CS 1155 Understanding and Constructing Proofs

Fall Quarter, 1997

Midterm Examination 2

November 20

Throughout the exam:

- N denotes the natural numbers, $\{0, 1, 2, ...\}$
- \bullet R denotes the real numbers
- Z denotes the integers, $\{..., -2, -1, 0, 1, 2, ...\}$
- 1. Assume that A, B and C are arbitrary sets with elements from some universe U. Using only the set identities in the table, and the additional identity $A \cap \overline{A} = \emptyset$, prove the following:
 - (a) $\overline{A \cup (B \cap C)} = (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap \overline{C})$
 - (b) $(A \cup B) \cap \overline{(A \cap B)} = (A \cap \overline{B}) \cup (B \cap \overline{A})$
- 2. Assume A, B and C are sets with elements from the universe of natural numbers N. Prove or disprove the following for all sets A, B and C:
 - (a) $(A \subseteq B) \to ((A \cup C) \subseteq (B \cup C))$
 - (b) $(A \subset B) \to ((A \cap C) \subset (B \cap C))$
- 3. Let $E = \{n \in Z \mid n \text{ is even}\}\$ and $A = \{n \in Z \mid \exists a, b \in Z, n = 6a + 8b\}.$ Prove that A = E.
- 4. Let $C = \{5, 10, 15\}$, $f: C \to N$ where f(x) = x/3. For each of the following expressions, indicate whether the type of the expression is set, proposition, function, or ill-formed:
 - (a) $\emptyset \in C$
 - (b) $C \times C$
 - (c) $5 \cup 10$
 - (d) f is one-to-one
 - (e) $C \lor C$
- 5. Prove that the function $f: R \to R$ defined by f(x) = 3x 4 is one-to-one and onto.
- 6. Prove or disprove that the function $f: Z \to Z$ defined by $f(x) = x^2 + 5x + 6$ is one-to-one.
- 7. Prove that $\sqrt{3}$ is irrational.