CS 1155 Understanding and Constructing Proofs

Summer Quarter, 1996

Midterm Examination 2

September 20

Throughout the exam, the symbol $I\!\!N$ denotes the natural numbers, and the symbol $I\!\!R$ denotes the real numbers.

- 1. **Functions.** Consider $f: \mathbb{N} \to \mathbb{N}$ given by f(n) = |n-2|, where |x| denotes the absolute value of x.
 - (a) Is f one-to-one? If yes, give a proof; if no, give a counterexample.
 - (b) Is f onto? If yes, give a proof; if no, give a counterexample.
- 2. **Functions.** Consider $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ given by f(a,b) = (b, 2a, a+b).
 - (a) Is f one-to-one? If yes, give a proof; if no, give a counterexample.
 - (b) Is f onto? If yes, give a proof; if no, give a counterexample.
- 3. **Function Composition.** Let f(x) = ax + b and g(x) = cx + d. What are the conditions on the constants a, b, c and d so that $f \circ g = g \circ f$? Justify your answer.
- 4. **Types.** Let $A = \{1, 2, 3\}$, $f : A \to A$ where f(x) = x, and $R = A \times A$. For each of the following expressions, indicate whether the type of the expression is *set*, *proposition*, *function*, assertion about propositions or ill-formed:
 - (a) f is onto
 - (b) $A \subseteq R$
 - (c) $f(1) \cup f(2)$
 - $(d) \{\emptyset\}$
 - (e) f = O(1)
- 5. **Big-Oh.** Let f and g be functions from \mathbb{N} to \mathbb{N} where $f(n) = 4n^2 + n + 5$ and $g(n) = n^3$. Prove that f(n) is O(g(n)), using the logic-based definition of big-Oh.
- 6. **Big-Oh.** Let f and g be functions from \mathbb{N} to \mathbb{N} where $f(n) = n^3$ and $g(n) = 100n^2$. Is f(n) = O(g(n))? Prove that your answer is correct, using the logic-based definition of big-Oh.
- 7. **Big-On.** Let f, g and h be arbitrary functions from $I\!\!N$ to $I\!\!N$. Prove that if f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)). Use the logic-based definition of Big-Oh.
- 8. **Relations.** Suppose that R and S are relations on a set A. Prove or disprove the following:
 - (a) R is reflexive and S is reflexive implies $R \cup S$ is reflexive.
 - (b) R is symmetric and S is symmetric implies $R \cup S$ is symmetric.
- 9. Relations. Let $A = \{a, b, c\}$.
 - (a) Give an example of a relation on A that is antisymmetric **and** transitive, but **not** reflexive.
 - (b) Give an example of a relation on A that is **neither** symmetric **nor** antisymmetric.