
 Georgia Institute of Technology

 Michigan State University

DYNamic Assembly from Models

The DYNAMO project is concerned with assembling high-assurance systems from components, and,
specifically, with guaranteeing correct interaction of sets of large, heterogeneous components. Several
problems must be overcome to provide such guarantees: 1) dealing with the sheer complexity of the
individual components and their interoperation; 2) maintaining design integrity and information hiding in the
individual components; 3) providing the desired guarantees, either statically, during design, or at run time;
and 4) not compromising efficiency while accomplishing the other goals.

DYNAMO addresses these problems with several techniques: 1) a layered architecture limits complexity by
reducing the quantity and nature of allowed interactions; 2) a declarative specification mechanism abstracts
away low-level details such as event dispatch and handling and variable updates; 3) static analysis of
component designs is augmented with run-time status monitoring and gauges; and 4) compile-time
component wrapper generation removes expensive, inter-layer procedure calls.

DYNAMO Tools

Designer

ArgoUML
Mode

Component
Specification

XMI File

ParaGen

Para Intermediate
Representation

Para2SMVC++ Wrapper
Generator

SMV Input
File

SMV Model
Checker

Static
Guarantee

Report

C++ Mode
Components

SpecC
Wrapper
Generator

SpecC
Simulator

Other Static
Analyzers

Analyzer
Generator

Designer-Specified
Guarantees (CTL)

 Georgia Institute of Technology

 Michigan State University

• ArgoUML: ArgoUML is a UML design tool originally developed at the University of California at Irvine and
now available from URL http://argouml.tigris.org. Using it, designers specify mode components and their
composition into an assembly. In particular, the classes in a UML class diagram denote mode
components, and the associations between them denote intercomponent layering. OCL annotations of
the associations denote intercomponent constraints. Moreover, each class may have a corresponding
state chart that specifies its synchronization behavior.

• Xerces: ArgoUML files are saved in XMI format. XMI is an XML DTD used to describe data from CASE
tools. Xerces is an XML parser that can be obtained at URL http://www.apache.org. DYNAMO uses
Xerces to implement the front end to ParaGen.

• Para : XMI is verbose and difficult to access. Para is an intermediate representation and API that
provides easy access to ArgoUML designs. It can be used independently of DYNAMO as a
representation for any tool requiring access to designs expressed in XMI.

• ParaGen: ParaGen is a translator for converting XMI into the Para intermediate representation. It uses
the Xerces XMI parser to analyze XMI designs. An API is provided to enable tools to access designs in
Para format. ParaGen can also produce output into a text file for external perusal or scripted post-
processing.

• Para2SMV: DYNAMO provides design and run-time guarantees of synchronization behavior of
assemblies of components. One example of design analysis is model checking. Para2SMV is a tool for
converting designs expressed in Para into the input format of SMV.

• SMV: SMV is a symbolic model checker originally developed at Carnegie-Mellon University and
available at URL http://www-cad.eecs.berkeley.edu/~kenmcmil/smv. It requires two sources of input: a
state machine model and a guarantee to be checked. In DYNAMO, design models are converted into
SMV state machines using Para2SMV. Guarantees are expressed in CTL (Computation Tree Logic) and
are provided by the designer as a separate input to Para2SMV.

• SmvModel: SmvModel is a collection of C++ classes that can be used to help generate SMV input
files. They are used internally to DYNAMO by Para2SMV, but may be used by any tool wishing to
generate SMV input files.

Mode Components
A mode component is a hierarchical software component whose interface provides a continuously updated
view of its current status. Clients of a mode component can interact with it at a high level of abstraction,
thereby supporting correct synchronous composition. A mode component provides status information to
components above it in a layered architecture. The state of those components is updated automatically
when changes occur to any of the status information in the mode component. The nature of the update is
expressed declaratively without requiring detailed specification of event synchronization. Client components
can also make service requests to a mode component using traditional method calls.

Mode components are implemented using C++ templates and mixin layers to wrap traditional class
definitions. The templates are generated automatically from a design specification provided in ArgoUML. Use
of templates and other advanced C++ features implements the specification without compromising the
performance of the assembly of components.

Contact Information
dynamo-support@cc.gatech.edu
http://www.cc.gatech.edu/dynamo

Sponsorship
Effort sponsored by the Defense Advanced
Research Projects Agency, and the United
States Air Force Research Laboratory, under
agreement number F30602-00-2-0618.

