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Abstract 

Large software systems commonly contain multiple independent 

components.  When independent components change, dependent 

components must change as well in order to establish system invariants.  

This scheme leads to a variety of approaches for components to 

communicate with each other to maintain the invariants.  One promising 

way to do so is to automatically generate code for maintaining the 

invariant between dependent and independent components through 

implicit invocation.  However, since a complex system could have many 

invariants and performance requirements, the generated code must have a 

small runtime overhead.  This paper explores eight separate approaches 

for the implementation of implicit invocation invariant maintenance in 

C++ using compile-time metaprogramming via OpenC++ and generic 

programming with C++ templates. 



1 Introduction 

1.1 Motives 

An invariant is a relationship between components in which the state of one component, 

the dependent, is based on the states of other independent components.  For instance, if a 

variable a in component A must always be twice the value of variable b in component B, 

A is a dependent component that depends on independent component B.  The formula a = 

2 * b is therefore the invariant.  The easiest way to specify the relationship is with explicit 

invocation in which A and B know about each other in order to communicate the event of 

change in B.  However, explicit invocation results in high coupling between system 

components complicating maintenance and addition of features.  Another method of 

invariant maintenance is implicit invocation [1] where instead of invoking a direct 

procedure, the independent component announces the event to any dependent 

components responsible for maintaining the invariant.  In implicit invocation, B would 

announce that it has change to all system dependent components.  A would detect the 

change and get the value of B in order to change itself.  True benefit of implicit 

invocation can be seen with an addition of component C dependent on B.  With explicit 

invocation, B would have to keep track to both A and C so that both could be notified in 

case B changes.  Conversely, implicit invocation allows B to have no knowledge of A or 

C but to simply announce changes so that both A and C detect the change and update 

themselves as necessary.   

 

While beneficial, the use of implicit invocation for invariant maintenance raises two 

questions.  First, there are many approaches to implementing implicit invocation.  Some 



require extra objects to hold the invariant rules and detect changes while others distribute 

invariant maintenance between multiple dependent and independent components.  

Likewise, while certain approaches allow an invariant to be implemented in both 

directions with ease, others only support a single direction.  Second, a complex system 

can support hundreds or thousands of invariants making it difficult to keep track of 

dependent and independent components.  Therefore, generative programming techniques 

must be employed to implement implicit invocation from rules written in a declarative 

language such as OCL [3] or another constraint language.  Two appealing C++ 

implementation techniques are metaprogramming and template programming.  When 

used with different implicit invocation approaches, the advantages and disadvantages of 

each technique must be analyzed and compared to determine the best one for each 

particular situation. 

 

One way to implement implicit invocation within invariant maintenance is through the 

use of metaprogramming as described in [4].  Metaprogramming involves the 

manipulation of program code, data, or objects either at compile time or runtime by 

another program.  In the a = 2 * b example, metaprogramming can be used to generate 

the code required for B to broadcast its change event and for A to receive the event and 

update itself.  Moreover, the same metaprogram can generate update code for both A and 

C if given the description of the invariant, freeing the developer from having to keep 

track of dependent and independent components of each invariant.  Furthermore, the 

metaprogram can be written to generate different implementations based on the 

nonfunctional requirements such as reuse or performance.  For instance, a change in B 



would change A to 2B while a change in A not caused by a change in B would not effect 

B’s value.  On the other hand, a change in B would change C to 3B but a change in C, not 

cause by a change in B, would also change B through the invariant B = 1/3C.  Given the 

invariant rules and the components, it is perfectly valid to expect the metaprogram to 

implement all three without errors within the resulting program.  However, 

metaprogramming, aside from template programming, is not built-into C++ and usually 

requires a separate tool or compiler for executing the metaprogram. 

 

Contrasting metaprogramming, the template programming has been an integral part of 

ANSI/ISO C++ since early implementations [5].  The main purpose of templates is to 

allow one component or structure to take in or use different datatypes determined at 

compile time.  This permits templates to be used in generating an implementation of 

implicit invocation where the dependent component does not know the invariants 

independent components until compile time.  Without templates, the developer would be 

forced to specify the exact type of the independent component in the code. When 

combined with generative programming, templates that support implicit invocation can 

be generated based on invariant constraints before compiling the entire program.  Best of 

all, since most C++ compilers support template programming, no extra tools or compilers 

are required for compiling the generated code with the system components. 

 

The purpose of this research is to determine which programming technique under which 

approach would be the most beneficial in implementing implicit invocation for invariant 

maintenance.  The benefits can be divided into two broad categories of quantitative and 



qualitative analysis.  Quantitative analysis is measured through compile and runtime 

comparison as well as the analysis of final assembly code.  Qualitative analysis, on the 

other hand, is harder to quantify and will be determined by the amount of code the 

programmer has to modify and the lines of new code written to take advantage of each 

technique and approach.  Combined, quantitative and qualitative analysis will be used to 

conclude on the best approach to implementing implicit invocation for invariant 

maintenance.  

1.2 Related Work 

Besides implicit invocation, there are a number of techniques to avoid direct references 

between dependent and independent components.  Researchers at the University of 

Twente in the Netherlands, developed objects known as Abstract Communication Types 

that contains abstract senders and receivers for handling communication between system 

components [6].  ACTs also provide mechanisms for synchronization of messages and 

the ability to reflect upon a message.  They are implemented in Sina which is not as 

widespread or popular as C++.  On the other hand, Robert DeLine’s Flexible Packaging 

[7] allows the user to determine the exact nature of interaction between components at 

integration time by separating each component into functional and interactional parts.  

Due to a large runtime overhead required for message passing, Flexible Packaging results 

in a significant runtime cost and should be avoided for invariant maintenance. Finally, 

Kevin Sullivan and David Notkin from the University of Washington describe and a case 

study in the implementation of a mediator to support invariant maintenance between 

components [8], [9].  A mediator is a separate component that contains implicit or 

explicit references to all components in the invariant as well as the relationship between 



dependent and independent components.  The components themselves know only about 

the mediator and announce any changes to it.  Inside the mediator, changes from 

independent components are received and applied to the dependent components.  Any 

change to the invariant is implemented within the mediator and does not require changing 

components aside from adding or removing mediator references. 

 

Metaprogramming is divided into runtime, also known as reflection, and compile time 

metaprogramming.  Reflection is the most interesting since it allows interaction and 

modification to objects, components, and structures that do not exist as compile time.  

Languages like Smalltalk and Lisp facilitate reflection through the use of an interpreter 

implemented in the same language.  Brian Foote and Ralph Johnson demonstrate the ease 

and usefulness of reflection within Smalltalk-80 [10] through the construction of 

monitors, distributed objects, and futures, and the experimentation with new inheritance, 

delegation, and protection schemes.  Moreover, Fred Rivard uses Smalltalk reflection to 

implement an invariant constraint system resulting in a 2% compile time increase in 

exchange for a 9% reduction at runtime [11]. 

 

Unlike Smalltalk and Lisp, Java and C++ do not feature extensive built-in reflection 

facilities.  While there is a Java reflection API [12], it is limited to determining the 

signature of objects and methods, but not the manipulation of those components.  

Nevertheless, OpenJava, from the University of Tsukuba, is a class-based macro system 

that allows metaprogramming by manipulating an abstract syntax tree containing the 

logical structure of a Java program [13].  Likewise, a variety of tools and techniques have 



been developed to provide metaprogramming in C++.  For example, [14], [15] and [16] 

provide directions and libraries for implementing different types of metaprogramming for 

C++.  However, one of the most popular and useful metaprogramming tools for C++ is 

Shigeru Chiba’s OpenC++ metaobject protocol [17].  Based on the Gregor Kiczales’ 

suggestion for implementing abstraction via metaprogramming [18], OpenC++ provides 

an abstract syntax tree to encapsulate C++ code and an API to manipulate it.  Although, it 

does not use true runtime reflection, OpenC++ allows the manipulation of source code 

without a runtime cost.  In fact, Michigan State University’s TRAP/C++ uses OpenC++ 

to implement facilities for selecting and incorporating new behavior at run time into C++ 

systems [19]. 

 

An alternative to metaprogramming for the implementation of implicit invocation in 

invariant maintenance is template programming.  Also known as “programming at 

compile time”, templates allow the compiler to determine certain variable and object 

types at compile time.  This can be used to divide architecture into layers containing 

different parts of an invariant.  For example, GenVoca generators construct applications 

from reusable layers through the use of C++ templates [20]. The generators are used to 

implement structures called mixin-layers that combine commonly used parts of objects 

into a single structure for faster access without subtyping [21].  Mixin-layers are in-turn 

used within the DYNAMO project where the layers are more clearly defined to support 

invariant maintenance through implicit invocation [22], [23], [24].  To do this, C++ 

template classes, containing a template parameter that is the class’ supperclass, allow 



dependent components to access features of independent components without resorting to 

the run-time cost of using a pointer.  

1.3 Research Questions 

This study attempts to answer the following questions about implicit invocation of 

invariant maintenance.  Which technique, metaprogramming or template programming, 

provides best solution when applied to an invariant maintenance system as evaluated by 

quantitative and qualitative criteria including performance, ease-of-use, and simplicity of 

input? 

1.4 Paper Map 

The next section describes the approach used for the case study.  It includes evaluation 

criteria and an account of why this research is unique.  Section 3 contains the case study 

with the description of each approach.  Section 4 contains the results of the case study 

including the analysis of generated assembly code.  Section 5 discusses the results 

including their implications and suggestions for future work.  Finally, section 6 concludes 

the paper with a reflection on the research study. 

2 Approach 

2.1 Evaluation Criteria 

To evaluate and compare metaprogramming with template programming for the 

implementation of implicit invocation of invariant maintenance, solutions to the same 

problem were implemented using different techniques and approaches.  Afterwards, each 

solution was analyzed based on predefined quantitative and qualitative criteria. 



Quantitative criteria included time measurements of runtime and compile time, count of 

generated lines of assembly code, count of lines of C++ code required to implement the 

method in the main() method, and the size of the generated executable in bytes.  

Qualitative criteria is made up of personal evaluations of metaprogramming and template 

programming.  Those include how easy each technique was to install and use and how 

well each technique fits the programmer’s mindset about the problem.  While subjective, 

qualitative conclusions are based on real life experience described in the case study. 

2.2 Metaprogramming 

Unlike Lisp or Smalltalk, C++ does not support a built-in metaprogramming system aside 

from template metaprogramming.  Therefore, OpenC++, a third party technology, was 

used to implement metaprogramming solutions.  OpenC++ is an independent C++ 

compiler extension that allows detection of assignment within C++ code in order to 

generate and insert new code for the implementation of invariant maintenance.  First, it 

translates an input C++ program into an abstract syntax tree containing all program 

structures, objects, and variables.  Afterwards, the tree is manipulated based on a C++ 

metaprogram written using the OpenC++ API.  Using its own compiler, OpenC++ 

transforms the original C++ program into a new C++ program that includes user 

manipulations described in the OpenC++ metafile. 

 

For invariant maintenance, all approaches have OpenC++ detect the change in the 

independent variable and call a function that changes the dependent variable.  

Furthermore, implicit invocation between the components is generated by OpenC++ 

based on the specific metaprogram input to the compiler.  The only parts requiring user 



assistance are the code in the main() method that creates instances of classes and connects 

them if necessary and the declaration of a class required for OpenC++ manipulation.   

 

Figure 1  OpenC++ Development Process 



 

OpenC++ was selected due to its popularity within academia and available support 

through a network of users.   Both Georgia Institute of Technology and Michigan State 

University apply OpenC++ in teaching languages and research.  Likewise, an active 

newsgroup devoted to OpenC++ is maintained by SourceForge.net with over eighty 

users.  According to SourceForge.net, OpenC++ is a mature project with two 

administrators, 27 developers, and over 700 CVS commits.  Further description and 

evaluation of advantages and disadvantages of OpenC++ can be found in Appendix A.   

2.3 Template Programming 

Contrasting with metaprogramming, templates are an integral part of C++ requiring no 

separate tools or compilers.  Since they are Turing-compatible, templates can be used to 

implement any approach implemented with metaprogramming.  For this study, templates 

were used to wrap components in order to provide interfaces for component 

communication without explicit invocation.  Specifically, templates allowed the compiler 

to determine communicating components at compile time instead of runtime or be hard-

coded by the user.  Time constraints allowed for only one implementation based on 

mixin-layers from the DYNAMO project.  Please see the case study for better description 

of template programming implementation and Appendix B for advantages and 

disadvantages of template programming.  

2.4 Case Study Uniqueness 

While both metaprogramming and template programming parts of the case study are 

based on previous research described in the Related Works section, their comparison 



adds uniqueness to this research.  Likewise, the study is fairly broad containing multiple 

approaches to invariant implementation including those mentioned, but not implemented, 

in [23].  This allows for a more definitive conclusion that takes in account eight different 

approaches using two different techniques.  Finally, the focus on qualitative analysis in 

addition to quantitative analysis results in a broader evaluation.  Usually, the focus of 

research is on the technical aspects resulting in a technologically interesting but not very 

useful conclusion if the technology or technique is have commercial uses.  However, 

focusing on ease-of-use allows future researches to select an approach that can quickly be 

translated into consumer-friendly applications. 

3 Case Study 

3.1 Introduction 

To compare metaprogramming to template programming, eight different solutions were 

implemented.  The problem each solution is trying to solve is the invariant of temperature 

conversion between Celsius and Fahrenheit.  The invariant formula for converting from 

Celsius to Fahrenheit is Fahrenheit = (1.8 * Celsius) + 32.  In OCL, this would be 

represented as: 

context F inv: 

  self.f = (C.c * 1.8) + 32 

from within the Fahrenheit class called F and with Celsius class called C.  On the other 

hand, converting from Fahrenheit to Celsius is accomplished using the formula Celsius = 

(Fahrenheit – 32) / 1.8.  In OCL, this would be represented as: 

context C inv: 



  self.c = (F.C - 32) / 1.8 

from within the  Celsius class called C and with Fahrenheit class called F.  While some 

approaches easily support conversion in both directions, others are best at supporting 

conversion in only one direction.  All solutions are implemented using GNU C++ since it 

has a complete template programming support and provides for a number of 

metaprogramming tools. 

3.2 Metaprogramming 

3.2.1 Status Variable (One-way) 

One-way status variable approach closely models DYNAMO’s template design.  The 

differences are due to the lack of wrapper classes in the metaprogramming solution.  

Instead, C and F act like C_Top and F_Bot respectively.  Instead of F_Bot being given a 

template to C_Top, this approach provides F with the address of the instance to C and 

binds the instance of F to C as an Updaters.  Implicit invocation is used to ensure that C 

does not know who is bound to it but simply expects an Updaters.   

 



 
Figure 2  One-way status variable class diagram 

The method tweak() calls the update1() method that proceeds to retrieve the value of c 

and change the value of f.  This method is generated by metaprogramming and called 

every time the value of C changes.  The main() method requires the presence of the 

following code:  

C myC; 

F myF(myC); 

myC.bind_c_1 (&myF); 

Note that neither temperature requires initialization at creation.  This will cause C to 

remain undefined if the value F changes before C is initialized. 



myC : C myF : F

tester : Tester

1:change

3:get value

2:<<self>>

 

Figure 3  One-way status variable collaboration diagram 

When the value of c changes, tweak() inside of C is called.  It gives a pointer to C to F 

which uses the update1() method to retrieve the value of c from C and update f. 

3.2.2 Status Variable (Two-way) 

Two-way status variable solution only differs from one-way solution in that both C and F 

inherit the update() method from the Updaters class and use the inheritance to bind to 

each other.  The binding results in a perfect implementation of implicit invocation where 

neither C not F directly reference one another except through a third party represented by 

the Updaters. 



+bind_c_1(in scp : Updaters) : void
+tweak() : void
+update1() : void

+c : double

+update1() : void1 1

1

*

1 *
+bind_f_1(in scp : Updaters) : void
+tweak() : void
+update1() : void

+f : double

1

1

 

Figure 4  Two-way status varaible class diagram 

Moreover, the additional code within the main() method is limited to two new lines that 

bind objects together.   

C myC; 

F myF; 

myC.bind_c_1 (&myF); 

myF.bind_f_1 (&myC); 

Note that the original C and F class declarations are kept intact. 



myF : F myC : C

tester : Tester

1:change

3:get value

2:<<self>>

 

Figure 5  Two-way status variable collaboration diagram 

The interaction between objects is same is in Status Variable one-way except C and F are 

reversed if f is the independent variable. 

3.2.3 Pointer (One-way) 

The pointer solutions differ from status variables in that they do not implement implicit 

invocation through the use of inheritance.  Instead, C contains a pointer to F through 

which it knows about the F update method.  This method is called when a change in c 

occurs and is given a reference to C.  Through this reference, F is able to access the new 

value of c and use it to change the value of f.  This illustrating an implementation of 

explicit invocations. 



 

Figure 6  One-way pointer class diagram 

Unlike one-way status variable, the main() method does not require that an instance of C 

be passed into F. 

C myC; 

F myF; 

myC.bind_c_1 (&myF); 

Note that only one line of code needs to be added to the original declarations of C and F.  

 

The sequence of message for one-way pointer is exactly the same as the sequence of 

messages for one-way status variable. 

3.2.4 Pointer (Two-way) 

Just like one-way pointer is similar to one-way status variable, two-way pointer is similar 

to two-way status variable.  The only difference is the use of explicit instead of implicit 

invocation for communication between C and F.  Instead of having each object contain a 



reference to a third party they all inherit, the objects simply encapsulate pointers to one 

another. 

 

Figure 7  Two-way pointer class diagram 

The resulting main() method adds an extra binding for backward invariant. 

C myC; 

F myF; 

myC.bind_c_1 (&myF); 

myF.bind_f_1 (&myC);  

Note that this solution is exactly the same as two-way status variable and requires the 

implementation of two extra lines of code. 

 

The sequence of message for two-way pointer is exactly the same as the sequence of 

messages for two-way status variable. 



3.2.5 Inheritance (One-way) 

The inheritance approach is designed to optimize one-way Status Variable approach 

through improvements within the generated assembly code.  The only difference from 

Status Variable is the inheritance of C by F.   

 

Figure 8  One-way inheritance class diagram 

This produced a reduction in generated assembly code of 141 lines but no noticeable 

difference at runtime or compile time.  Please see Results for further discussion of 

assembly code. 

The main() method remained exactly the same as in one-way status variable. 

C myC; 

F myF(myC); 

myC.bind_c_1 (&myF); 

 

The sequence of message for inheritance is exactly the same as the sequence of messages 

for one-way status variable. 



3.2.6 Mediator (Two-way) 

Instead of encapsulating invocation within existing classes, the mediator approach moves 

all communication, along with invariant maintenance code, into a brand new object.  

Know as the mediator, this object encapsulates references to C and F in addition to the 

invariant formulas.  Moreover, the mediator approach allows for a simple two-way 

invariant by containing two functions with the invariant formulas.  Finally, the resulting 

C and F classes are completely unchanged with the exception of a single line of 

OpenC++ code required to run the tool. 

Tester

+tweak_c() : void
+tweak_f() : void

-& m_C : C
-& m_F : F

Mediator

+f : double
F

+c : double
C

1

1

1

1

1

1

1

1

 

Figure 9  Two-way mediator class diagram 

The main() method adds one line of code in which as instance of the mediator class is 

created and given references to C and F objects. 

C myC; 

F myF; 



Mediator myMediator(myC, myF); 

Note that the original C and F class declarations are kept intact. 

myMediator : Mediator

myF : F

myC : C

tester : Tester

1:change
2:myC changed

3:set value

 

Figure 10  Two-way mediator collaboration diagram 

In the mediator solution, when either c or f changes, the Mediator is alerted of the change 

and updates the other component with the new value. 

3.2.7 Distribution (One-way) 

Unlike other approaches that place invariant maintenance within a single object, 

distribution calls for a solution in which the formula or formulas for invariant 

maintenance are distributed among multiple components.  The temperature conversion 

problem is too simple to implement any meaningful distribution.  Nevertheless, an 

approach in which invariant maintenance is encapsulated within the same object as 

implicit invocation would closely model real distribution.  Based on one-way pointer 

approach, distribution lets C maintain a pointer to F.  However, instead of using the 

pointer to invoke F when a change occurs, C calculates the new value and updates f.  This 

way, F is kept comply unaware of C and clean from any extra code.  In fact, distribution 

results in the smallest generated assembly code and executable file. 



 

Figure 11  One-way distribution class diagram 

The main() method requires the addition of only one new line of code that binds the 

reference to F to an instance of C. 

C myC; 

F myF; 

myC.bind_c_1 (&myF); 

Note that the original C and F class declarations are kept intact. 

tester : Tester

myC : C myF : F

2:set value

1:change

 

Figure 12  One-way distribution collaboration diagram 

When c changes, C calculates and updates f with its new value. 



3.3 Template Programming 

3.3.1 Template Status Variable (One-way) 

The template architecture is based on layers containing the dependent and independent 

components.  It is described in depth by “Metaprogramming Compilation of Invariant 

Maintenance Wrappers from OCL Constraints” from the DYNAMO project.  For the 

solution of the Calculus to Fahrenheit problem, only the invariant maintenance formula 

from the paper’s sample was modified. 

C

+getValue_c() : int
+setValue_c() : void
+bind_c_1(in scp : Updater1) : void

C_Top

F

Tester

+operator=() : T
+operator T()

-d : T

StatusVariable

T

+operator=() : T
+setUpdater1() : void

-updater1P : Updater1

SVC_c

T

Notifies

b

BindsUpdater

BindsUpdater

+update1() : void
-myC : T

F_Bot

T

+Update1() : void

«interface»
Updater

 

Figure 13  One-way template status variable class diagram 

 



While this solution includes the most classes and methods, templates ensure that no 

runtime effect is incurred.  The main method requires the presence of the following 

initialization and binding code:   

F_Bot<C_Top> myF(32); 

C_Top* lowerP = myF.getLowerP(); 

Note the initialization of the Fahrenheit component with the temperature before the 

creation of the Celsius component. 

lowerP : C_Top myF : F_Bot

tester : Tester

1:change

2:get value

 

Figure 14  One-way template status variable collaboration diagram 

Although the template programming solution looks much more complex than the one-

way status variable solution from metaprogramming, the latter is in fact modeled on the 

former.  When c changes, the assignment is overwritten to notify F_Bot.  F_Bot in turn, 

retrieves the value of c from C_Top and uses it to change the value of f.   

3.4 Summary 

The eight solutions presented can be divided into several categories.  The broadest one is 

the technique used for implementation like metaprogramming or template programming.  



Next, the solutions can be sparated into one-way or two-way invariants, implicit 

invocation or explicit invocation between components, whether or not extra objects were 

used in the solution, and the structure of communication as displayed by collaboration 

diagrams.  The main focus of this paper is on evaluating the techniques and other 

categories, particularly ways of invariant maintenance and invocation, will be used in 

forming the judgment. 

4 Results 

The following quantitative results were derived by implementing each of the case study 

solutions on a single system.  The system used is an AMD Athlon64 3200 with 1 

Gigabyte of RAM.  The solutions were compiled and ran in the Cygwin environment, 

under Windows 2000.  GNU gcc 3.4 was used for all compilations. 

4.1 Compile and Runtime 

Compile and runtime were measured using the “time” command within the Cygwin 

environment.  For runtime, the average of the second, third, and forth runs was taken to 

avoid page miss error during the first run.  The optimization flag -O3 was used during all 

compilations except when the option –S was used to generate assembly code.  All 

compile code is based on the main() method having a loop that runs 10,000 times 

changing the value of the independent variable twice. 



 
Figure 15  Quantitative results of case study 



4.2 Assembly Code 

No optimization or special flags were used when generating assembly code.  Lines of 

assembly code were counted using the vim editor based only on the assembly files 

generated from the input C++ files and not from the OpenC++ metafiles.  Furthermore, 

all assembly code comes from the compilation of the *.ii files generated by OpenC++, 

which contain the modified input code along with OpenC++ specific code.  When all 

OpenC++ specific code is removed, the resulting assembly file is much smaller.  For 

distribution, it is only 82 lines compared with 269 before removal.  It is assumed that the 

OpenC++ specific code contains links to OpenC++ libraries.  Interestingly, when the 

solution is hard-coded without the use of metaprogramming or template programming, 

the assembly code is larger.  For instance, the assembly code for distribution is 274 lines 

long. 

4.2.1 Distribution (One-way) 

 .file "tester.cc" 
 .text 
 .align 2 
 .def __ZSt17__verify_groupingPKcjRKSs; .scl 3; .type 32;
 .endef 
__ZSt17__verify_groupingPKcjRKSs: 
 pushl %ebp 
 movl %esp, %ebp 
 subl $40, %esp 
 movl 16(%ebp), %eax 
 movl %eax, (%esp) 
 call __ZNKSs4sizeEv 
 decl %eax 
 movl %eax, -4(%ebp) 
 movl 12(%ebp), %eax 
 decl %eax 
 movl %eax, -12(%ebp) 
 leal -12(%ebp), %eax 
 movl %eax, 4(%esp) 



 leal -4(%ebp), %eax 
 movl %eax, (%esp) 
 call __ZSt3minIjERKT_S2_S2_ 
 movl (%eax), %eax 
 movl %eax, -8(%ebp) 
 movl -4(%ebp), %eax 
 movl %eax, -16(%ebp) 
 movb $1, -17(%ebp) 
 movl $0, -24(%ebp) 
L2: 
 movl -24(%ebp), %eax 
 cmpl -8(%ebp), %eax 
 jae L5 
 cmpb $0, -17(%ebp) 
 je L5 
 movl -16(%ebp), %eax 
 movl %eax, 4(%esp) 
 movl 16(%ebp), %eax 
 movl %eax, (%esp) 
 call __ZNKSsixEj 
 movl %eax, %ecx 
 movl -24(%ebp), %eax 
 movl 8(%ebp), %edx 
 addl %eax, %edx 
 movzbl(%ecx), %eax 
 cmpb (%edx), %al 
 sete %al 
 movb %al, -17(%ebp) 
 leal -16(%ebp), %eax 
 decl (%eax) 
 leal -24(%ebp), %eax 
 incl (%eax) 
 jmp L2 
L5: 
 cmpl $0, -16(%ebp) 
 je L6 
 cmpb $0, -17(%ebp) 
 je L6 
 movl -16(%ebp), %eax 
 movl %eax, 4(%esp) 
 movl 16(%ebp), %eax 
 movl %eax, (%esp) 
 call __ZNKSsixEj 
 movl %eax, %ecx 
 movl -8(%ebp), %eax 
 movl 8(%ebp), %edx 



 addl %eax, %edx 
 movzbl(%ecx), %eax 
 cmpb (%edx), %al 
 sete %al 
 movb %al, -17(%ebp) 
 leal -16(%ebp), %eax 
 decl (%eax) 
 jmp L5 
L6: 
 movl $0, 4(%esp) 
 movl 16(%ebp), %eax 
 movl %eax, (%esp) 
 call __ZNKSsixEj 
 movl %eax, %ecx 
 movl -8(%ebp), %eax 
 movl 8(%ebp), %edx 
 addl %eax, %edx 
 movzbl(%ecx), %eax 
 cmpb (%edx), %al 
 jg L8 
 movzbl-17(%ebp), %eax 
 andl $1, %eax 
 movb %al, -25(%ebp) 
 jmp L9 
L8: 
 movb $0, -25(%ebp) 
L9: 
 movzbl-25(%ebp), %eax 
 movb %al, -17(%ebp) 
 movzbl-17(%ebp), %eax 
 leave 
 ret 
.lcomm __ZSt8__ioinit,16 
 .def ___main; .scl 2; .type 32; .endef 
Change in the value of c 
 .section .rdata,"dr" 
 .align 8 
LC1: 
 .long 0 
 .long 1079574528 
 .text 
End of change in the value of c 
 .align 2 
.globl _main 
 .def _main; .scl 2; .type 32; .endef 
_main: 



 pushl %ebp 
 movl %esp, %ebp 
 subl $72, %esp 
 andl $-16, %esp 
 movl $0, %eax 
 addl $15, %eax 
 addl $15, %eax 
 shrl $4, %eax 
 sall $4, %eax 
 movl %eax, -44(%ebp) 
 movl -44(%ebp), %eax 
 call __alloca 
 call ___main 
 leal -32(%ebp), %eax 
 movl %eax, 4(%esp) 
 leal -24(%ebp), %eax 
 movl %eax, (%esp) 
Binding on the instance of the F class to the instance of the C class through call to 
bind_c_1 
 call __ZN1C8bind_c_1EP1F 
 movl $0, -36(%ebp) 
L11: 
Start of the 10,000 loop 
 cmpl $9999, -36(%ebp) 
 jg L12 
First call to tweak 
 fldz 
 fstpl -24(%ebp) 
 leal -24(%ebp), %eax 
 movl %eax, (%esp) 
 call __ZN1C5tweakEv 
End of first call to tweak 
Second call to tweak 
 fldl LC1 
 fstpl -24(%ebp) 
 leal -24(%ebp), %eax 
 movl %eax, (%esp) 
 call __ZN1C5tweakEv 
End of second call to tweak 
 leal -36(%ebp), %eax 
 incl (%eax) 
 jmp L11 
End of loop 
L12: 
 movl $0, %eax 
 leave 



 ret 
 .section .rdata,"dr" 
 .align 8 
LC3: 
Inside the tweak method on C 
The invariant rule 
 .long -858993459 
 .long 1073532108 
 .align 8 
LC4: 
 .long 0 
 .long 1077936128 
 .section .text$_ZN1C5tweakEv,"x" 
 .linkonce discard 
 .align 2 
End of the invariant rule 
.globl __ZN1C5tweakEv 
 .def __ZN1C5tweakEv; .scl 2; .type 32; .endef 
__ZN1C5tweakEv: 
 pushl %ebp 
 movl %esp, %ebp 
 movl 8(%ebp), %eax 
 movl 8(%eax), %edx 
 movl 8(%ebp), %eax 
 fldl (%eax) 
 fldl LC3 
 fmulp %st, %st(1) 
 fldl LC4 
 faddp %st, %st(1) 
 fstpl (%edx) 
 popl %ebp 
 ret 
 .section .text$_ZN1C8bind_c_1EP1F,"x" 
 .linkonce discard 
 .align 2 
The bind method that binds the instance of F to the instance of C 
.globl __ZN1C8bind_c_1EP1F 
 .def __ZN1C8bind_c_1EP1F; .scl 2; .type 32; .endef 
__ZN1C8bind_c_1EP1F: 
 pushl %ebp 
 movl %esp, %ebp 
 movl 8(%ebp), %edx 
 movl 12(%ebp), %eax 
 movl %eax, 8(%edx) 
 popl %ebp 
 ret 



 .section .text$_ZSt3minIjERKT_S2_S2_,"x" 
 .linkonce discard 
 .align 2 
End of the bind method 
.globl __ZSt3minIjERKT_S2_S2_ 
 .def __ZSt3minIjERKT_S2_S2_; .scl 2; .type 32; .endef 
__ZSt3minIjERKT_S2_S2_: 
 pushl %ebp 
 movl %esp, %ebp 
 subl $4, %esp 
 movl 12(%ebp), %eax 
 movl 8(%ebp), %edx 
 movl (%eax), %eax 
 cmpl (%edx), %eax 
 jae L17 
 movl 12(%ebp), %eax 
 movl %eax, -4(%ebp) 
 jmp L16 
L17: 
 movl 8(%ebp), %eax 
 movl %eax, -4(%ebp) 
L16: 
 movl -4(%ebp), %eax 
 leave 
 ret 
 .text 
 .align 2 
 .def __Z41__static_initialization_and_destruction_0ii; .scl 3; .type
 32; .endef 
__Z41__static_initialization_and_destruction_0ii: 
 pushl %ebp 
 movl %esp, %ebp 
 subl $8, %esp 
 cmpl $65535, 12(%ebp) 
 jne L19 
 cmpl $1, 8(%ebp) 
 jne L19 
 movl $__ZSt8__ioinit, (%esp) 
 call __ZNSt8ios_base4InitC1Ev 
L19: 
 cmpl $65535, 12(%ebp) 
 jne L18 
 cmpl $0, 8(%ebp) 
 jne L18 
 movl $__ZSt8__ioinit, (%esp) 
 call __ZNSt8ios_base4InitD1Ev 



L18: 
 leave 
 ret 
 .align 2 
 .def __GLOBAL__I_main; .scl 3; .type 32; .endef 
__GLOBAL__I_main: 
 pushl %ebp 
 movl %esp, %ebp 
 subl $8, %esp 
 movl $65535, 4(%esp) 
 movl $1, (%esp) 
 call __Z41__static_initialization_and_destruction_0ii 
 leave 
 ret 
 .section .ctors,"w" 
 .align 4 
 .long __GLOBAL__I_main 
 .text 
 .align 2 
 .def __GLOBAL__D_main; .scl 3; .type 32; .endef 
__GLOBAL__D_main: 
 pushl %ebp 
 movl %esp, %ebp 
 subl $8, %esp 
 movl $65535, 4(%esp) 
 movl $0, (%esp) 
 call __Z41__static_initialization_and_destruction_0ii 
 leave 
 ret 
 .section .dtors,"w" 
 .align 4 
 .long __GLOBAL__D_main 
 .def __ZNSt8ios_base4InitD1Ev; .scl 3; .type 32; .endef 
 .def __ZNSt8ios_base4InitC1Ev; .scl 3; .type 32; .endef 
 .def __ZNKSsixEj; .scl 3; .type 32; .endef 
 .def __ZNKSs4sizeEv; .scl 3; .type 32; .endef 
 .def __ZSt3minIjERKT_S2_S2_; .scl 3; .type 32; .endef 

4.2.2 Status Variable (One-way) 

The one-way status variable contains additional code for the Updaters class which is 

inherited by F.  Also, the update() method is located in a separate file and requires an 



extra jump for access.  It alone adds 61 lines of code.  Another source of extra code is the 

code required to pass the pointer of C to F in order for F to retrieve the new value of c. 

4.2.3 Status Variable (Two-way) 

Two-way status variable code is based on the one-way status variable code except both C 

an F have the tweak(), bind(), and update() methods.  This is responsible for the increase 

of code along with an extra call to bind() present in the main() method. 

4.2.4 Pointer (One-way) 

The code of one-way pointer is greatly simplified from the one-way status variable.  The 

Updaters class code is no longer present negating the need for F to inherit it. 

4.2.5 Pointer (Two-way) 

The increase in the amount of assembly code comes from duplicating the bind(), 

update(), and tweak() methods just like in two-way status variable.  However, lack of 

Updaters class allows a great reduction in assembly code in comparison to two-way 

status variables at the cost of explicit invocation. 

4.2.6 Inheritance (One-way) 

The inheritance of C by F within the one-way status variable design simply added the 

code from C into F resulting in larger total line count.  All other assembly code remained 

same as in one-way status variable. 



4.2.7 Mediator (Two-way) 

The mediator solution resulted in an assembly code significantly different from all other 

solutions.  First, there is a new Mediator class that encapsulates the pointers to C and F.  

It also contains the invariant maintenance code for the two-way invariant within the 

tweak() methods.  Unlike the status variable where the dependent component gets the 

value of the independent component and employs it in calculating its new value, the 

mediator handles the calculation and just updates the dependent component with the new 

value.  This results in much simpler communication code since all communication 

between components is one way at each update.  Furthermore, because the mediator 

contains all binding and invariant code, the C and F classes contain just their respective 

values.  As a result, the mediator is the shortest and most streamlined of the two-way 

solutions. 

4.2.8 Template Status Variable (One-way) 

The longest assembly code is produced by the template programming solution.  It is 

divided among three files and includes code for eight different classes as shown in the 

class diagram.  Through templates, the compiler is able to determine the type of the 

independent variable at compile time and place references to it in the code.  Nevertheless, 

extra length results from the wrapper classes C_Top and B_Bot.  This code includes not 

only the methods these classes contain but also the inheritance of C and F.  As shown by 

the one-way inheritance solution, inheritance by itself carries cost in extra assembly code.   

Moreover, the template solution features extra code from inheritance of Updaters, 

StatusVariable, and SVC classes.  However, due to the nature of templates, code for 

assignment override was not transferred over into assembly but used to change the 



assignment at compile time.  In conclusion, template programming allows optimization 

within the assembly code by determining certain calculations at compile time, but the 

overall designed used for the template status variable solution results in the largest 

assembly code of all solutions due to increased wrapping and inheritance. 

5 Discussion 

5.1 Implications 

5.1.1 Quantitative Analysis 

From the data gathered during the case study, the advantages of metaprogramming lie in 

the assembly code while template programming has shorter compile time.  Template 

status variable results in assembly code almost 50 lines longer than the longest 

metaprogramming solution.  What is more, the metaprogramming solution is two-way 

while the template solution is only one-way.  The smallest one and two-way 

metaprogramming solutions, distribution and mediator respectively, are almost half the 

size of the template solution.  Lastly, the one-way status variable metaprogramming 

solution, while based on the design of the template solution, is almost 180 lines smaller. 

 

Conversely, metaprogramming compile times are 15 to 17 times as long as template 

programming’s.  It should be noted that templates usually take longer to compile in 

comparison to C++ code that does not include them.  The difference is probably due to 

templates being a part of the GNU compiler while metaprogramming comes as a separate 

tool requiring multiple steps from metacode to the executable.  Although not as important 



as runtime for the end user, long compile time can complicate development and testing 

for very large and complex system.  

 

The results for runtime were virtually the same for all solutions.  The only standouts were 

two-way status variable and pointer metaprogramming which were from one-sixth to 

one-third larger.  However, different time results appeared for every trial and all solutions 

were constantly between 0.030 and 0.046 seconds.  Thus, it is safe to conclude that 

runtime for all solutions was the same.  Perhaps, the test system was too powerful for the 

difference to be displayed.  Otherwise, the problem could be too simple to differentiate 

performance. 

5.1.2 Qualitative Analysis 

The results of qualitative analysis have been gathered during the entire software 

development process and include the ease of installation, the ability of each technique to 

solve the implicit invocation of invariant maintenance problem, the ease of adjusting 

input code for the technique, and how well the technique fits-in with the developers’s 

process of thinking.  Serious problems occurred when trying to install and use OpenC++ 

for metaprogramming.  For their complete description please see Appendix A.  On the 

other hand, since templates are part of the GNU C++ compiler, there were absolutely no 

difficulties in using them.  It should be noted that the problems encountered were with the 

specific tool, OpenC++, and not with the technique of metaprogramming.  With more 

development, there is no reason to doubt that OpenC++ or another tool could be as easy 

to use as C++ templates. 

 



Once OpenC++ began functioning, it was used to implement seven different solutions.  

All were done with relative ease and much faster than was originally planned.  In fact, 

most solutions were simply redesigns of the very first metaprogramming solution 

involving pointers.  This allowed one-way, two-way, and unusual designs like mediator 

and distribution to be implemented quickly and easily.  Most importantly, the ability to 

see the code before and after metaprogramming combination allowed for fast and easy 

debugging.  However, the metacode itself was much harder to debug due to cryptic error 

messages and lack of up-to-date documentation.  

 

In opposition, the layered design of the template programming solution was complex and 

hard to understand.  Multiple readings of the DYNAMO project research papers were 

required just to realize the purpose of templates in the solution.  Furthermore, a two-way 

solution proved too complex and time consuming to implement.  It is hard to imagine 

how template programming and mixin layers could be used to implement other 

approaches such as mediator, distribution, or aggregation.  Finally, templates in C++ do 

not support clear error messages and debugging the design was difficult. 

 

If the two techniques are to be implemented automatically upon an input source code, the 

changes required in that code needs to be evaluated.  Each metaprogramming solution 

requires an additional one to two lines of code within the main() method while mostly 

keeping the previous declaration of components intact.  Template programming requires 

two new lines to replace the component declarations.  No metaprogramming solution 



requires more than one line to be replaced.  Consequently, metaprogramming allows 

fewer and easier changes to the input code. 

 

Last important criterion of qualitative analysis is how well each technique matches the 

developer’s thinking process.  Metaprogramming excels at this because the input and the 

output code are relatively simple allowing each metaprogramming solution to be hard-

coded in C++ before going through OpenC++.  Each hard-coded solution can be tested 

and analyzed at will to determine the best design.  Afterwards, the solution is divided into 

input code and metaprogramming generated code.  The later is removed and inserted into 

OpenC++’s metacode for automatic generation.  As a result, the developer is always 

thinking in terms of plain C++ code.   

 

In template programming, the developer must decide on how to use templates to 

complete the task.  DYNAMO features just one possible solution and it needs to be 

adjusted for all but the most basic invariants.  Unless the developer is experienced in 

template programming and template theory, this task could prove extremely difficult.  In 

summary, metaprogramming makes due with basic knowledge of C++ where as template 

programming requires a different approach to the problem with concrete understanding of 

templates. 

5.2 Future Work 

Due to time constraints, only one instance of template programming was implemented.  

Mediator and distribution versions of template programming must be implemented to 

attain complete comparison.  Furthermore, no attempt was made to create two-sided 



invariants using template programming.  Doing this would help to quantify exactly how 

difficult such task is.  Finally, while the invariant implemented granted good data, it was 

too simple to gain meaningful runtime comparisons.  Implementing a more complex 

example with multiple components and invariants in a single system would permit for 

better analysis of runtime and architecture. 

6 Conclusion/Reflections 

The results of the case study lead to the conclusion that metaprogramming is superior to 

template programming for the implementation of implicit invocation of invariant 

maintenance due to smaller final assembly code, superior ability to solve the problem 

with multiple approaches and two-way invariants, and easier fit into the developer’s 

mindset.  The only areas where metaprogramming lacks behind template programming 

are compile time and ease of installation.  The first area is not of particular importance to 

the final user while the second area is based solely on the negative experience with 

OpenC++ as documented in Appendix A.  If C++ metaprogramming continues to evolve, 

it should overcome both defects.  Although C++ templates can be improved with better 

error messages and faster compile times, their Turing-complete nature will always keep 

them from being specialized enough to challenge non-template metaprogramming. 

 

Reflecting upon completed work, it is clear that much has been learned.  First, I finally 

understood exactly what metaprogramming is and how it works.  While I was introduced 

to it in previous courses, actually using it showed me a new dimension of programming.  

In particular, I learned about different types of metaprogramming such as runtime 

reflection and compile time metaprogramming.  This helped me to compare and contract 



computer languages like Smalltalk and C++.  Also, I learned about how 

metaprogramming is implemented within different languages through the use of the 

interpreter or a separate program akin to OpenC++. 

 

In addition to learning about metaprogramming, I gained better understanding of 

approaches to invariant maintenance.  Although I previously studied how distribution, 

mediators, and implicit invocation worked, implementing them and seeing the 

implementation in assembly helped me to comprehend their importance within larger 

systems.  For example, using pointers to connect components may seem easy, but it 

results in entangled and untraceable code within a complex system.  On the other hand, 

the mediator approach leaves all original components completely free of changes and 

places all invariant maintenance code in a single accessible location. 

 

Finally, I gained important insights into research projects and tools.  Specifically, far too 

much time was spent trying to fix OpenC++.  Instead, there should have been a 

contingency plan in place to be executed if OpenC++ did not function within certain time 

period.   I should also have tested and assessed OpenC++ before deciding to use it for the 

project.  Likewise, I should have searched for other ways of doing metaprogramming in 

C++.  On the other hand, the experience with OpenC++ taught me what 

metaprogramming and metacode look like at different stages of implementation.  I was 

able to view the abstract syntax tree that contained my C++ code and modify in through a 

various means.  If another tool hid this while functioning correctly from the start, I would 



have completed more work but not learn as much about the metaprogramming and its 

implementation. 
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9 Appendix A – OpenC++ Evaluation 

9.1 Advantages 

9.1.1 Metaprogramming implemented quickly and easily 

OpenC++ provides an API that allows fast access to and modification of C++ source 

code.  For example, specifying what variable name to search and what to do once it is 

found takes only a few lines of code.  Similarly, the abstract syntax tree that holds parsed 

code provided information about each code structure like its name and scope. 

9.1.2 Available documentation 

Full documented OpenC++ API is available on the project website along with research 

papers that explain how OpenC++ works.  Some research papers also contain code 

examples and their analysis. 

9.1.3 Available assistance on the newsgroup 

The project newsgroup, linked from the project website, allow access to assistance from 

more experienced OpenC++ users.  Experience showed that all posts are replied to within 

24 hours and usually by multiple people.  The wealth of knowledge and experience on the 

newsgroup is much greater in comparison to all on-line sources combined. 

9.1.4 Used within academia and industry 

Unlike most freeware tools, OpenC++ is expensively employed within academia.  

Georgia Institute of Technology uses it to tech object-oriented systems and languages 

while Michigan State University uses it in conducting research.  Additionally, Debian and 



Linspire, two popular Linux distributions, released OpenC++ packages for their 

respective systems. 

9.1.5 Code done in regular C++  

Instead of requiring the user to learn a new language specifically designed for the tool, 

OpenC++ metacode is written using regular C++.  This reduces the learning curve and 

allows the user to combine metacode with existing C++ code in order to create new tools. 

9.2 Disadvantages 

9.2.1 Available version does not work properly 

Although OpenC++ is easy to learn and use once it is functional, getting to this step 

requires a large amount of unnecessary work.  First of all, the tool is very fastidious about 

its environment like requiring a specific version of gcc and libtool libraries.  In particular, 

it does not work with gcc 4.0.  Likewise, the current distribution contains major defects 

that must be fixed before it can be installed.  The information about the defects can be 

found on the newsgroup but not in the project webpage.  Even after all requirements have 

been satisfied and the system is installed, it is unable to compile all but the most basic 

metaprograms.  To make it fully functional, complete recompilation on the local system 

is required.  Otherwise, the recompiled code must be received from a third-party source.  

Finally, versions available in Debian and Linspire distributions are completely non-

functional.  If this information was available on the project website, the user could 

estimate the time requirements for their project.  However, the project webpage only 

contains a link for reporting bugs but no mention of existing defects or their status. 



9.2.2 Documentation is out-of-date 

While the project website contains a complete and well-documented API, it is severely 

out-of-date.  Many functions do not exist within the API but can be found on other 

websites and examples.  Likewise, most research papers based on OpenC++ are fairly old 

and contain code that is out-of-date. 

9.2.3 No comprehensive source of help or examples 

Throughout its existence, OpenC++ was used in many projects and is mentioned in 

multiple research papers.  However, aside from Shigeru Chiba’s website, there is no 

comprehensive source of past and current OpenC+ research.  Only a few research papers 

feature examples of metacode and explanations about its functionality.  Moreover, all 

examples are severely outdated and are too simple for most useful programs. 

9.2.4 Compilation time 

Programs that use OpenC++ for metaprogramming require much longer to compile in 

comparison to regular C++ or C++ template programming due to the number of steps 

taken before the actual compilation.  Those steps are described in the Approach section.  

Unlike runtime, compile time is not noticeable to the end user of the application; 

therefore, it is not as important then compared to other OpenC++ disadvantages. 

9.3 Conclusion 

It is hard to conclude about the usefulness of OpenC++ and its future.  The current 

implementation offers great functionality and is undeniably beneficial in C++ 

metaprogramming but only when it is functional.  However, current steps required to 



make OpenC++ functional are too complex for most non-experts.  Perhaps OpenC++ 

should be combined with gcc to improve compatibly and increase distribution.  This 

would require major bug fixes but no changes in the overall tool design. 



10 Appendix B – Template Programming Evaluation 

10.1 Advantages 

10.1.1 Integral part on C++ 

Templates are an integral part of C++ supported by most C++ compilers including GNU 

gcc.  They require no additional installation or configuration.   

10.1.2 Available documentation 

There are thousands of books, magazines, articles, web-pages, and research papers 

written about C++ templates and their uses including works by the author of C++ Bjarne 

Stroustrup. 

10.1.3 Available assistance 

Since templates are widely available and used, there are thousands of experts, 

newsgroups, and help sites devoted to their use. 

10.2 Disadvantages 

10.2.1 Not specialized enough 

Given that C++ templates are Turing-complete, they can be used to implement any 

possible program.  Usually, they are used for generic programming but can also be 

employed in metaprogramming.  This can make it hard to figure out how templates can 

be used to solve a specific problem like invariant maintenance.  The DYNAMO project 

offers one type of solution but there could be others.  



10.2.2 Poor error messages 

When errors occur at compile or runtime due to template implementation, the error 

message could be very cryptic.  Particularly, since templates do their work at compile 

time, errors that occur at runtime can be difficult to trace to the template that caused 

them. 

10.3 Conclusion 

As it stands today, C++ templates are more evolved in comparison to a third party tool 

like OpenC++.  They are well documented and have plenty of available resources for 

assistance.  However, specialized metaprogramming tools provide a more logical solution 

to the implementation of implicit invocation for invariant maintenance.  After the initial 

cost of installing and learning the tool, metaprogramming is faster to implement, provides 

wider architectural support al lowest cost, and presents a more natural way to think about 

the problem.  


