixed by clamp-
ing the forces/torques applied to some threshold. Since all of
our swimmer examples start from a good state and because our
controller is able to follow the mocap trajectory closely, we
did not need to perform any such clamping in our simulations.

3.2 Extending Constraint-based Solver to 3D
Unlike the 2D case, the orientation of a body cannot be
represented by a single angle in 3D, so we use quaternions
to represent the orientations of the bodies. A quaternion q
is composed of a scalar/real part s and vector part v, i.e.
q ≡ (s,v). All q quaternions below will be unit quaternions,
since rotations and orientations correspond to unit quaternions.
Here we assume a basic knowledge of quaternion algebra (see,
e.g., [33]).

We again consider the joint j between two bodies, b1 and b2,
with their orientations now represented by quaternions q1(t)
and q2(t), respectively, and the quaternion of the joint, q j(t),
defined as the quaternion representing the orientation of b2 as
seen by b1:

q j(t) = q−1
1 (t)q2(t) (11)

where q−1
1 (t) is the inverse of q1(t). Recall that the inverse of

a unit quaternion is equivalent to its conjugate.
For a rigid body rotating with angular velocity ω(t), the

time derivative of its quaternion q(t) is given by

d
dt

q(t) =
1
2

ω
q(t)q(t) (12)

where ωq is the quaternion representation of the angular ve-
locity vector ω , i.e., ωq = (0,ω). Given the angular velocities
of the two bodies b1 and b2 constituting the joint j, our aim is
to find the time derivative of the joint quaternion q j(t), defined
in equation (11). If we define ω j(t) = ω2(t)−ω1(t) to be the
angular velocity of the joint j as we did in the 2D case, it can
be shown that

d
dt

q j(t) =
d
dt

q−1
1 (t)q2(t) =

1
2
(q−1

1 ω
q
j q1)q j . (13)

That is, if we define Ω j = q−1
1 ω

q
j q1, then

d
dt

q j(t) =
1
2

Ω jq j . (14)

We note that Ω j = q−1
1 ω

q
j q1 is the quaternion representation

of the vector ω j in the reference frame fixed to b1. Intuitively,
equation (14) can be thought of as the general equation (12)
written in the reference frame fixed to b1, where we replace q
by the relative quaternion q j = q−1

1 q2 of b2 as seen from b1,
and the angular velocity ω by the relative angular velocity Ω j

To make the 3D simulation follow the joint orientation data,
we will set the joint quaternion after two time steps, q j(t +
2∆t), to be equal to the desired joint quaternion determined
from the motion capture data (q̂ j(t +2∆t)):

q̂ j(t +2∆t) = q j(t +∆t)+
1
2

Ω j(t +∆t)q j(t +∆t)∆t (15)

where q j(t +∆t) = q j(t)+
1
2

Ω j(t)q j(t)∆t

To simplify the notation of the above form, we replace q̂ j(t +
2∆t) with q̂, q j(t +∆t) with q, and Ω j(t +∆t) with Ω to get

q̂ = q+
1
2

Ωq∆t (16)

We thus naı̈vely expect to solve for the unknown Ω in the
above equation by simply post-multiplying both sides by
q−1. However, this entire operation appears problematic since
we required orientations and rotations to be described by
unit quaternions; while the differential equation (12) for q
maintains constant N(q) = 1, our simple discretization in equa-
tion (16) violates the unit-quaternion condition. We could fix
this by forcibly renormalizing the right side of equation (16)
to have unit norm, but this leads to a complex quadratic
equation for Ω. We instead solve this problem by introducing
an additional variable s describing the non-unit norm resulting
from the discretization error,

sqd = q+1/2Ωq∆t , (17)

and appeal to the requirement that the real part of Ω must
be zero; that is, Ω must be the quaternion representation of
a vector. Multiplying both sides of equation (17) by q−1,
rearrangement yields

Ω = (sqdq−1−1)(2/∆t), (18)

with the requirement that real(sqdq−1) = 1. This system
can now be easily solved for the desired Ω = Ω j(t + ∆t)
angular velocity at the next time step. This Ω = Ω j(t + ∆t)
plays the same role in 3D that the desired ω j(t + ∆t) in
equation (6) played in 2D: the desired Ω at the next time
step determines the angular accelerations that must be applied
at the current time by the forward Euler relations, and those
angular accelerations give the conditions for solving for the
forces and torques imposed at the joints.

The above considerations give an under-constrained system
of linear equations for the unknown joint forces F( j,1), F( j,2)
and torques τ( j,1), τ( j,2), because we have not yet included
any conditions on the relative distances of the connected
bodies. These additional constraints complete the system of the
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equations and are discussed next as we discuss the simulation
method for fluids.

4 INCORPORATING THE JOINT CONSTRAINTS
IN RIGID FLUID METHOD

A joint is a relationship that is enforced between two bodies
so that they can only have certain positions and orientations
relative to each other. For example a ball and socket joint
constrains a point (the “ball”) of one body to be in the same
location as a point (the “socket”) of another body. A hinge
joint on the other hand constrains the two parts of the hinge
to be in the same location and to line up along the hinge axle.

When two bodies connected through a joint are subjected
to external forces and torques, the linear and angular accel-
erations thus caused may try to violate the joint constraints.
To counter this, the bodies apply forces and torques on each
other in such a way that the net resulting acceleration does
not violate the constraints.

4.1 Solving Joint Constraints

We now describe how we solve for these internal forces and
torques to satisfy the joint constraints. We are given as input
the external forces and torques acting on each of the bodies
and we want to calculate the internal forces/torques due to the
joints which will prevent the violation of joint constraints. We
form three sets of equations, quite similar to the ones discussed
in Section 3.1.

1) Newton’s Second Law equations: Each body b may be
connected to multiple joints. Each of these joints will
apply an internal force and torque on the body. In ad-
dition there will be other external forces due to gravity,
collision, fluid coupling etc. Let these forces and torques
be Fb = {Fb1 ,Fb2 , . . . ,Fbn} and τb = {τb1 ,τb2 , . . . ,τbn}.
The linear acceleration of the center of mass of the body
can then be written as:

mba = ∑
k

Fbk , (19)

where mb is the mass of the body b. The equation for
angular acceleration is the same as equation (10). This
gives us equations in terms of the unknown internal
forces and torques. Such equations are constructed for
each body in the system.

2) Joint constraint equations: Given the acceleration ac
of the center of mass mc of a body, its angular velocity
ω and angular acceleration α , the linear acceleration ap
of any point mp on the body can be obtained as:

ap = ac +α × rpc +ω × (ω × rpc) (20)

Now, by imposing joint constraints on these accelera-
tions (e.g., the acceleration of the ball in body b1 should
be same as that of the socket in body b2, as they are
connected through a ball and socket joint), gives us
another set of equations. Such an equation is constructed
for each of the joints.

Rigid Body Solver Fluid Solver

Articulated Body 
Solver Fluid Solver

Rigid Fluid System for Interacting Fluids with Rigid Bodies

Accelerations

Velocities

Rigid Fluid System for Interacting Fluids with Articulated Rigid Bodies

Accelerations

Forces & Torques

Solve Joint 
Constraints

Compute Force 
& Torques

Fig. 4. A simple schematic highlighting the Fluid solver
that works with rigid bodies and its extension to work with
articulated rigid bodies.

3) Newton’s Third Law equations: This set of equations
correspond exactly to the equations (8) and (9) in
Section 3.1.

This gives us a system of linear equations in terms of the
internal joint forces and torques. However this system is also
under-constrained. The missing constraint is provided by the
physical properties of the joints. For instance, in a ball and
socket joint, the torque at the joint, due to internal forces is
zero, as the joint allows for complete freedom to rotate in
all directions. Conversely, in the case of a hinge joint the
torque about the hinge axle should be zero, with constraints
preventing motion on the other axis. In the case of limbs with
hinge joints (e.g., elbows) torques are applied to create motion
(in case of arms, via muscles).

As we have the data from our motion trajectories, our goal
is to use the kinematic data, as constraints on the motion,
to compute the forces. For this we turn to equations that
we discussed in Section 3, specifically equations (8) and (9)
establishing the Newton’s third law and equation (10) for
Newton’s second law. Equation (7) provides an additional
constraint relating the difference in angular accelerations for
bodies connected by a joint. This gives us a complete system
of equations which can now be solved for the internal joint
forces and torques, which will not only satisfy the joint
constraints, but also help the simulation to model the motion
data accurately.

Now we discuss how to integrate these joint constraints
into the Rigid Fluid framework to allow for two-way coupling
between articulated bodies and fluids. Before doing this let us
summarize, in brief, the important aspects of the Rigid Fluid
method in order to understand the integration more clearly.

4.2 Rigid Fluid, a brief summary

The Rigid Fluid method uses the Navier-Stokes equations to
solve for the fluid and employs a rigid projection step to
model the two-way coupling between rigid bodies and fluid
(see Figure 4 (top)). The computational domain is divided into
two parts - the part containing only the fluid is called F and
the part occupied by the rigid bodies is called the solid domain
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R. The Rigid Fluid method essentially consists of two main
subsystems:

1) Rigid Body Solver: During each time step of the
simulation, the rigid body solver uses the initial velocity
gathered from the fluid solver, applies forces due to
collision, etc., to the solid objects, and updates their
positions.
To properly transfer momentum between the solid and
fluid domains due to these forces, the solver also
maintains a running sum of the additional accelerations
created on each body over the time step. Similarly
the additional angular accelerations about each body’s
center of mass are calculated. These linear and angular
accelerations are then passed as input to the fluid solver.

2) Modified Fluid Solver: The modified fluid solver con-
sists of three main steps:

a) Solving Navier-Stokes Equations: During this
step, the rigid objects in contact with fluid are
treated exactly as if they were fluid. The Navier-
Stokes equations are solved in the entire domain
C = F ∪R in the usual fashion, using a semi-
Lagrangian technique [34] and pressure projection.
We have also extended this to use a modification
of the standard semi-Lagrangian approach that is
known as Back and Forth Error Compensation and
Correction (BFECC) [35], which is second-order
accurate.

b) Incorporating Rigid Body Forces: The rigid body
forces due to collisions, etc., that were calculated in
the rigid body solver are accounted for in this step.
The accumulated linear and angular accelerations
from the rigid body solver are used to change the
velocities in the solid domain R. The buoyant
forces arising from relative density are also con-
sidered in this step.

c) Enforcing Rigid Motion: This step enforces rigid-
ity in the solid domain R. The velocities in R are
gathered together to find the velocity of the center
of mass and the angular velocity of the rigid body.
This is then projected back on the grid cells in R,
so that every point in the rigid body obeys the same
rigid body motion.

4.3 Extensions to Rigid Fluid
The rigid body solver influences the fluid solver by providing
to it the accumulated linear and angular accelerations due to
forces such as collisions that act on the rigid bodies. This
is the top loop in the Figure 4. The fluid solver, on the
other hand, affects the rigid body solver by changing the
rigid body velocities due to a combined effect of the Navier-
Stokes solution, buoyancy forces and rigidity enforcement. To
replace the rigid body solver with an articulated body solver,
we incorporate a joint constraints solver, which requires us to
change the communication between these two solvers.

In our approach the articulated rigid body solver takes into
account the joint constraints as explained in Section 4.1. The
resulting forces and torques due to solving the joint constraints

Fig. 5. A freely floating body alongside a flipper in low
viscosity fluid

Fig. 6. A freely floating body alongside a flipper in high
viscosity fluid

are accumulated into the linear and angular accelerations, so
that momentum is properly transferred between the solid and
fluid domains. Since the fluid solver changes the linear and
angular velocities of the rigid bodies, this needs to be reflected
in the rigid solver so that the joint constraints can take that fact
into account. To incorporate this we calculate the difference
in each rigid body’s linear and angular velocities caused by
the fluid solver at each time step. This difference is multiplied
by the corresponding mass and moment of inertia of the rigid
body to obtain the resultant force and torque, respectively.
These are then passed to the rigid body solver as external
forces and torques, which in turn are applied to the rigid body.
The rigid body solver uses this information to solve the joint
constraints. The bottom of part Figure 4 shows the additional
modules that are needed for this purpose.

Note that the stability characteristics of our simulations with
this coupling method are essentially the same as that of the
underlying rigid fluid method, and we did not encounter any
instability issues while running our simulations.

5 RESULTS

We have undertaken two kinds of simulations using our two-
way coupled simulation system. First, we have simulated
simple water creatures that are actuated by hand-written con-
trollers. Second, we used motion capture of subjects who
were trying to mimic swimming actions in air and we have
put the resulting articulated models into a simulated water
environment. We describe each of these results in this section.

5.1 Simple underwater creatures: Flipper and Pur-
cell swimmer
Using the coupling between articulated bodies and fluids we
create a simulation of simple water creatures using hand-
written controllers.

Figures 5 and 6 show a simple flipper in which a large
body is pushed forward by a smaller tail that is attached to
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the body. All body parts here are neutrally buoyant (relative
density 1). A simple controller at the joint applies torques on
the two parts to create a flipping motion. The sequence shows
the flipper moving correctly under the influence of forces due
to its interaction with the fluid.

Since we perform a full two-way coupling between the artic-
ulated body and fluids, we are able to both demonstrate effects
like viscous drag and explore their variation across different
viscosities (equivalently speaking non-dimensionally, across
different Reynolds numbers). Figure 5 shows a body freely
floating alongside a flipper . In this example we have kept
the viscosity of the fluid low to minimize viscous effects. As
the flipper pushes the water back to move forward, the freely
floating body is also pushed back along with the backward
flow of the fluid. In Figure 6 we have increased the viscosity
of the fluid to make the viscous effects more pronounced. As
one can see, the freely floating body now moves along with the
flipper and the nearby fluid is viscously dragged along with
the body. Note that these effects can only be demonstrated and
distinguished if we perform a full two-way coupling between
the fluid and the bodies. For comparison, simply modeling
an everywhere-uniform drag force would fail to capture such
interactions between different bodies in fluids. The effects of
the fluid on a swimmer’s global orientation can be seen when
the flipper reaches the end of the fluid domain and begins
turning upwards.

Further demonstrating the effects of different viscosities on
swimming motions, we find it useful to consider the case
of the Purcell swimmer . E.M. Purcell identified in 1976
that the simplest “animal” that can swim at zero Reynolds
numbers is one with three straight elements connected by
two hinges. A single-hinged creature like our simple flipper
above makes little headway at small Reynolds number because
inertia is unavailable to break the time reversibility of the
different elements of the swimming cycle. In contrast, Purcell
proposed a sequence of configurations (shown in Figure 7)
which enables the three-link Purcell swimmer to propel itself
in an irreversible way, even at zero Reynolds number. We
wrote controllers to apply forces at the two joints in such
a way that the swimmer follows these desired configurations.
Figure 8 shows frames from an animation of the swimmer.
It requires subtle analysis to determine which direction such
a simple swimmer will move; as is predicted in [36], our
swimmer swims in the left direction due to the fluid forces.
To our knowledge, this is the first CFD simulation of this
mechanism.

We note that understanding viscosity effects in swimming
is a subtle matter, and that it can be puzzling to unravel the
conditions on which decreasing viscosity alternatively impedes
or aids a particular swimming motion. On the one hand,
increased viscosity increases drag on the swimming object;
but this increased viscosity simultaneously gives a swimmer
a firmer material with which to push off of. Cussler and
Gettelfinger [37] recently established that these two effects
effectively cancel each other out for human swimmers. Their
experiment was so humorously dramatic, including competi-
tive collegiate swimmers in a pool of guar, that it netted a 2005
IgNobel Prize for Chemistry. For our purposes, it demonstrates

Fig. 7. The configuration cycle followed by a Purcell
swimmer [18].

Fig. 8. A Purcell swimmer moving to the left.

the complexities involved in human swimming.

5.2 Mocap Swimming

Now we will describe our experiments with motion capture
data and how it interacts with fluids. For these animations,
we captured a variety of swimming strokes like the crawl ,
breaststroke and backstroke . Motions like these swimming
strokes are very hard to mocap. Figure 14 shows three dif-
ferent ways our subjects were asked to perform the required
motions. These are hard motions to perform, as most of the
real dynamics are only possible when one is immersed in
water, and moreover, all of these capture setups are extremely
cumbersome. Nonetheless, we were able to capture several
instances of crawl , breaststroke , and backstroke . A correct
looking butterfly stroke was just not possible, as none of our
subjects could move their bodies in the manner required for
that stroke while being suspended or supported from below.
In the next few paragraphs we discuss some of the details and
images of these animations. The included video is the best
way to evaluate these results. In addition to simulating these
animations with different configurations, we also recorded
a video of a person swimming for visual comparison. The
subject in the video tape is not the same as the one motion
captured and we do not attempt any form of synchronization
between the video and the animation.

Fig. 14. Pictures of a motion capture session. Capturing
mocap of a user who is performing motions to mimic
swimming is not easy. Three different configurations are
shown here.
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Fig. 9. Breaststroke

Fig. 10. Under-water Breaststroke

Fig. 11. Butterfly

Fig. 12. Crawl

Fig. 13. Backstroke

The input to our system is cleaned up motion capture data. Joint angles of the various joints are then extracted to give the
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desired angle term θ̂ used in Equation (5).
For simplicity we modeled each part of the human articu-

lated body as a cuboid with a predefined thickness and length
corresponding to the limb length in the motion capture data.
Using full meshes to model the articulated bodies would also
be possible, but is left as future work. In most cases the
relative density of the bodies was kept close to one, however
we lowered the value a little when we wanted the swimmer
to stay close to the surface, in particular for the crawl and
backstroke.

Another problem we had was that of control. When left
entirely on its own, our simulated swimmer moved in all direc-
tions. Though the simulated motion looked completely natural,
the usefulness of the method was heavily compromised. To
avoid this problem we applied small external torques on the
torso of the body so that it maintains a fixed orientation in
space. This is in essence similar to a simple balance controller
used in dynamics walking simulations.

Figure 9 shows a view of the swimmer performing a
breaststroke . We experimented with the initial positions and
relative density of the swimmers for all our animations. In
Figure 9 and Figure 10 the relative density was set to 1. In
the latter example, where we started the swimmer underwater,
the swimmer came up entirely due to the hand and leg motions.
The breaststroke swimmer demonstrates that the forward mo-
tion of the swimmer is not pre-scripted. The swimmer rapidly
thrusts forward when the swimmer arms are moved backwards,
but slows down a little due to drag when the arms move
forward. Figure 12, 13 show crawl motion and backstroke
motion respectively. We also show the butterfly stroke in
Figure 11.

Our approach is implemented in C + + and uses Open
Dynamics Engine (ODE) to simulate the rigid body dynamics.
The final frames were rendered using POVray. One second
of simulation took approximately 30 to 40 minutes on a
dual pentium 2.5 GHz machine. See the project website
at http://www.cc.gatech.edu/cpl/projects/swimmer/ for videos
and other related material.

6 LIMITATIONS

Our method allows us to simulate two-way coupling between
articulated figures and fluids, yet as it stands there are some
limitations to our approach. One limitation of our method is
that the quality of swimming animation is directly related to
the quality of motion capture data. These motions are hard to
perform in air, as most of the real dynamics are only possible
when one is immersed in water. Moreover, the data capture
setup is extremely cumbersome. Improving motion capture for
swimming is a possible future direction for research in motion
capture.

Another current limitation of our system is that the con-
troller samples the motion capture data only at the rate of the
time steps of the simulation. Since we would like to take large
time steps to keep the simulation times reasonable, we could
miss high frequency motions in the captured data. This could
be easily fixed by clamping the time step size by the motion
capture rate, albeit at the cost of higher simulation time.

7 SUMMARY & FUTURE WORK

We have presented an algorithm for creating realistic anima-
tion of characters that are interacting with fluids. This method
allows us to create simulated swimmers based on motion
capture data. The ability for articulated bodies to interact
with fluids also allows interesting simulations of simple water
creatures, by writing simple controllers. We can easily extend
this framework to key-frame data in which the input joint
angles are given by key framing, instead of motion capture.

Our work has concentrated on the coupling between the
articulated character and the fluid. Though the relative joint
angles of our character closely follow the motion capture data,
our method imparts a global translation and rotation to the
character that represents the net force and torque form the fluid
to the character. This is very important to get correct looking
interactions of the character with fluid. For example, during
the breaststroke, the simulated swimmer gets a sharp forward
push when its arms move backward, while it slows down a
little due to drag when the arms move forward. Similarly, our
simulator allows us to predict the direction of motion of simple
characters like the Purcell swimmer. The method can also be
used to simulate phenomena like characters swinging against
waves and one swimmer affected by the wake of another.

One exciting avenue for future work is to create controllers
that alter behavior based on the character’s motion through
the water. This would allow a simulated charater to modify its
motion to alter its swimming direction by varying the form of
its stroke. If we had motion capture data of a person walking
and we wanted to simulate walking in knee deep water, it
would be interesting if we could make the simulated person
take higher steps like an actual human would do. Reactive
controllers would also allow other complex behaviours such
as attack and escape motions for simulated aquatic creatures.
Another extension of the current work would be to add
skinning which would enhance both simulation accuracy and
visual fidelity. Finally we would like to do an analysis of
the motion of simulated swimmers against real swimmers in
water. However this would require better motion capture of
swimming (probably inside water), which is a good area for
future study.
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