CS 1155 Understanding and Constructing Proofs

Fall Quarter, 1996

Midterm Examination 2

December 6

Throughout the exam, the symbol $I\!\!N$ denotes the natural numbers, and the symbol $I\!\!R$ denotes the real numbers.

- 1. **Types.** Let $B = \{-2, -1, 1, 2\}$, $g : B \to B$ where f(x) = -x. For each of the following expressions, indicate whether the type of the expression is *set*, *proposition*, *function*, or *ill-formed*:
 - (a) $B \subseteq \emptyset$
 - (b) $B \times B$
 - (c) $g \circ g$
 - (d) g is invertible
 - (e) g = O(1)
- 2. **Big-Oh.** Let f and g be functions from $I\!N$ to $I\!N$ where $f(n)=2n^3$ and $g(n)=1000n^2$. Is f(n)=O(g(n))? Prove that your answer is correct, using the logic-based definition of big-Oh.
- 3. **Big-Oh.** Let f_1 , f_2 and g be functions from \mathbb{N} to \mathbb{N} . Show that if f_1 is O(g) and f_2 is O(g) then $f_1 + f_2$ is O(g). (Note that $(f_1 + f_2)(x) = f_1(x) + f_2(x)$).
- 4. **Functions.** Consider the following informal description of a new function property:

A function is a "foo function" if and only if every element in the codomain is mapped to by at least two elements in the domain.

- (a) Give a formal logic expression that is true exactly when the function $f: S \to T$ is a foo function.
- (b) Give an example of a foo function, and prove that your function has the foo property.
- 5. **Functions.** Consider $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ given by f(a, b, c) = (c, a + b).
 - (a) Is f one-to-one? If yes, give a proof; if no, give a counterexample.
 - (b) Is f onto? If yes, give a proof; if no, give a counterexample.
- 6. **Sets.** Consider the proposition on sets A, B and C.

$$(A \cap B) \cup C = A \cap (B \cup C)$$

- (a) Give an example of sets A, B and C such that the proposition is false.
- (b) Give an example of sets A, B and C such that the proposition is true.
- (c) Give a condition that is necessary and sufficient for the proposition to be true. In other words, whenever the condition is true, the proposition is true; whenever the condition is false, the proposition is false.