
Comparison of Metaprogramming and

Template Programming Solutions for

Implicit Invocation of Invariant

Maintenance

Jonathan Gdalevich

Abstract

Large software systems commonly contain multiple independent

components. When independent components change, dependent

components must change as well in order to establish system invariants.

This scheme leads to a variety of approaches for components to

communicate with each other to maintain the invariants. One promising

way to do so is to automatically generate code for maintaining the

invariant between dependent and independent components through

implicit invocation. However, since a complex system could have many

invariants and performance requirements, the generated code must have a

small runtime overhead. This paper explores eight separate approaches

for the implementation of implicit invocation invariant maintenance in

C++ using compile-time metaprogramming via OpenC++ and generic

programming with C++ templates.

1 Introduction

1.1 Motives

An invariant is a relationship between components in which the state of one component,

the dependent, is based on the states of other independent components. For instance, if a

variable a in component A must always be twice the value of variable b in component B,

A is a dependent component that depends on independent component B. The formula a =

2 * b is therefore the invariant. The easiest way to specify the relationship is with explicit

invocation in which A and B know about each other in order to communicate the event of

change in B. However, explicit invocation results in high coupling between system

components complicating maintenance and addition of features. Another method of

invariant maintenance is implicit invocation [1] where instead of invoking a direct

procedure, the independent component announces the event to any dependent

components responsible for maintaining the invariant. In implicit invocation, B would

announce that it has change to all system dependent components. A would detect the

change and get the value of B in order to change itself. True benefit of implicit

invocation can be seen with an addition of component C dependent on B. With explicit

invocation, B would have to keep track to both A and C so that both could be notified in

case B changes. Conversely, implicit invocation allows B to have no knowledge of A or

C but to simply announce changes so that both A and C detect the change and update

themselves as necessary.

While beneficial, the use of implicit invocation for invariant maintenance raises two

questions. First, there are many approaches to implementing implicit invocation. Some

require extra objects to hold the invariant rules and detect changes while others distribute

invariant maintenance between multiple dependent and independent components.

Likewise, while certain approaches allow an invariant to be implemented in both

directions with ease, others only support a single direction. Second, a complex system

can support hundreds or thousands of invariants making it difficult to keep track of

dependent and independent components. Therefore, generative programming techniques

must be employed to implement implicit invocation from rules written in a declarative

language such as OCL [3] or another constraint language. Two appealing C++

implementation techniques are metaprogramming and template programming. When

used with different implicit invocation approaches, the advantages and disadvantages of

each technique must be analyzed and compared to determine the best one for each

particular situation.

One way to implement implicit invocation within invariant maintenance is through the

use of metaprogramming as described in [4]. Metaprogramming involves the

manipulation of program code, data, or objects either at compile time or runtime by

another program. In the a = 2 * b example, metaprogramming can be used to generate

the code required for B to broadcast its change event and for A to receive the event and

update itself. Moreover, the same metaprogram can generate update code for both A and

C if given the description of the invariant, freeing the developer from having to keep

track of dependent and independent components of each invariant. Furthermore, the

metaprogram can be written to generate different implementations based on the

nonfunctional requirements such as reuse or performance. For instance, a change in B

would change A to 2B while a change in A not caused by a change in B would not effect

B’s value. On the other hand, a change in B would change C to 3B but a change in C, not

cause by a change in B, would also change B through the invariant B = 1/3C. Given the

invariant rules and the components, it is perfectly valid to expect the metaprogram to

implement all three without errors within the resulting program. However,

metaprogramming, aside from template programming, is not built-into C++ and usually

requires a separate tool or compiler for executing the metaprogram.

Contrasting metaprogramming, the template programming has been an integral part of

ANSI/ISO C++ since early implementations [5]. The main purpose of templates is to

allow one component or structure to take in or use different datatypes determined at

compile time. This permits templates to be used in generating an implementation of

implicit invocation where the dependent component does not know the invariants

independent components until compile time. Without templates, the developer would be

forced to specify the exact type of the independent component in the code. When

combined with generative programming, templates that support implicit invocation can

be generated based on invariant constraints before compiling the entire program. Best of

all, since most C++ compilers support template programming, no extra tools or compilers

are required for compiling the generated code with the system components.

The purpose of this research is to determine which programming technique under which

approach would be the most beneficial in implementing implicit invocation for invariant

maintenance. The benefits can be divided into two broad categories of quantitative and

qualitative analysis. Quantitative analysis is measured through compile and runtime

comparison as well as the analysis of final assembly code. Qualitative analysis, on the

other hand, is harder to quantify and will be determined by the amount of code the

programmer has to modify and the lines of new code written to take advantage of each

technique and approach. Combined, quantitative and qualitative analysis will be used to

conclude on the best approach to implementing implicit invocation for invariant

maintenance.

1.2 Related Work

Besides implicit invocation, there are a number of techniques to avoid direct references

between dependent and independent components. Researchers at the University of

Twente in the Netherlands, developed objects known as Abstract Communication Types

that contains abstract senders and receivers for handling communication between system

components [6]. ACTs also provide mechanisms for synchronization of messages and

the ability to reflect upon a message. They are implemented in Sina which is not as

widespread or popular as C++. On the other hand, Robert DeLine’s Flexible Packaging

[7] allows the user to determine the exact nature of interaction between components at

integration time by separating each component into functional and interactional parts.

Due to a large runtime overhead required for message passing, Flexible Packaging results

in a significant runtime cost and should be avoided for invariant maintenance. Finally,

Kevin Sullivan and David Notkin from the University of Washington describe and a case

study in the implementation of a mediator to support invariant maintenance between

components [8], [9]. A mediator is a separate component that contains implicit or

explicit references to all components in the invariant as well as the relationship between

dependent and independent components. The components themselves know only about

the mediator and announce any changes to it. Inside the mediator, changes from

independent components are received and applied to the dependent components. Any

change to the invariant is implemented within the mediator and does not require changing

components aside from adding or removing mediator references.

Metaprogramming is divided into runtime, also known as reflection, and compile time

metaprogramming. Reflection is the most interesting since it allows interaction and

modification to objects, components, and structures that do not exist as compile time.

Languages like Smalltalk and Lisp facilitate reflection through the use of an interpreter

implemented in the same language. Brian Foote and Ralph Johnson demonstrate the ease

and usefulness of reflection within Smalltalk-80 [10] through the construction of

monitors, distributed objects, and futures, and the experimentation with new inheritance,

delegation, and protection schemes. Moreover, Fred Rivard uses Smalltalk reflection to

implement an invariant constraint system resulting in a 2% compile time increase in

exchange for a 9% reduction at runtime [11].

Unlike Smalltalk and Lisp, Java and C++ do not feature extensive built-in reflection

facilities. While there is a Java reflection API [12], it is limited to determining the

signature of objects and methods, but not the manipulation of those components.

Nevertheless, OpenJava, from the University of Tsukuba, is a class-based macro system

that allows metaprogramming by manipulating an abstract syntax tree containing the

logical structure of a Java program [13]. Likewise, a variety of tools and techniques have

been developed to provide metaprogramming in C++. For example, [14], [15] and [16]

provide directions and libraries for implementing different types of metaprogramming for

C++. However, one of the most popular and useful metaprogramming tools for C++ is

Shigeru Chiba’s OpenC++ metaobject protocol [17]. Based on the Gregor Kiczales’

suggestion for implementing abstraction via metaprogramming [18], OpenC++ provides

an abstract syntax tree to encapsulate C++ code and an API to manipulate it. Although, it

does not use true runtime reflection, OpenC++ allows the manipulation of source code

without a runtime cost. In fact, Michigan State University’s TRAP/C++ uses OpenC++

to implement facilities for selecting and incorporating new behavior at run time into C++

systems [19].

An alternative to metaprogramming for the implementation of implicit invocation in

invariant maintenance is template programming. Also known as “programming at

compile time”, templates allow the compiler to determine certain variable and object

types at compile time. This can be used to divide architecture into layers containing

different parts of an invariant. For example, GenVoca generators construct applications

from reusable layers through the use of C++ templates [20]. The generators are used to

implement structures called mixin-layers that combine commonly used parts of objects

into a single structure for faster access without subtyping [21]. Mixin-layers are in-turn

used within the DYNAMO project where the layers are more clearly defined to support

invariant maintenance through implicit invocation [22], [23], [24]. To do this, C++

template classes, containing a template parameter that is the class’ supperclass, allow

dependent components to access features of independent components without resorting to

the run-time cost of using a pointer.

1.3 Research Questions

This study attempts to answer the following questions about implicit invocation of

invariant maintenance. Which technique, metaprogramming or template programming,

provides best solution when applied to an invariant maintenance system as evaluated by

quantitative and qualitative criteria including performance, ease-of-use, and simplicity of

input?

1.4 Paper Map

The next section describes the approach used for the case study. It includes evaluation

criteria and an account of why this research is unique. Section 3 contains the case study

with the description of each approach. Section 4 contains the results of the case study

including the analysis of generated assembly code. Section 5 discusses the results

including their implications and suggestions for future work. Finally, section 6 concludes

the paper with a reflection on the research study.

2 Approach

2.1 Evaluation Criteria

To evaluate and compare metaprogramming with template programming for the

implementation of implicit invocation of invariant maintenance, solutions to the same

problem were implemented using different techniques and approaches. Afterwards, each

solution was analyzed based on predefined quantitative and qualitative criteria.

Quantitative criteria included time measurements of runtime and compile time, count of

generated lines of assembly code, count of lines of C++ code required to implement the

method in the main() method, and the size of the generated executable in bytes.

Qualitative criteria is made up of personal evaluations of metaprogramming and template

programming. Those include how easy each technique was to install and use and how

well each technique fits the programmer’s mindset about the problem. While subjective,

qualitative conclusions are based on real life experience described in the case study.

2.2 Metaprogramming

Unlike Lisp or Smalltalk, C++ does not support a built-in metaprogramming system aside

from template metaprogramming. Therefore, OpenC++, a third party technology, was

used to implement metaprogramming solutions. OpenC++ is an independent C++

compiler extension that allows detection of assignment within C++ code in order to

generate and insert new code for the implementation of invariant maintenance. First, it

translates an input C++ program into an abstract syntax tree containing all program

structures, objects, and variables. Afterwards, the tree is manipulated based on a C++

metaprogram written using the OpenC++ API. Using its own compiler, OpenC++

transforms the original C++ program into a new C++ program that includes user

manipulations described in the OpenC++ metafile.

For invariant maintenance, all approaches have OpenC++ detect the change in the

independent variable and call a function that changes the dependent variable.

Furthermore, implicit invocation between the components is generated by OpenC++

based on the specific metaprogram input to the compiler. The only parts requiring user

assistance are the code in the main() method that creates instances of classes and connects

them if necessary and the declaration of a class required for OpenC++ manipulation.

Figure 1 OpenC++ Development Process

OpenC++ was selected due to its popularity within academia and available support

through a network of users. Both Georgia Institute of Technology and Michigan State

University apply OpenC++ in teaching languages and research. Likewise, an active

newsgroup devoted to OpenC++ is maintained by SourceForge.net with over eighty

users. According to SourceForge.net, OpenC++ is a mature project with two

administrators, 27 developers, and over 700 CVS commits. Further description and

evaluation of advantages and disadvantages of OpenC++ can be found in Appendix A.

2.3 Template Programming

Contrasting with metaprogramming, templates are an integral part of C++ requiring no

separate tools or compilers. Since they are Turing-compatible, templates can be used to

implement any approach implemented with metaprogramming. For this study, templates

were used to wrap components in order to provide interfaces for component

communication without explicit invocation. Specifically, templates allowed the compiler

to determine communicating components at compile time instead of runtime or be hard-

coded by the user. Time constraints allowed for only one implementation based on

mixin-layers from the DYNAMO project. Please see the case study for better description

of template programming implementation and Appendix B for advantages and

disadvantages of template programming.

2.4 Case Study Uniqueness

While both metaprogramming and template programming parts of the case study are

based on previous research described in the Related Works section, their comparison

adds uniqueness to this research. Likewise, the study is fairly broad containing multiple

approaches to invariant implementation including those mentioned, but not implemented,

in [23]. This allows for a more definitive conclusion that takes in account eight different

approaches using two different techniques. Finally, the focus on qualitative analysis in

addition to quantitative analysis results in a broader evaluation. Usually, the focus of

research is on the technical aspects resulting in a technologically interesting but not very

useful conclusion if the technology or technique is have commercial uses. However,

focusing on ease-of-use allows future researches to select an approach that can quickly be

translated into consumer-friendly applications.

3 Case Study

3.1 Introduction

To compare metaprogramming to template programming, eight different solutions were

implemented. The problem each solution is trying to solve is the invariant of temperature

conversion between Celsius and Fahrenheit. The invariant formula for converting from

Celsius to Fahrenheit is Fahrenheit = (1.8 * Celsius) + 32. In OCL, this would be

represented as:

context F inv:

 self.f = (C.c * 1.8) + 32

from within the Fahrenheit class called F and with Celsius class called C. On the other

hand, converting from Fahrenheit to Celsius is accomplished using the formula Celsius =

(Fahrenheit – 32) / 1.8. In OCL, this would be represented as:

context C inv:

 self.c = (F.C - 32) / 1.8

from within the Celsius class called C and with Fahrenheit class called F. While some

approaches easily support conversion in both directions, others are best at supporting

conversion in only one direction. All solutions are implemented using GNU C++ since it

has a complete template programming support and provides for a number of

metaprogramming tools.

3.2 Metaprogramming

3.2.1 Status Variable (One-way)

One-way status variable approach closely models DYNAMO’s template design. The

differences are due to the lack of wrapper classes in the metaprogramming solution.

Instead, C and F act like C_Top and F_Bot respectively. Instead of F_Bot being given a

template to C_Top, this approach provides F with the address of the instance to C and

binds the instance of F to C as an Updaters. Implicit invocation is used to ensure that C

does not know who is bound to it but simply expects an Updaters.

Figure 2 One-way status variable class diagram

The method tweak() calls the update1() method that proceeds to retrieve the value of c

and change the value of f. This method is generated by metaprogramming and called

every time the value of C changes. The main() method requires the presence of the

following code:

C myC;

F myF(myC);

myC.bind_c_1 (&myF);

Note that neither temperature requires initialization at creation. This will cause C to

remain undefined if the value F changes before C is initialized.

myC : C myF : F

tester : Tester

1:change

3:get value

2:<<self>>

Figure 3 One-way status variable collaboration diagram

When the value of c changes, tweak() inside of C is called. It gives a pointer to C to F

which uses the update1() method to retrieve the value of c from C and update f.

3.2.2 Status Variable (Two-way)

Two-way status variable solution only differs from one-way solution in that both C and F

inherit the update() method from the Updaters class and use the inheritance to bind to

each other. The binding results in a perfect implementation of implicit invocation where

neither C not F directly reference one another except through a third party represented by

the Updaters.

+bind_c_1(in scp : Updaters) : void
+tweak() : void
+update1() : void

+c : double

+update1() : void1 1

1

*

1 *
+bind_f_1(in scp : Updaters) : void
+tweak() : void
+update1() : void

+f : double

1

1

Figure 4 Two-way status varaible class diagram

Moreover, the additional code within the main() method is limited to two new lines that

bind objects together.

C myC;

F myF;

myC.bind_c_1 (&myF);

myF.bind_f_1 (&myC);

Note that the original C and F class declarations are kept intact.

myF : F myC : C

tester : Tester

1:change

3:get value

2:<<self>>

Figure 5 Two-way status variable collaboration diagram

The interaction between objects is same is in Status Variable one-way except C and F are

reversed if f is the independent variable.

3.2.3 Pointer (One-way)

The pointer solutions differ from status variables in that they do not implement implicit

invocation through the use of inheritance. Instead, C contains a pointer to F through

which it knows about the F update method. This method is called when a change in c

occurs and is given a reference to C. Through this reference, F is able to access the new

value of c and use it to change the value of f. This illustrating an implementation of

explicit invocations.

Figure 6 One-way pointer class diagram

Unlike one-way status variable, the main() method does not require that an instance of C

be passed into F.

C myC;

F myF;

myC.bind_c_1 (&myF);

Note that only one line of code needs to be added to the original declarations of C and F.

The sequence of message for one-way pointer is exactly the same as the sequence of

messages for one-way status variable.

3.2.4 Pointer (Two-way)

Just like one-way pointer is similar to one-way status variable, two-way pointer is similar

to two-way status variable. The only difference is the use of explicit instead of implicit

invocation for communication between C and F. Instead of having each object contain a

reference to a third party they all inherit, the objects simply encapsulate pointers to one

another.

Figure 7 Two-way pointer class diagram

The resulting main() method adds an extra binding for backward invariant.

C myC;

F myF;

myC.bind_c_1 (&myF);

myF.bind_f_1 (&myC);

Note that this solution is exactly the same as two-way status variable and requires the

implementation of two extra lines of code.

The sequence of message for two-way pointer is exactly the same as the sequence of

messages for two-way status variable.

3.2.5 Inheritance (One-way)

The inheritance approach is designed to optimize one-way Status Variable approach

through improvements within the generated assembly code. The only difference from

Status Variable is the inheritance of C by F.

Figure 8 One-way inheritance class diagram

This produced a reduction in generated assembly code of 141 lines but no noticeable

difference at runtime or compile time. Please see Results for further discussion of

assembly code.

The main() method remained exactly the same as in one-way status variable.

C myC;

F myF(myC);

myC.bind_c_1 (&myF);

The sequence of message for inheritance is exactly the same as the sequence of messages

for one-way status variable.

3.2.6 Mediator (Two-way)

Instead of encapsulating invocation within existing classes, the mediator approach moves

all communication, along with invariant maintenance code, into a brand new object.

Know as the mediator, this object encapsulates references to C and F in addition to the

invariant formulas. Moreover, the mediator approach allows for a simple two-way

invariant by containing two functions with the invariant formulas. Finally, the resulting

C and F classes are completely unchanged with the exception of a single line of

OpenC++ code required to run the tool.

Tester

+tweak_c() : void
+tweak_f() : void

-& m_C : C
-& m_F : F

Mediator

+f : double
F

+c : double
C

1

1

1

1

1

1

1

1

Figure 9 Two-way mediator class diagram

The main() method adds one line of code in which as instance of the mediator class is

created and given references to C and F objects.

C myC;

F myF;

Mediator myMediator(myC, myF);

Note that the original C and F class declarations are kept intact.

myMediator : Mediator

myF : F

myC : C

tester : Tester

1:change
2:myC changed

3:set value

Figure 10 Two-way mediator collaboration diagram

In the mediator solution, when either c or f changes, the Mediator is alerted of the change

and updates the other component with the new value.

3.2.7 Distribution (One-way)

Unlike other approaches that place invariant maintenance within a single object,

distribution calls for a solution in which the formula or formulas for invariant

maintenance are distributed among multiple components. The temperature conversion

problem is too simple to implement any meaningful distribution. Nevertheless, an

approach in which invariant maintenance is encapsulated within the same object as

implicit invocation would closely model real distribution. Based on one-way pointer

approach, distribution lets C maintain a pointer to F. However, instead of using the

pointer to invoke F when a change occurs, C calculates the new value and updates f. This

way, F is kept comply unaware of C and clean from any extra code. In fact, distribution

results in the smallest generated assembly code and executable file.

Figure 11 One-way distribution class diagram

The main() method requires the addition of only one new line of code that binds the

reference to F to an instance of C.

C myC;

F myF;

myC.bind_c_1 (&myF);

Note that the original C and F class declarations are kept intact.

tester : Tester

myC : C myF : F

2:set value

1:change

Figure 12 One-way distribution collaboration diagram

When c changes, C calculates and updates f with its new value.

3.3 Template Programming

3.3.1 Template Status Variable (One-way)

The template architecture is based on layers containing the dependent and independent

components. It is described in depth by “Metaprogramming Compilation of Invariant

Maintenance Wrappers from OCL Constraints” from the DYNAMO project. For the

solution of the Calculus to Fahrenheit problem, only the invariant maintenance formula

from the paper’s sample was modified.

C

+getValue_c() : int
+setValue_c() : void
+bind_c_1(in scp : Updater1) : void

C_Top

F

Tester

+operator=() : T
+operator T()

-d : T

StatusVariable

T

+operator=() : T
+setUpdater1() : void

-updater1P : Updater1

SVC_c

T

Notifies

b

BindsUpdater

BindsUpdater

+update1() : void
-myC : T

F_Bot

T

+Update1() : void

«interface»
Updater

Figure 13 One-way template status variable class diagram

While this solution includes the most classes and methods, templates ensure that no

runtime effect is incurred. The main method requires the presence of the following

initialization and binding code:

F_Bot<C_Top> myF(32);

C_Top* lowerP = myF.getLowerP();

Note the initialization of the Fahrenheit component with the temperature before the

creation of the Celsius component.

lowerP : C_Top myF : F_Bot

tester : Tester

1:change

2:get value

Figure 14 One-way template status variable collaboration diagram

Although the template programming solution looks much more complex than the one-

way status variable solution from metaprogramming, the latter is in fact modeled on the

former. When c changes, the assignment is overwritten to notify F_Bot. F_Bot in turn,

retrieves the value of c from C_Top and uses it to change the value of f.

3.4 Summary

The eight solutions presented can be divided into several categories. The broadest one is

the technique used for implementation like metaprogramming or template programming.

Next, the solutions can be sparated into one-way or two-way invariants, implicit

invocation or explicit invocation between components, whether or not extra objects were

used in the solution, and the structure of communication as displayed by collaboration

diagrams. The main focus of this paper is on evaluating the techniques and other

categories, particularly ways of invariant maintenance and invocation, will be used in

forming the judgment.

4 Results

The following quantitative results were derived by implementing each of the case study

solutions on a single system. The system used is an AMD Athlon64 3200 with 1

Gigabyte of RAM. The solutions were compiled and ran in the Cygwin environment,

under Windows 2000. GNU gcc 3.4 was used for all compilations.

4.1 Compile and Runtime

Compile and runtime were measured using the “time” command within the Cygwin

environment. For runtime, the average of the second, third, and forth runs was taken to

avoid page miss error during the first run. The optimization flag -O3 was used during all

compilations except when the option –S was used to generate assembly code. All

compile code is based on the main() method having a loop that runs 10,000 times

changing the value of the independent variable twice.

Figure 15 Quantitative results of case study

4.2 Assembly Code

No optimization or special flags were used when generating assembly code. Lines of

assembly code were counted using the vim editor based only on the assembly files

generated from the input C++ files and not from the OpenC++ metafiles. Furthermore,

all assembly code comes from the compilation of the *.ii files generated by OpenC++,

which contain the modified input code along with OpenC++ specific code. When all

OpenC++ specific code is removed, the resulting assembly file is much smaller. For

distribution, it is only 82 lines compared with 269 before removal. It is assumed that the

OpenC++ specific code contains links to OpenC++ libraries. Interestingly, when the

solution is hard-coded without the use of metaprogramming or template programming,

the assembly code is larger. For instance, the assembly code for distribution is 274 lines

long.

4.2.1 Distribution (One-way)

 .file "tester.cc"
 .text
 .align 2
 .def __ZSt17__verify_groupingPKcjRKSs; .scl 3; .type 32;
 .endef
__ZSt17__verify_groupingPKcjRKSs:
 pushl %ebp
 movl %esp, %ebp
 subl $40, %esp
 movl 16(%ebp), %eax
 movl %eax, (%esp)
 call __ZNKSs4sizeEv
 decl %eax
 movl %eax, -4(%ebp)
 movl 12(%ebp), %eax
 decl %eax
 movl %eax, -12(%ebp)
 leal -12(%ebp), %eax
 movl %eax, 4(%esp)

 leal -4(%ebp), %eax
 movl %eax, (%esp)
 call __ZSt3minIjERKT_S2_S2_
 movl (%eax), %eax
 movl %eax, -8(%ebp)
 movl -4(%ebp), %eax
 movl %eax, -16(%ebp)
 movb $1, -17(%ebp)
 movl $0, -24(%ebp)
L2:
 movl -24(%ebp), %eax
 cmpl -8(%ebp), %eax
 jae L5
 cmpb $0, -17(%ebp)
 je L5
 movl -16(%ebp), %eax
 movl %eax, 4(%esp)
 movl 16(%ebp), %eax
 movl %eax, (%esp)
 call __ZNKSsixEj
 movl %eax, %ecx
 movl -24(%ebp), %eax
 movl 8(%ebp), %edx
 addl %eax, %edx
 movzbl(%ecx), %eax
 cmpb (%edx), %al
 sete %al
 movb %al, -17(%ebp)
 leal -16(%ebp), %eax
 decl (%eax)
 leal -24(%ebp), %eax
 incl (%eax)
 jmp L2
L5:
 cmpl $0, -16(%ebp)
 je L6
 cmpb $0, -17(%ebp)
 je L6
 movl -16(%ebp), %eax
 movl %eax, 4(%esp)
 movl 16(%ebp), %eax
 movl %eax, (%esp)
 call __ZNKSsixEj
 movl %eax, %ecx
 movl -8(%ebp), %eax
 movl 8(%ebp), %edx

 addl %eax, %edx
 movzbl(%ecx), %eax
 cmpb (%edx), %al
 sete %al
 movb %al, -17(%ebp)
 leal -16(%ebp), %eax
 decl (%eax)
 jmp L5
L6:
 movl $0, 4(%esp)
 movl 16(%ebp), %eax
 movl %eax, (%esp)
 call __ZNKSsixEj
 movl %eax, %ecx
 movl -8(%ebp), %eax
 movl 8(%ebp), %edx
 addl %eax, %edx
 movzbl(%ecx), %eax
 cmpb (%edx), %al
 jg L8
 movzbl-17(%ebp), %eax
 andl $1, %eax
 movb %al, -25(%ebp)
 jmp L9
L8:
 movb $0, -25(%ebp)
L9:
 movzbl-25(%ebp), %eax
 movb %al, -17(%ebp)
 movzbl-17(%ebp), %eax
 leave
 ret
.lcomm __ZSt8__ioinit,16
 .def ___main; .scl 2; .type 32; .endef
Change in the value of c
 .section .rdata,"dr"
 .align 8
LC1:
 .long 0
 .long 1079574528
 .text
End of change in the value of c
 .align 2
.globl _main
 .def _main; .scl 2; .type 32; .endef
_main:

 pushl %ebp
 movl %esp, %ebp
 subl $72, %esp
 andl $-16, %esp
 movl $0, %eax
 addl $15, %eax
 addl $15, %eax
 shrl $4, %eax
 sall $4, %eax
 movl %eax, -44(%ebp)
 movl -44(%ebp), %eax
 call __alloca
 call ___main
 leal -32(%ebp), %eax
 movl %eax, 4(%esp)
 leal -24(%ebp), %eax
 movl %eax, (%esp)
Binding on the instance of the F class to the instance of the C class through call to
bind_c_1
 call __ZN1C8bind_c_1EP1F
 movl $0, -36(%ebp)
L11:
Start of the 10,000 loop
 cmpl $9999, -36(%ebp)
 jg L12
First call to tweak
 fldz
 fstpl -24(%ebp)
 leal -24(%ebp), %eax
 movl %eax, (%esp)
 call __ZN1C5tweakEv
End of first call to tweak
Second call to tweak
 fldl LC1
 fstpl -24(%ebp)
 leal -24(%ebp), %eax
 movl %eax, (%esp)
 call __ZN1C5tweakEv
End of second call to tweak
 leal -36(%ebp), %eax
 incl (%eax)
 jmp L11
End of loop
L12:
 movl $0, %eax
 leave

 ret
 .section .rdata,"dr"
 .align 8
LC3:
Inside the tweak method on C
The invariant rule
 .long -858993459
 .long 1073532108
 .align 8
LC4:
 .long 0
 .long 1077936128
 .section .text$_ZN1C5tweakEv,"x"
 .linkonce discard
 .align 2
End of the invariant rule
.globl __ZN1C5tweakEv
 .def __ZN1C5tweakEv; .scl 2; .type 32; .endef
__ZN1C5tweakEv:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl 8(%eax), %edx
 movl 8(%ebp), %eax
 fldl (%eax)
 fldl LC3
 fmulp %st, %st(1)
 fldl LC4
 faddp %st, %st(1)
 fstpl (%edx)
 popl %ebp
 ret
 .section .text$_ZN1C8bind_c_1EP1F,"x"
 .linkonce discard
 .align 2
The bind method that binds the instance of F to the instance of C
.globl __ZN1C8bind_c_1EP1F
 .def __ZN1C8bind_c_1EP1F; .scl 2; .type 32; .endef
__ZN1C8bind_c_1EP1F:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 movl %eax, 8(%edx)
 popl %ebp
 ret

 .section .text$_ZSt3minIjERKT_S2_S2_,"x"
 .linkonce discard
 .align 2
End of the bind method
.globl __ZSt3minIjERKT_S2_S2_
 .def __ZSt3minIjERKT_S2_S2_; .scl 2; .type 32; .endef
__ZSt3minIjERKT_S2_S2_:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 12(%ebp), %eax
 movl 8(%ebp), %edx
 movl (%eax), %eax
 cmpl (%edx), %eax
 jae L17
 movl 12(%ebp), %eax
 movl %eax, -4(%ebp)
 jmp L16
L17:
 movl 8(%ebp), %eax
 movl %eax, -4(%ebp)
L16:
 movl -4(%ebp), %eax
 leave
 ret
 .text
 .align 2
 .def __Z41__static_initialization_and_destruction_0ii; .scl 3; .type
 32; .endef
__Z41__static_initialization_and_destruction_0ii:
 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 cmpl $65535, 12(%ebp)
 jne L19
 cmpl $1, 8(%ebp)
 jne L19
 movl $__ZSt8__ioinit, (%esp)
 call __ZNSt8ios_base4InitC1Ev
L19:
 cmpl $65535, 12(%ebp)
 jne L18
 cmpl $0, 8(%ebp)
 jne L18
 movl $__ZSt8__ioinit, (%esp)
 call __ZNSt8ios_base4InitD1Ev

L18:
 leave
 ret
 .align 2
 .def __GLOBAL__I_main; .scl 3; .type 32; .endef
__GLOBAL__I_main:
 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 movl $65535, 4(%esp)
 movl $1, (%esp)
 call __Z41__static_initialization_and_destruction_0ii
 leave
 ret
 .section .ctors,"w"
 .align 4
 .long __GLOBAL__I_main
 .text
 .align 2
 .def __GLOBAL__D_main; .scl 3; .type 32; .endef
__GLOBAL__D_main:
 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 movl $65535, 4(%esp)
 movl $0, (%esp)
 call __Z41__static_initialization_and_destruction_0ii
 leave
 ret
 .section .dtors,"w"
 .align 4
 .long __GLOBAL__D_main
 .def __ZNSt8ios_base4InitD1Ev; .scl 3; .type 32; .endef
 .def __ZNSt8ios_base4InitC1Ev; .scl 3; .type 32; .endef
 .def __ZNKSsixEj; .scl 3; .type 32; .endef
 .def __ZNKSs4sizeEv; .scl 3; .type 32; .endef
 .def __ZSt3minIjERKT_S2_S2_; .scl 3; .type 32; .endef

4.2.2 Status Variable (One-way)

The one-way status variable contains additional code for the Updaters class which is

inherited by F. Also, the update() method is located in a separate file and requires an

extra jump for access. It alone adds 61 lines of code. Another source of extra code is the

code required to pass the pointer of C to F in order for F to retrieve the new value of c.

4.2.3 Status Variable (Two-way)

Two-way status variable code is based on the one-way status variable code except both C

an F have the tweak(), bind(), and update() methods. This is responsible for the increase

of code along with an extra call to bind() present in the main() method.

4.2.4 Pointer (One-way)

The code of one-way pointer is greatly simplified from the one-way status variable. The

Updaters class code is no longer present negating the need for F to inherit it.

4.2.5 Pointer (Two-way)

The increase in the amount of assembly code comes from duplicating the bind(),

update(), and tweak() methods just like in two-way status variable. However, lack of

Updaters class allows a great reduction in assembly code in comparison to two-way

status variables at the cost of explicit invocation.

4.2.6 Inheritance (One-way)

The inheritance of C by F within the one-way status variable design simply added the

code from C into F resulting in larger total line count. All other assembly code remained

same as in one-way status variable.

4.2.7 Mediator (Two-way)

The mediator solution resulted in an assembly code significantly different from all other

solutions. First, there is a new Mediator class that encapsulates the pointers to C and F.

It also contains the invariant maintenance code for the two-way invariant within the

tweak() methods. Unlike the status variable where the dependent component gets the

value of the independent component and employs it in calculating its new value, the

mediator handles the calculation and just updates the dependent component with the new

value. This results in much simpler communication code since all communication

between components is one way at each update. Furthermore, because the mediator

contains all binding and invariant code, the C and F classes contain just their respective

values. As a result, the mediator is the shortest and most streamlined of the two-way

solutions.

4.2.8 Template Status Variable (One-way)

The longest assembly code is produced by the template programming solution. It is

divided among three files and includes code for eight different classes as shown in the

class diagram. Through templates, the compiler is able to determine the type of the

independent variable at compile time and place references to it in the code. Nevertheless,

extra length results from the wrapper classes C_Top and B_Bot. This code includes not

only the methods these classes contain but also the inheritance of C and F. As shown by

the one-way inheritance solution, inheritance by itself carries cost in extra assembly code.

Moreover, the template solution features extra code from inheritance of Updaters,

StatusVariable, and SVC classes. However, due to the nature of templates, code for

assignment override was not transferred over into assembly but used to change the

assignment at compile time. In conclusion, template programming allows optimization

within the assembly code by determining certain calculations at compile time, but the

overall designed used for the template status variable solution results in the largest

assembly code of all solutions due to increased wrapping and inheritance.

5 Discussion

5.1 Implications

5.1.1 Quantitative Analysis

From the data gathered during the case study, the advantages of metaprogramming lie in

the assembly code while template programming has shorter compile time. Template

status variable results in assembly code almost 50 lines longer than the longest

metaprogramming solution. What is more, the metaprogramming solution is two-way

while the template solution is only one-way. The smallest one and two-way

metaprogramming solutions, distribution and mediator respectively, are almost half the

size of the template solution. Lastly, the one-way status variable metaprogramming

solution, while based on the design of the template solution, is almost 180 lines smaller.

Conversely, metaprogramming compile times are 15 to 17 times as long as template

programming’s. It should be noted that templates usually take longer to compile in

comparison to C++ code that does not include them. The difference is probably due to

templates being a part of the GNU compiler while metaprogramming comes as a separate

tool requiring multiple steps from metacode to the executable. Although not as important

as runtime for the end user, long compile time can complicate development and testing

for very large and complex system.

The results for runtime were virtually the same for all solutions. The only standouts were

two-way status variable and pointer metaprogramming which were from one-sixth to

one-third larger. However, different time results appeared for every trial and all solutions

were constantly between 0.030 and 0.046 seconds. Thus, it is safe to conclude that

runtime for all solutions was the same. Perhaps, the test system was too powerful for the

difference to be displayed. Otherwise, the problem could be too simple to differentiate

performance.

5.1.2 Qualitative Analysis

The results of qualitative analysis have been gathered during the entire software

development process and include the ease of installation, the ability of each technique to

solve the implicit invocation of invariant maintenance problem, the ease of adjusting

input code for the technique, and how well the technique fits-in with the developers’s

process of thinking. Serious problems occurred when trying to install and use OpenC++

for metaprogramming. For their complete description please see Appendix A. On the

other hand, since templates are part of the GNU C++ compiler, there were absolutely no

difficulties in using them. It should be noted that the problems encountered were with the

specific tool, OpenC++, and not with the technique of metaprogramming. With more

development, there is no reason to doubt that OpenC++ or another tool could be as easy

to use as C++ templates.

Once OpenC++ began functioning, it was used to implement seven different solutions.

All were done with relative ease and much faster than was originally planned. In fact,

most solutions were simply redesigns of the very first metaprogramming solution

involving pointers. This allowed one-way, two-way, and unusual designs like mediator

and distribution to be implemented quickly and easily. Most importantly, the ability to

see the code before and after metaprogramming combination allowed for fast and easy

debugging. However, the metacode itself was much harder to debug due to cryptic error

messages and lack of up-to-date documentation.

In opposition, the layered design of the template programming solution was complex and

hard to understand. Multiple readings of the DYNAMO project research papers were

required just to realize the purpose of templates in the solution. Furthermore, a two-way

solution proved too complex and time consuming to implement. It is hard to imagine

how template programming and mixin layers could be used to implement other

approaches such as mediator, distribution, or aggregation. Finally, templates in C++ do

not support clear error messages and debugging the design was difficult.

If the two techniques are to be implemented automatically upon an input source code, the

changes required in that code needs to be evaluated. Each metaprogramming solution

requires an additional one to two lines of code within the main() method while mostly

keeping the previous declaration of components intact. Template programming requires

two new lines to replace the component declarations. No metaprogramming solution

requires more than one line to be replaced. Consequently, metaprogramming allows

fewer and easier changes to the input code.

Last important criterion of qualitative analysis is how well each technique matches the

developer’s thinking process. Metaprogramming excels at this because the input and the

output code are relatively simple allowing each metaprogramming solution to be hard-

coded in C++ before going through OpenC++. Each hard-coded solution can be tested

and analyzed at will to determine the best design. Afterwards, the solution is divided into

input code and metaprogramming generated code. The later is removed and inserted into

OpenC++’s metacode for automatic generation. As a result, the developer is always

thinking in terms of plain C++ code.

In template programming, the developer must decide on how to use templates to

complete the task. DYNAMO features just one possible solution and it needs to be

adjusted for all but the most basic invariants. Unless the developer is experienced in

template programming and template theory, this task could prove extremely difficult. In

summary, metaprogramming makes due with basic knowledge of C++ where as template

programming requires a different approach to the problem with concrete understanding of

templates.

5.2 Future Work

Due to time constraints, only one instance of template programming was implemented.

Mediator and distribution versions of template programming must be implemented to

attain complete comparison. Furthermore, no attempt was made to create two-sided

invariants using template programming. Doing this would help to quantify exactly how

difficult such task is. Finally, while the invariant implemented granted good data, it was

too simple to gain meaningful runtime comparisons. Implementing a more complex

example with multiple components and invariants in a single system would permit for

better analysis of runtime and architecture.

6 Conclusion/Reflections

The results of the case study lead to the conclusion that metaprogramming is superior to

template programming for the implementation of implicit invocation of invariant

maintenance due to smaller final assembly code, superior ability to solve the problem

with multiple approaches and two-way invariants, and easier fit into the developer’s

mindset. The only areas where metaprogramming lacks behind template programming

are compile time and ease of installation. The first area is not of particular importance to

the final user while the second area is based solely on the negative experience with

OpenC++ as documented in Appendix A. If C++ metaprogramming continues to evolve,

it should overcome both defects. Although C++ templates can be improved with better

error messages and faster compile times, their Turing-complete nature will always keep

them from being specialized enough to challenge non-template metaprogramming.

Reflecting upon completed work, it is clear that much has been learned. First, I finally

understood exactly what metaprogramming is and how it works. While I was introduced

to it in previous courses, actually using it showed me a new dimension of programming.

In particular, I learned about different types of metaprogramming such as runtime

reflection and compile time metaprogramming. This helped me to compare and contract

computer languages like Smalltalk and C++. Also, I learned about how

metaprogramming is implemented within different languages through the use of the

interpreter or a separate program akin to OpenC++.

In addition to learning about metaprogramming, I gained better understanding of

approaches to invariant maintenance. Although I previously studied how distribution,

mediators, and implicit invocation worked, implementing them and seeing the

implementation in assembly helped me to comprehend their importance within larger

systems. For example, using pointers to connect components may seem easy, but it

results in entangled and untraceable code within a complex system. On the other hand,

the mediator approach leaves all original components completely free of changes and

places all invariant maintenance code in a single accessible location.

Finally, I gained important insights into research projects and tools. Specifically, far too

much time was spent trying to fix OpenC++. Instead, there should have been a

contingency plan in place to be executed if OpenC++ did not function within certain time

period. I should also have tested and assessed OpenC++ before deciding to use it for the

project. Likewise, I should have searched for other ways of doing metaprogramming in

C++. On the other hand, the experience with OpenC++ taught me what

metaprogramming and metacode look like at different stages of implementation. I was

able to view the abstract syntax tree that contained my C++ code and modify in through a

various means. If another tool hid this while functioning correctly from the start, I would

have completed more work but not learn as much about the metaprogramming and its

implementation.

7 Acknowledgements

I would like to extend my deepest appreciation to Scott D. Fleming of Michigan State

University for help in getting OpenC++ to run and to Dr. Kurt Stirewalt of Michigan State

University for providing examples on OpenC++ metacode for invariant maintenance. I

would also like to thank all members of the OpenC++ community for advice and assistance

in using OpenC++. Finally, special recognition goes to Dr. Spencer Rugaber of Georgia

Institute of Technology without whose guidance, this research would not be possible.

8 Works Cited

[1] D. Garlan and M. Shaw. An Introduction to software architecture. In Advances in
Software Engineering and Knowledge Engineering, pages 1-39, Singapore, 1993.
World Scientific Publishing Company.

[2] Czarnecki, Krzysztof and Ulrich Eisenecker. Generative Programming: Methods,

Tools, and Applications. Addison-Wesley, 2000.

[3] Object Management Group, “Object Constraint Language Specification”. OMG

Unified Modeling Language Specification, 1.5. Chapter 6, March 3, 1999.

[4] I. R. Forman, S. H. Danforth. Putting Metaclasses to Work. Addison-Wesley

1999.

[5] David Vandevoorde, C++ Templates: The Complete Guide, 2003 Addison-

Wesley.

[6] Mehmet Aksit , Ken Wakita , Jan Bosch , Lodewijk Bergmans , Akinori

Yonezawa, “Abstracting Object Interactions Using Composition Filters,”
Proceedings of the Workshop on Object-Based Distributed Programming, p.152-
184, July 26-27, 1993.

[7] Robert DeLine. "Avoiding packaging mismatch with Flexible Packaging." IEEE
Transactions on Software Engineering 27(2):124-143, February 2001.

[8] Sullivan, K.J. and D. Notkin, "Reconciling Environment Integration and Software

Evolution" ACM Transactions on Software Engineering and Methodology, vol. 1,
no. 3., pp. 229-268, July, 1992.

[9] Kevin J. Sullivan , Ira J. Kalet , David Notkin, “Evaluating The Mediator Method:

Prism as a Case Study”, IEEE Transactions on Software Engineering, v.22 n.8,
p.563-579, August 1996.

[10] Foote, Brian, and Ralph E. Johnson. "Reflective Facilities in Smalltalk-80." Brian

Foote. 16 Oct. 1989. Dept. of Computer Science, University of Illinois at Urbana-
Champaign. 8 Oct. 2005 <http://www.laputan.org/ref89/ref89.html>.

[11] Fred Rivard. “Smalltalk: a Reflective Language”. In Reflection'96, April 1996.

[12] Dale, Green. "Trail: The Reflection API." Sun Microsystems. 18 Oct. 2005

<http://java.sun.com/docs/books/tutorial/reflect/>.

[13] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A class-based

macro system for Java. In W. Cazzola, R. J. Stroud, and F. Tisato, editors,

Reflection and Software Engineering, LNCS 1826, pages 119--135. Springer-
Verlag, July 2000.

[14] Knizhnik, Konstantin. "Reflection for C++." The Garret Group. 4 Nov. 2005

<http://www.garret.ru/~knizhnik/cppreflection/docs/reflect.html>.

[15] Roiser, Stefan. “Reflection in C++.” CERN EP/LBC, TU Vienna. December 15,

2003.

[16] Vollmann, Detlef. "Metaclasses and Reflection in C++." Vollmann Engineering.

2000. 27 Nov. 2005 <http://www.vollmann.com/pubs/meta/meta/meta.html>.

[17] Chiba, Shigeru. “A Metaobject Protocol for C++.” In Proceedings of the ACM

Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), page 285-299, October 1995.

[18] G. Kiczales. “Towards a new model of abstraction in software engineering.” In

Proc. of IMSA'92 Workshop on Reflection and Meta-level Architectures, 1992.

[19] Fleming, Scott D., Betty H.C. Cheng, R.E. Kurt Stirewalt, and Philip K.

McKinley. “An approach to implementing dynamic adaptation in C++.” In
Proceedings of the first Workshop on the Design and Evolution of Autonomic
Application Software 2005 (DEAS’05), in conjunction with ICSE 2005, St. Louis,
Missouri, May 2005.

[20] D. Batory and B. J. Geraci. “Composition validation and subjectivity in GenVoca

generators.” IEEE Transactions on Software Engineering, pages 67–82, Feb.
1997.

[21] Y. Smaragdakis and D. Batory. “Implementing Layered Designs with Mixin

Layers.” Proceedings of the 12th European Conference on Object-oriented
Programming, 1998.

[22] Rugaber, Spencer and Stirewalt, Kurt. “Metaprogramming Compilation of

Invariant Maintenance Wrappers from OCL Constraints.” College of Computing,
Georgia Institute of Technology Technical Report: GIT-CC-03-46. October 27,
2003.

[23] Rugaber, Spencer and Stirewalt, Kurt. “Final Project Report: Dynamic Assembly

from Models (DYNAMO).” College of Computing, Georgia Institute of
Technology. October 30, 2003.

[24] “DYNAMO Design Guidebook.” College of Computing, Georgia Institute of
 Technology Technical Report: GIT-CC-01-37. June 27, 2002.

9 Appendix A – OpenC++ Evaluation

9.1 Advantages

9.1.1 Metaprogramming implemented quickly and easily

OpenC++ provides an API that allows fast access to and modification of C++ source

code. For example, specifying what variable name to search and what to do once it is

found takes only a few lines of code. Similarly, the abstract syntax tree that holds parsed

code provided information about each code structure like its name and scope.

9.1.2 Available documentation

Full documented OpenC++ API is available on the project website along with research

papers that explain how OpenC++ works. Some research papers also contain code

examples and their analysis.

9.1.3 Available assistance on the newsgroup

The project newsgroup, linked from the project website, allow access to assistance from

more experienced OpenC++ users. Experience showed that all posts are replied to within

24 hours and usually by multiple people. The wealth of knowledge and experience on the

newsgroup is much greater in comparison to all on-line sources combined.

9.1.4 Used within academia and industry

Unlike most freeware tools, OpenC++ is expensively employed within academia.

Georgia Institute of Technology uses it to tech object-oriented systems and languages

while Michigan State University uses it in conducting research. Additionally, Debian and

Linspire, two popular Linux distributions, released OpenC++ packages for their

respective systems.

9.1.5 Code done in regular C++

Instead of requiring the user to learn a new language specifically designed for the tool,

OpenC++ metacode is written using regular C++. This reduces the learning curve and

allows the user to combine metacode with existing C++ code in order to create new tools.

9.2 Disadvantages

9.2.1 Available version does not work properly

Although OpenC++ is easy to learn and use once it is functional, getting to this step

requires a large amount of unnecessary work. First of all, the tool is very fastidious about

its environment like requiring a specific version of gcc and libtool libraries. In particular,

it does not work with gcc 4.0. Likewise, the current distribution contains major defects

that must be fixed before it can be installed. The information about the defects can be

found on the newsgroup but not in the project webpage. Even after all requirements have

been satisfied and the system is installed, it is unable to compile all but the most basic

metaprograms. To make it fully functional, complete recompilation on the local system

is required. Otherwise, the recompiled code must be received from a third-party source.

Finally, versions available in Debian and Linspire distributions are completely non-

functional. If this information was available on the project website, the user could

estimate the time requirements for their project. However, the project webpage only

contains a link for reporting bugs but no mention of existing defects or their status.

9.2.2 Documentation is out-of-date

While the project website contains a complete and well-documented API, it is severely

out-of-date. Many functions do not exist within the API but can be found on other

websites and examples. Likewise, most research papers based on OpenC++ are fairly old

and contain code that is out-of-date.

9.2.3 No comprehensive source of help or examples

Throughout its existence, OpenC++ was used in many projects and is mentioned in

multiple research papers. However, aside from Shigeru Chiba’s website, there is no

comprehensive source of past and current OpenC+ research. Only a few research papers

feature examples of metacode and explanations about its functionality. Moreover, all

examples are severely outdated and are too simple for most useful programs.

9.2.4 Compilation time

Programs that use OpenC++ for metaprogramming require much longer to compile in

comparison to regular C++ or C++ template programming due to the number of steps

taken before the actual compilation. Those steps are described in the Approach section.

Unlike runtime, compile time is not noticeable to the end user of the application;

therefore, it is not as important then compared to other OpenC++ disadvantages.

9.3 Conclusion

It is hard to conclude about the usefulness of OpenC++ and its future. The current

implementation offers great functionality and is undeniably beneficial in C++

metaprogramming but only when it is functional. However, current steps required to

make OpenC++ functional are too complex for most non-experts. Perhaps OpenC++

should be combined with gcc to improve compatibly and increase distribution. This

would require major bug fixes but no changes in the overall tool design.

10 Appendix B – Template Programming Evaluation

10.1 Advantages

10.1.1 Integral part on C++

Templates are an integral part of C++ supported by most C++ compilers including GNU

gcc. They require no additional installation or configuration.

10.1.2 Available documentation

There are thousands of books, magazines, articles, web-pages, and research papers

written about C++ templates and their uses including works by the author of C++ Bjarne

Stroustrup.

10.1.3 Available assistance

Since templates are widely available and used, there are thousands of experts,

newsgroups, and help sites devoted to their use.

10.2 Disadvantages

10.2.1 Not specialized enough

Given that C++ templates are Turing-complete, they can be used to implement any

possible program. Usually, they are used for generic programming but can also be

employed in metaprogramming. This can make it hard to figure out how templates can

be used to solve a specific problem like invariant maintenance. The DYNAMO project

offers one type of solution but there could be others.

10.2.2 Poor error messages

When errors occur at compile or runtime due to template implementation, the error

message could be very cryptic. Particularly, since templates do their work at compile

time, errors that occur at runtime can be difficult to trace to the template that caused

them.

10.3 Conclusion

As it stands today, C++ templates are more evolved in comparison to a third party tool

like OpenC++. They are well documented and have plenty of available resources for

assistance. However, specialized metaprogramming tools provide a more logical solution

to the implementation of implicit invocation for invariant maintenance. After the initial

cost of installing and learning the tool, metaprogramming is faster to implement, provides

wider architectural support al lowest cost, and presents a more natural way to think about

the problem.

