CS 1155 Understanding and Constructing Proofs

Summer Quarter, 1996

Final Examination

September 30

Throughout the exam, the symbol $I\!\!N$ denotes the natural numbers, the symbol $I\!\!R$ denotes the real numbers and the symbol Z denotes the positive and negative integers.

- 1. **Big-Oh.** Let f and g be functions from $I\!N$ to $I\!N$ where f(n) = 4n and g(n) = 2n 10. Prove that f(n) is O(g(n)), using the logic-based definition of big-Oh.
- 2. **Big-Oh.** Let f and g be functions from \mathbb{N} to \mathbb{N} where $f(n) = 4^n$ and $g(n) = 3^n$. Prove that f(n) is not O(g(n)), using the logic-based definition of big-Oh.
- 3. **Functions.** Let $f: R \to R$ be given by f(x) = ax + b, where $a, b \in R$ and $a \neq 0$.
 - (a) If f one-to-one? If yes, give a proof; if no, give a counterexample.
 - (b) Is f onto? If yes, give a proof; if no, give a counterexample.
 - (c) Does f have an inverse? If yes, give the inverse.
 - (d) State how the answers above differ if a = 0. (Proofs are not required.)
- 4. **Relations.** Suppose that R and S are relations on a set A. Prove or disprove the following:
 - (a) R is not symmetric and S is not symmetric implies $R \cup S$ is not symmetric.
 - (b) R is reflexive and S is reflexive implies $R \setminus S$ is anti-reflexive.
- 5. **Proofs.** We can formally express the proposition "n is even" by stating that $\exists x \in Zn = 2x$. Use this formal definition to prove the following: if a^3 is even, then a is even. (Hint: consider the contrapositive.)
- 6. **Types.** Let $A = \{1, 2, 3\}$, $f: A \to A$ where f(x) = x, and $R = A \times A$. For each of the following expressions, indicate whether the type of the expression is *set*, *proposition*, *function*, or *ill-formed*:
 - (a) f is O(1)
 - (b) [1]
 - (c) $[1] = R^{\leftarrow}$
 - (d) fof
 - (e) $2 \sim 3$, where $x \sim y$ is defined by x < y
- 7. **Induction.** Find (guess) a formula for the sum of the first n even positive integers. Use induction to prove that your formula is correct.
- 8. **Induction.** Use induction to prove that $2^n < n^2$ for any positive integer n > 4.
- 9. **Induction.** Use induction to show that any value greater than 7 cents can be formed using only 3-cent and 5-cent coins. Clearly state the proposition p(n) that you are proving.

- 10. **Equivalence Relations.** Find the smallest equivalence relation (i.e., fewest number of pairs) on the set $\{a, b, c, d, e\}$ containing the relation $\{(a, b), (d, e)\}$.
- 11. **Logic.** Is $(p \wedge q) \to (p \to q)$ a tautology? Prove that your answer is correct.