
On the Difficulty of Modular Reinforcement Learning
for Real-World Partial Programming

Sooraj Bhat, Charles L. Isbell Jr., Michael Mateas

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332
{sooraj, isbell, michaelm}@cc.gatech.edu

Abstract

In recent years there has been a great deal of interest in
“modular reinforcement learning” (MRL). Typically, prob-
lems are decomposed into concurrent subgoals, allowing in-
creased scalability and state abstraction. An arbitrator com-
bines the subagents’ preferences to select an action. In this
work, we contrast treating an MRL agent as a set of sub-
agents with the same goal with treating an MRL agent as a
set of subagents who may have different, possibly conflicting
goals. We argue that the latter is a more realistic descrip-
tion of real-world problems, especially when building partial
programs. We address a range of algorithms for single-goal
MRL, and leveraging social choice theory, we present an im-
possibility result for applications of such algorithms to multi-
goal MRL. We suggest an alternative formulation of arbitra-
tion as scheduling that avoids the assumptions of comparabil-
ity of preference that are implicit in single-goal MRL. A no-
table feature of this formulation is the explicit codification of
the tradeoffs between the subproblems. Finally, we introduce
A2BL, a language that encapsulates many of these ideas.

Introduction
Modular reinforcement learning (MRL), as we will use the
phrase, refers to the decomposition of a complex, multi-goal
problem into a collection of simultaneously running single-
goal learning processes, typically modeled as Markov De-
cision Processes. Typically, these subagents share an action
set but have their own reward signal and state space. At each
time step, every subagent reports a numerical preference for
each available action to an arbitrator, which then selects one
of the actions for the agent as a whole to take. This gen-
eral approach is an attempt to avoid the drawbacks of sim-
pler arbitration techniques such ascommand arbitration, in
which subagents each only recommend a single action, or
command fusion, in which the arbitrator executes some type
of “combination” action, such as an average over the actions
suggested by the subagents.

One natural way to represent these numerical preferences
is to simply use Q-values learned by each component MDP.
Optimally combining subagent Q-values in a meaningful
way has thus become the focus of recent work. The argu-
ment is that even though the subagents may be pursuing

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

conflicting subgoals, they are each necessary components
of an enclosing goal, so we would like to maximize the ex-
pected reward for each subagent as much as possible. Arbi-
tration techniques differ in how they try to accomplish this
maximization. For example, one approach is to select an
action to maximize average happiness,i.e. the action maxi-
mizing

∑
j Qj(s, a). Another is to adopt a winner-take-all

strategy and allow the subagent with the largest Q-value for
any action to select the action,i.e. the action maximizing
maxj Qj(s, a).

Although sometimes implicit, all of these arbitration ap-
proaches assume the subagent reward signals are compa-
rable. We argue that this is not the general case for real-
world, multiple-goal problems. In practice, it is rare that
a “ground truth” reward signal is available; instead, we as
problem solvers are the ones designing the reward signal.
The reward signal design process for a single-goal prob-
lem may be tricky (as the designer may only have a gen-
eral idea of how reinforcing feedback should come from the
environment) but is usually manageable as there is only a
single well-defined goal in mind. The multiple-goal case,
however, is more complicated: not only must the designer
properly craft a reward signal for each subagent, she must
also ensure that the reward units are consistent between the
subproblems. This is a significant, and perhaps impossi-
ble, burden on the designer, especially as the number of
subproblems—and thus the size of the software problem fac-
ing the designer—increases.

In light of this comparability problem, we show in this pa-
per that it is impossible to construct an arbitration function
that satisfies a few basic, yet desirable, properties. We obtain
the result by leveragingsocial choice theory. In particular,
we reduce the problem of constructing an arbitration func-
tion to a variant of Arrow’s Impossibility Theorem for social
ordering functions (Arrow 1966). Characterizing MRL as a
social welfare problem opens up new avenues of analysis, as
we can now start applying established results from the social
choice literature to MRL.

The paper is organized as follows. First we motivate
our discussion with an in-depth explanation of the problem
of subagent reward incomparability. In particular we take
the view of decomposition as one ofpartial programming.
Next, we introduce some necessary formalism and back-
ground before presenting the impossibility result. Finally,

we propose a mechanism for addressing the social choice
dilemma and describe A2BL, a programming language that
makes that mechanism concrete.

Motivation

Modular Reinforcement Learning arises in a variety of con-
texts. In our own work, it arises in efforts to build a sys-
tem for partial programming; that is, a designer or program-
mer specifies only that part of the program known to be
correct, allowing a learning system to learn the rest from
experience, typically using reinforcement learning (alter-
natively, one can think of partial programming as a way
for a designer to inject prior knowledge into a learning
agent). Current approaches to incorporating adaptivity into
programming languages have focused on allowing the pro-
grammer to constrain the set of policies considered by hand-
authoring a subroutine hierarchy (Andre & Russell 2000;
Dietterich 1998). This framework is commonly referred
to ashierarchical reinforcement learning(HRL) and corre-
sponds to a temporal decomposition of goals. For partial
programming, one would also like to support the concurrent
subgoal decomposition offered by MRL.

In practice, we have found that while it is usually reason-
able to expect a programmer to design a reward signal for a
single goal, it is much harder to maintain consistency in the
presence of multiple goals. Consider thePredator-Food
grid world. In this world, there are two main activities:
avoiding the predator and finding food. At every time step,
the agent must pick a direction to move. Food appears ran-
domly at fixed locations, and there is a predator in the en-
vironment who moves towards the agent once every other
time step. This learning problem is naturally described
in the MRL framework: the two concurrent subgoals are
FindFood andAvoidPredator. In this example, it is
somewhat straightforward to design a reward signal for each
subgoal: inFindFood, one can assign a large positive re-
ward when the agent lands on a grid square with food in it; in
AvoidPredator, one can assign a large negative reward
when the agent is captured by the predator. However, how
do we assign the magnitudes of the rewards, particularly in
relation to each other? How can we know that +10 units of
reward in theFindFood subgoal is actually equivalent to
+10 units of reward in theAvoidPredator subgoal? It is
especially difficult to answer these questions because there
are no objective criteria for determining the answer.

If keeping the reward signal consistent between subprob-
lems is a difficult task for one programmer, it becomes a
nightmare in the presence of multiple programmers. We
know that developers using an adaptive programming lan-
guage will have to solve the same multi-programmer coor-
dination and code reuse problems faced by practitioners us-
ing standard languages. This is especially true in large, real-
world systems. So, if we require that subagents are designed
in such a way that rewards must be consistent across sub-
agents, any reasonably-sized application will require mul-
tiple programmers to maintain reward consistency across
multiple, independently written subgoals, in addition to all
the standard multi-programmer coordination issues.

The requirement of maintaining reward consistency also
inhibits software reuse. Suppose, for instance, we have
managed to design the reward signals forFindFood and
AvoidPredator for an Environment A, such that reward
consistency is maintained. Now assume that there is an En-
vironment B that can make use of theFindFood subgoal,
but does not needAvoidPredator. Ideally, we would
like to enjoy the benefits of software reuse and simply in-
voke the prewrittenFindFood subgoal; however, we can-
not naively do so as the reward signal forFindFood has
been tuned for Environment A. The design ofFindFood
has involved tradeoffs withAvoidPredator. So now,
we must instead redesign the reward signal forFindFood,
this time for Environment B. On the other hand, if we only
require the reward signal to beinternally consistent, rather
than consistent across different subgoals, it is not only easier
for the programmer to design, but also easier to reuse.

Requiring the programmer to keep the reward signal con-
sistent across multiple subgoals is therefore an unreason-
able requirement. This being the case, we cannot treat the
subagent reward signals (and thus Q-values) as comparable.
Once cast this way, it becomes useful to think of our prob-
lem in terms of social choice theory. Social choice theory is
a branch of economics where the main goal is to find ways
to combine the preferences for a set of social outcomes (e.g.,
over election candidates, or propositions) held by a popula-
tion of individuals. As we shall see below, results from so-
cial choice theory severely constrain our ability to address
problems in MRL.

Note that we are viewing the problem as the composi-
tion of complex systems of multiple decision makers, versus
the standard reinforcement learning view of a single mono-
lithic decision maker. Our approach extends and generalizes
current approaches to compositional reinforcement learn-
ing, which still depend on a global reward signal as a com-
mon thread of global knowledge running through all parts
of the system. Furthermore, this characterization lends itself
to other types of coordination-of-learning problems, from
high-level systems such as multiagent robot systems to low-
level systems like collections of modular learning compo-
nents in an agent’s mind.

Background
In the MRL framework, a learning agent,M , is represented
by a set ofn subproblems (subagents),M = {Mj}

n
1
, each

having its own reward signal and state space. The typi-
cal formulation is to have subagents share an action set,
thus Mj = (Sj , A, Rj), but we will relax that assump-
tion later on. The agent can be thought of as having a
state space that is a cross product of the subagent state
spaces,S = S1 × S2 × . . . × Sn. Traditionally, it is
assumed that the agent’s reward is a sum of subagent re-
wards,R(s, a) =

∑
j∈N Rj(s, a), whereN = {1, . . . , n}.

Thus,M is well-defined as a reinforcement learning prob-
lem, M = (S, A, R), and the goal is to find a joint policy
π(s), composed of locally learned policiesπj(s), that is op-
timal for the whole agent. We letQj(s, a) refer to the Q-
value learned by subagentj for states and actiona. Again,

traditionally,Q(s, a) =
∑

j∈N Qj(s, a).
Once we disallow the assumption that subagent re-

wards are comparable, we cannot assumeR(s, a) =∑
j∈N Rj(s, a). In this case,M is no longer well-defined,

and so we must change our notion of what it means to solve
M optimally. Our new notion of optimality will be in the
form of requiring certain properties of the arbitration func-
tion. These properties are presented in detail in the next sec-
tion.

Existing arbitration techniques
To illustrate the role of the arbitration function, we pro-
vide here a brief overview of some existing arbitration tech-
niques. A more in-depth overview is available in (Sprague
& Ballard 2003), from which we also borrow some nomen-
clature.

Greatest Mass Q-Learning (GM-Q). An arbitration
function consistent with GM-Q orders actions by their
summed Q-value,Xa =

∑
j Qj(s, a). The arbitrator then

selects the action with the largestXa value (the one with the
“greatest mass”). This approach can be viewed as an attempt
to maximize average happiness.

Top Q-Learning (Top-Q). Humphrys (1996) observes
that selecting an action according to GM-Q may not be
particularly good for any single agent. An alternative is
to instead order the actions by their top Q-value,Xa =
maxj Qj(s, a). This is a style of winner-take-all arbitration,
as the subagent who reported the largest Q-value effectively
chooses the action.

Negotiated W-Learning (Neg-W).Top-Q suffers from
the drawback that the subagent with the top Q-value may
not have a strong preference between actions. Humphrys
suggests an alternative for action selection, called negotiated
W-learning, in which the subagent with the most to lose is
allowed to select the action.

Ideal Arbitration
Let us consider properties that we might wish an ideal arbi-
trator to possess. First, we define some notation.

Let us assume the current states is fixed, as the state
remains unchanged during the invocation of the arbitration
function. At a given time step, letU ∈ R

m×n be a matrix of
values containing the subagent preferences, withUa,j repre-
senting the numerical preference subagentj has for actiona,
andm = |A| the number of actions. Thus,Ua,j = Qj(s, a).
Let A be the set of all possible total orderings of the ele-
ments ofA.

An arbitration functionf is a function fromD ⊆ R
m×n

to A. In other words,f takes an assignment of action pref-
erences by each subagent and generates a social preference
ordering over all the actions. In our case, “society” is the
agent, and the top-ranked action is the best action for the
agent as a whole to take.

Property 1 (Universality) D = R
m×n.

This property requires the domain off to be universal,i.e.
f must be able to handle all possible inputs. Worlds can be
constructed to generate all possible settings of theQj(s, a),

thus all matricesU ∈ R
m×n are attainable. We want an

arbitration function that can handle all these cases.

Property 2 (Unanimity) For any paira, b ∈ A and for all
U ∈ D, if [∀j ∈ N, Ua,j > Ub,j], thenf(U) ranksa as
strictly preferred tob.

This property states that if every subagent prefers actiona
over actionb, then the arbitration function should agree with
the unanimous opinion and output an ordering that ranksa
overb. This is also commonly known as Pareto Efficiency.

Property 3 (Independence of Irrelevant Alternatives)
For any U, U ′ ∈ D and subset of actionsB ⊆ A, if
[∀b ∈ B, ∀j ∈ N, Ub,j = U ′

b,j], thenf(U) andf(U ′) rank
the elements ofB in the same order.

This is a requirement that the relative ordering of a sub-
set of actions should only depend on the numerical pref-
erences for those actions. Another interpretation is that
the presence or absence of an irrelevant alternativex ∈ A
should not affect a subagent’s preference between two ac-
tionsa, b ∈ A \ {x}. Arbitration functions which obey this
condition are alsostrategy-proof: a subagent cannot raise
the rank of an action it prefers by dishonestly reporting its
numerical preferences. This effectively prevents subagents
from inadvertently “gaming the system”,i.e. from learning
the value ofproposingan action in order to achieve better
reward. This is desirable from the point of view of software
reuse: a subgoal used under one parent goal can also be used
under a second parent goal without fearing that the subgoal
has only learned to propose actions in the presence of the
first parent, without actually learning the true utility of the
actions.

Property 4 (Scale Invariance) For U, U ′ ∈ D, if
[∀j ∈ N there existsαj , βj ∈ R (with βj > 0) such
thatU ′

a,j = αj + βj · Ua,j], thenf(U) = f(U ′).

This property is the formal counterpart to our reward in-
comparability assertion. It states that a positive affine trans-
formation of a subagent’s Q-values should not affect the or-
dering generated by the arbitration function. GM-Q, Top-Q
and Neg-W all violate this property—under these schemes,
an agent can multiply its Q-values by a large constant and
completely determine the selected action. This condition
essentially forcesf to treat the numerical preferences or-
dinally.

Note that requiring scale invariance allows for a more ap-
plicable theorem than requiring invariance underarbitrary
monotonic transformations. Scale invariance is actually a
weaker condition.

Property 5 (Non-Dictatorship) Let Rj ∈ A be the order-
ing over actions for subagentj. For all U ∈ D there does
not existj ∈ N such thatf(U) = Rj .

This property requires that there should not exist a privi-
leged subagent whose preferences completely determine the
output of the arbitration function. On its face, this is desir-
able: decomposing a problem just to have a single subagent

be the only one who has a say defeats the purpose of the
decomposition.

Theorem 1 If |A| ≥ 3, then there does not exist an
arbitration function that satisfies Properties 1–5.

PROOF: At this point we have reduced the MRL frame-
work to the same situation addressed by (Roberts 1980).
Roberts’ proof is essentially a refinement of Arrow’s Im-
possibility Theorem (1966), with the addition of invariance
classes, such as scale invariance, to map numeric prefer-
ences to symbolic preferences. The full details of this proof
are beyond the scope of this paper; however, we refer the in-
terested reader to (Roberts 1980) for a complete treatment.

Note that we have formulated the problem so that we only
need to select a single best action (socialchoice), while the
theorem is for total orderings (socialordering). The prob-
lems turn out to be equivalent. It is possible to prove the
choice version of the theorem from the ordering version, and
it has been shown that the logical underpinnings of the two
are identical (Reny 2000). The theorem also extends to the
case where the action sets available to each agent are not
identical (but may overlap),i.e. Ai 6= Aj for i 6= j (Doyle
& Wellman 1991). The case where individual agents have
different actions arises naturally for MRL in the partial pro-
gramming context, as it is not uncommon that different sub-
goals may use different actions to achieve their task.

Scheduling as Arbitration
These properties define a class of arbitration functions that
behave rationally and attempt to please all of its constituents,
basedonlyon the numerical preferences it sees from the sub-
agents, disregarding any type of external information or cri-
teria, such as fairness concerns or any knowledge on how to
compare the subagent preferences. As we have shown, this
task is impossible in its full generality. Presumably, if wedid
have some extra knowledge, we would like to incorporate it,
perhaps making the problem feasible.

It is useful to examine where knowledge regarding the
learning problem resides. We can locate the global knowl-
edge regarding the learning problem either: (1) completely
at the arbitrator, forgoing the benefits of problem decom-
position and requiring a globally-crafted reward signal;
(2) completely at the subagents, with the containing goal be-
ing merely a mindless arbitration rule with no knowledge
about tradeoffs or any other domain knowledge; or (3) a
mixture in which the subagents have enough knowledge to
accomplish their own task (a local view, if you will), and
the containing goal contains enough information to arbi-
trate properly, either as a statically-written or dynamically-
learned rule.

Options (1) and (2) are infeasible. In particular, we have
shown (2) to be impossible. Previous approaches are able
to “successfully” accomplish (2) because they implicitly re-
quire a globally crafted reward signal, putting us in op-
tion (1).

Thus, we need to pursue the “smarter arbitrator” option.
We claim it is easier to tie in information relating the sub-
goals in the arbitration function rather than in the reward

signal. Furthermore, this makes tradeoffs explicit. For in-
stance, under the globally crafted reward signal regime, if
the reward signal somewhere inside a subgoal had been re-
duced from +10 to +5 for some reason—for instance, to de-
emphasize its role in relation to another subagent—the pro-
grammer would have to document this reason so that future
maintainers of the code will know why the numbers are the
way they are (this will be especially true of large codebases).
In our scheme, that tradeoff would be codified in the arbitra-
tion function. This improves code quality in the same way
assertions codify invariants or Makefiles codify build pro-
cesses.

We use the termschedulerto refer to these smarter arbi-
trators, in loose analogy with schedulers for operating sys-
tems, to hint at how they use information outside of what the
subagents are reporting to inform their arbitration decisions.
Just as a thread scheduler might use information about pro-
cessor usage to fairly divide up cycles, an arbitration sched-
uler might incorporate subagent reward comparability into
its arbitration decision. For example, if one subagent re-
ceives reward in euros, and another subagent receives reward
in dollars, then the tradeoff between the subagent rewards is
known exactly: the rewards are comparable after a simple
exchange rate calculation.

The reader may wonder how we have circumvented the
impossibility result. In a sense, a scheduler acts as a benev-
olent dictator. In particular, it encapsulates a “selfish” idea
of what is important to a larger goal that need not take fair-
ness or the happiness of each subagent into account. More
to the point, in general, it is an agent with its own agenda
and a repository for any global domain knowledge the pro-
grammer wants to inject into the program solution. Further,
the scheduler can now be modeled as just another agent—
albeit a very important one—capable of its own goals and
adaptation.

The social choice literature explores a variety of ap-
proaches for circumventing the impossibility result, typi-
cally through various relaxations of either Property 2 or 3.
By placing MRL in a social choice framework, this body
of results is now potentially applicable to MRL. Our solu-
tion to scheduling can be viewed as a relaxation of the non-
dictatorship property (Property 5): we have a benevolent
dictator who is constrained to select among the actions avail-
able to its subagents. While this relaxation is non-standard
in the social choice literature, in the context of combining
human-authored and learned knowledge, a benevolent dic-
tator is a natural point at which to inject domain knowledge.

A Situated Example
In order to demonstrate some of the points we have made,
it is useful to examine a simple, concrete learning prob-
lem in a partial programming context. We will consider the
Predator-Food world, as would be implemented in An
Adaptive Behavior Language (A2BL). A2BL is a derivative
of A Behavior Language (ABL), a reactive planning lan-
guage with Java-like syntax based on the Oz Project believ-
able agent language Hap (Bates, Loyall, & Reilly 1992). An
ABL agent consists of a library of sequential and parallel be-
haviors with reactive annotations. Each behavior consistsof

a set of steps to be executed either sequentially or in parallel.
There are four basic step types: acts, subgoals, mental acts
and waits. Act steps perform an action in the world; subgoal
steps establish goals that must be accomplished in order to
accomplish the enclosing behavior; mental acts perform bits
of pure computation, such as mathematical computations or
modifications to working memory; and wait steps can be
combined with continually-monitored tests to produce be-
haviors that wait for a specific condition to be true before
continuing or completing.

The agent dynamically selects behaviors to accomplish
specific goals and attempts to instantiate alternate behaviors
to accomplish a subgoal whenever a behavior fails. The cur-
rent execution state of the agent is captured by the active be-
havior tree (ABT) and working memory. Working memory
contains any information the agent needs to monitor, orga-
nized as a collection of working memory elements (WMEs).
There are several one-shot and continually-monitored tests
available for annotating a behavior specification. For in-
stance, preconditions can be written to define states of the
world in which a behavior is applicable. These tests use
pattern matching semantics over working memory familiar
from production rule languages; we will refer to them as
WME tests.

We have extended some of these concepts for A2BL. The
most notable addition is theadaptive keyword, used as a
modifier for behaviors. When modifying a sequential behav-
ior, adaptive signifies that, instead of pursuing the steps
in sequential order, the behavior should learn a policy for
which step to pursue, as a function of the state of the world.
As there could be a large amount of information in working
memory (which is the agent’s perception of the state of the
world), we have introduced astate construct to allow the
programmer to specify which parts of working memory the
behavior should pay attention to in order to learn an effective
policy. This allows for human-authored state abstraction.

Behaviors normally succeed when all their steps succeed.
Because it is unknown which steps the policy will ultimately
execute, adaptive behaviors introduce a new continually-
monitored condition, thesuccess condition, which
encodes the behavior’s goal. When the success condition
becomes true, the behavior immediately succeeds. Finally,
to learn a policy at all, the behavior needs a reinforcement
signal. With thereward construct, authors specify a func-
tion that maps world state to such a reinforcement signal.
In natural analogy to existing ABL constructs, these new
constructs each make use of WME tests for reasoning and
computing over working memory.

An adaptive collection behavior is specifically designed
for modeling the concurrency of MRL. This type of behav-
ior contains within it several adaptive sequential behaviors,
which correspond to the subagents in the MRL framework.

An agent composed of a single adaptive sequential be-
havior and no other behaviors is isomorphic to the tradi-
tional, non-decomposed view of reinforcement learning; the
usual methods can be used to learn the Q-function. An
agent composed of only sequential behaviors and adaptive
sequential behaviors is isomorphic to an agent decomposed
according to the HRL framework. When the underlying

behaving_entity FurryCreature
{
adaptive collection behavior LiveLongProsper() {

// see text for arbitration possibilities
subgoal FindFood();
subgoal AvoidPredator();

}

// subgoal 1
adaptive sequential behavior FindFood() {

reward {
100 if { (FoodWME) }

}
state {

(FoodWME x::foodX y::foodY) (SelfWME x::myX y::myY)
return (myX,myY,foodX,foodY);

}
subgoal MoveNorth();
subgoal MoveSouth();
subgoal MoveEast();
subgoal MoveWest();

}

// subgoal 2
adaptive sequential behavior AvoidPredator() {

reward {
-10 if { (PredatorWME) }

}
state {

(PredatorWME x::predX y::predY) (SelfWME x::myX y::myY)
return (myX,myY,predX,predY);

}
subgoal MoveNorth();
subgoal MoveSouth();
subgoal MoveEast();
subgoal MoveWest();

}

// ...
}

Figure 1:An A2BL agent for thePredator-Foodworld.

world is an MDP, the learning problem is equivalent to a
Semi-Markov Decision Process (SMDP), in which actions
may take multiple time steps to complete. Methods em-
ploying a temporal decomposition of the Q-function have
been used to efficiently learn a policy for such partial pro-
grams (Dietterich 1998; Andre & Russell 2000). An agent
composed of a single adaptive collection behavior is iso-
morphic to an agent decomposed according to the MRL
framework. With the assumption that subagent rewards are
comparable, this corresponds to a concurrent decomposi-
tion of the Q-function. It is known that subagents must
use an on-policy learning method in order to learn Q-values
that are not overly optimistic, so that GM-Q converges
to the globally optimal policy (Russell & Zimdars 2003;
Sprague & Ballard 2003). Typical ABL programs, however,
consist of a mixture of sequentially and concurrently run-
ning components, a style of programming we would like to
continue to support. This requires a deeper understanding of
more complex, “mixture” decompositions of the Q-function;
this is the subject of future work.

Now consider the sample code for thePredator-Food
world in Figure 1. Note that the rewards in each subgoal are
not comparable: the +100 inFindFood cannot be com-
pared directly to the -10 inAvoidPredator. Though this
complicates the arbitration, it allows the code for the sub-
goals to be reusable, either by the invocation of the subgoal
from a different context, or even when the source code for
the subgoal is copied into another file altogether. Further-
more, because the rewards for a subgoal do not have to be

changed, it is also easier to reuse persistent representations
of learned policy (Q-values saved to a file, for example).

Now that we’ve defined the two adaptive subgoals, we
now need to define an arbitration function on the enclosing
goal,LiveLongProsper. As we have shown earlier, it is
impossible to construct an ideal arbitration function, so we
cannot employ the compiler to automatically generate an all-
purpose arbitration rule. Instead, the programmer must de-
fine an arbitration function, either hand-authored or learned.

A hand-authored arbitration function encodes the trade-
offs the programmer believes to be true about the subagent
Q-values. In this example, we may decide that the benefit
of finding food equals the cost of running into a predator;
given our reward signals, the arbitrator would select the ac-
tion maximizing 1

10
Q1(s, a) + Q2(s, a). Alternatively, the

hand-authored arbitration function could be independent of
the subagent Q-values; to simply avoid starvation, for in-
stance, one might consider round-robin scheduling.

Finally, we could try posingLiveLongProsper’s ar-
bitration task as another reinforcement learning task, with
its own reward function encapsulating a notion of goodness
for living well, as opposed to one that only makes sense for
finding food or avoiding a predator. For example, the re-
ward function might provide positive feedback for having
more offspring; this would be an “evolutionary” notion of
reward.

The reader may wonder whyFindFood and
AvoidPredator should have their own reward sig-
nals if one is available forLiveLongProsper. The
reasons should be familiar: modularity and speed of
learning. The reward signal forFindFood, for instance,
is specifically tailored for the task of finding food, so the
learning should converge more quickly than learning via an
“indirect” global reward signal. Further, with the right state
features, the behavior should be reusable in different con-
texts. Specifying a reward signal for each behavior allows
the reward signals to embody what each behavior truly cares
about: FindFood cares about finding gridsquares with
food,AvoidPredator cares about avoiding the predator,
andLiveLongProsper cares about ensuring the future
of theFurryCreature race.

Conclusion
Casting the modular reinforcement learning framework in
the light of social choice theory opens up new avenues for
analysis by bringing in many established results from social
choice theory and the study of voting mechanisms into the
analysis of MRL.

In this work we have advocated the codification of trade-
offs between MRL subproblems in the form of a human-
authored (and possibly adaptive) arbitration function, which
we call a scheduler. We highlight the problem of subagent
reward incomparability, leading us to the result that it is im-
possible to construct an ideal arbitration function without
injecting external domain knowledge.

At this point, we have defined a language, A2BL, that al-
lows us to place the tradeoffs inherent in scheduling in pro-
gramming modules in such a way that makes those tradeoffs

more transparent and thus easier for programmers to rea-
son about. We believe this approach better supports code
reuse and partial programming, especially in large, multi-
programmer projects.

Acknowledgments
We would like to thank Michael Holmes for suggesting that
an impossibility theorem would clarify the tradeoffs in the
composition of independent learners, as well as an anony-
mous reviewer who provided us with many interesting per-
spectives on this work. We acknowledge the support of
DARPA under contract No. HR0011-04-1-0049.

References
Andre, D., and Russell, S. 2000. Programmable Reinforc-
ment Learning Agents. InAdvances in Neural Information
Processing Systems.
Arrow, K. J. 1966.Social Choice and Individual Values.
John Wiley & Sons, 2nd edition.
Bates, J.; Loyall, A. B.; and Reilly, W. 1992. Integrat-
ing Reactivity, Goals, and Emotion in a Broad Agent. In
Proceedings of the Fourteenth Annual Conference of the
Cognitive Science Society.
Dietterich, T. G. 1998. The MAXQ Method for Hierar-
chical Reinforcement Learning. InProceedings of the Fif-
teenth International Conference on Machine Learning.
Doyle, J., and Wellman, M. P. 1991. Impediments to Uni-
versal Preference-Based Default Theories.Artificial Intel-
ligence49(1–3):97–128.
Humphrys, M. 1996. Action Selection Methods using Re-
inforcement Learning. InProceedings of the Fourth Inter-
national Conference on Simulation of Adaptive Behavior,
135–144.
Karlsson, J. 1997.Learning to Solve Multiple Goals. Ph.D.
Dissertation, University of Rochester.
Mateas, M., and Stern, A. 2002. A Behavior Language for
Story-Based Believable Agents.IEEE Intelligent Systems
17(4):39–47.
Reny, P. J. 2000. Arrow’s Theorem and the
Gibbard-Satterthwaite Theorem: A Unified Approach.
http://home.uchicago.edu/ preny/papers/arrow-gibbard-
satterthwaite.pdf. Web article.
Roberts, K. W. S. 1980. Interpersonal Comparability and
Social Choice Theory. InThe Review of Economic Studies,
421–439.
Russell, S., and Zimdars, A. L. 2003. Q-Decomposition
for Reinforcement Learning Agents. InProceedings of the
Twentieth International Conference on Machine Learning
(ICML-03).
Sprague, N., and Ballard, D. 2003. Multiple-Goal Rein-
forcement Learning with Modular Sarsa(0). InProceed-
ings of the Eighteenth International Joint Conference on
Artificial Intelligence. Workshop paper.

