
1

PINCO: a Pipelined In-Network COmpression Scheme for Data
Collection in Wireless Sensor Networks
Tarik Arici∗, Bugra Gedik∗∗, Yucel Altunbasak∗, Ling Liu∗∗

∗Electrical and Computer Engineering,∗∗College of Computing

Georgia Institute of Technology

Abstract— We present PINCO, an in-network compression
scheme for energy constrained, distributed, wireless sensor net-
works. PINCO reduces redundancy in the data collected from sen-
sors, thereby decreasing the wireless communication among the
sensor nodes and saving energy. Sensor data is buffered in the net-
work and combined through a pipelined compression scheme into
groups of data, while satisfying a user-specified end to end latency
bound. We introduce a PINCO scheme for single-valued sensor
readings. In this scheme, each group of data is a highly flexible
structure so that compressed data can be recompressed without
decompressing, in order to reduce newly available redundancy at
a different stage of the network. We discuss how PINCO pareme-
ters affect its performance, and how to tweak them for different
performance requirements. We also include a performance study
demonstrating the advantages of our approach over other data col-
lection schemes based on simulation and prototype deployment re-
sults.

I. I NTRODUCTION

A. Motivation and Problem Statement

Technological progress in wireless networks, low-power cir-
cuit design, and micro electro-mechanical systems (MEMS) has
led to the production of tiny sensor devices about a cubic inch in
size which enable applications that connect the physical world
with pervasive networks. These sensor devices do not only have
the ability to communicate information across the sensor net-
work, but also to cooperate in performing more complex tasks,
like signal processing, data aggregation and compression in the
network rather then out of the network.

Motesdeveloped at UC Berkeley [17] and manufactured by
Crossbow Inc. [5] are one example of these tiny sensor devices.
With their small physical size, sensing and computing capabil-
ities, motes are highly practical and currently used in a variety
of fields from habitat and environmental monitoring to different
data collection applications [7] [11] [4] [13] [14].

There are three common features to all these variety of sen-
sor network applications. The first one is the need for design-
ing simple algorithms given that motes have highly constrained
resources (i.e. energy, storage, and processing) [13] [14].
The second one is the need for minimizing communication
among motes, since wireless communication is the primary en-
ergy consumer in these networks (e.g. sending a single bit of
data can consume the energy of executing a thousand instruc-
tions) [15]. The third one is that, sensor data communicated
throughout the network are likely to have both spatial and tem-
poral redundancy being activated by the same phenomenon of
interest [12] [9]. With these three features that set sensor net-
works apart from traditional networks, sensor applications have
the main goal of collecting data from the network.

In-network aggregation schemes, simple in implementability,
decrease wireless communication among motes by reducing re-
dundancy in sensor measurements according to an aggregation
function [13] [14]. However, the extracted data in response to
a query is only a summary (aggregate) of sensor readings and
this limits the feasible data aggregation applications to a set of
applications that can only be formulated with an aggregation
function. Unless the aggregation function have some proper-
ties such asduplicate insensitivity, exemplarityandmonotonic-
ity [19], the amount of communication in the network easily
approaches that of a centralized, out-of-the-network approach.
Also, several queries and statistical measures cannot be sup-
ported using aggregation. In contrast, our approach decreases
wireless communication independent of the properties of the
posed queries, and is applicable to any kind of query.

Our proposed Pipelined In-Network COmpression (PINCO)
scheme for data collection in wireless sensor networks ex-
changes latency for energy by first buffering and delaying mote
measurements, and then reducing available redundancy in spa-
tial, temporal, and spatio-temporal domain among the sensor
data in a buffer by compressing them into groups of data (GDs).
An end-to-end (e2e) latency bound specified by the user when
querying the network is satisfied by appropriately choosing the
maximum waiting time of data in a mote’s buffer. PINCO
scheme for single-valued data is an error-resilient compression
scheme. Each group has its own anchor data and therefore can
be decompressed independent of other groups. A very impor-
tant feature of PINCO is that GDs are compressed as highly
flexible structures so that they can be recompressed without
decompressing. Recompression exploits the likely available
redundancy among GDs at later stages of the mote network
while propagating towards the basenode. Without the need for
decompression it does not impose any additional cost on the
mote’s highly constrained resources.

B. Related Work

To our knowledge there exists no previous work that has pro-
posed an in-network compression scheme that bounds the la-
tency and enables recompression for mote-based sensor net-
works. But schemes for pushing the query into the network,
processing the data in the network, and compression for data re-
duction at the source are proposed for wireless sensor networks
in general [9] [12] [13] [14] [16]. Research on in-network data
processing for sensor networks is mainly focused on data aggre-
gation and will be summarized and then compared with our ap-
proach in Section III. Also, motivation for compression rather
than aggregation will be discussed.



2

II. M OTE-BASED NETWORKS

In this section, we briefly present the mote hardware plat-
forms available, and a routing algorithm for propagating sensor
data from motes to the basenode in the presence of mobility and
network losses.

A. The Mote Platform

The two available mote hardware platforms are rene and
mica developed at UC Berkeley and manufactured by Cross-
bow Inc. Mica nodes are the most recent harware platform
and have 4 MHz Atmel [1] processors with 128 KB of pro-
gramming memory, and 512 KB of data memory. These nodes
are equipped with a 916 MHz, single channel, low-power radio
from RFM [3] with 50 kbps transmission rate using on off key-
ing (OOK) modulation. A suit of sensor boards for a variety of
sensors including light, acoustics, magnetic field, power, accel-
eration, and temperature are available and can be connected to
the mote using a 51 pin expansion slot.

A mote consumes 1µJ for transmitting and 0.5µJ for receiv-
ing a single bit. Furthermore it consumes 0.8µJ for execut-
ing roughly 100 instructions [10]. This shows that extremely
simple in-network schemes for reducing the communication by
increasing the computation is needed for mote-based networks.

The mote radio antenna is an omni-directional antenna so
that radio communication channel is a broadcast medium. A
transmitted packet is received not only by the destination node,
but all the nodes in one-hop local neighborhood of the source
node.

B. Wireless Routing Algorithm

Researchers have proposed different ad-hoc routing algo-
rithms [9] [12] [18] for sensor networks. These algorithms take
into consideration the data-centric and many-to-one nature of
sensor data flows created by propagating sensor measurements
of the same phenomenon from many nodes to the basenode.
PINCO requires the routing protocol to provide the delivery of
the query request to all nodes in the network, finding at least
one route from sensor nodes back to the basenode for data col-
lection and learning the number of hops traversed on the longest
route passing through a node. A simple routing algorithm ca-
pable of these three basic services and proper for motes with its
simplicity is a tree-based routing algorithm.

We use a tree-based routing algorithm for supporting PINCO.
In this algorithm, one mote is chosen as theroot node usually
because it is the node that interfaces between the sensor and the
wireline network. Before receiving a tree advertisement mes-
sage all nodes have theirhop-distanceto the root set to the max-
imum possible value. The root node initiates the routing tree
formation process by broadcasting a tree advertisement mes-
sage (TAM) specifying its own node id and hop-distance from
the root (i.e. zero in this case). All the motes in the network
set the sender of TAMs as theirparentwhile minimizing their
hop-distance to the root. We preferred hop-distance minimiza-
tion over latency minimization in making the parent selection
decision for the tree formation process. Latency minimization
for parent selection does not form the optimum routing tree for
data collection since latency highly depends on the MAC layer

contention, and random defer and backoff times [8]. After se-
lecting or updating its parent, each node rebroadcasts the TAM
inserting its own id and hop-distance (i.e. one plus its parent’s
hop-distance). TAMs disseminate into the network completely
in this fashion and all nodes learn their parent and hop-distance
from the root.

In order to satisfy the user-specified e2e latency bound on
sensor measurements every mote has to set an appropriate max-
imum waiting time for data in its buffer. For this purpose, a
mote has to know the length of the longest tree branch passing
through itself that is connecting the furthest leaf node and the
root. In order to learn this from the network, every mote first
has to decide whether the tree formation process has ended.
This can be learnt for free by snooping on the channel to see
if TAMs are rebroadcasted by the neighbor nodes. Once the
tree formation process has ended, leaf nodes transmit their hop-
distance to their parents and parent nodes suppress all the hop-
distance reports other than the maximum hop-distance reported
and in turn transmit it to their own parents. This suppressing
of smaller hop-distance values is very similar to the negative
acknowledgement suppressment in scalable multicast protocols
and computing MAX aggregates as in [13]. Then maximum
waiting time in a mote’s buffer is easily calculated at every
node by dividing e2e latency bound by the length of the longest
branch passing through it.

The root node periodically initiates a new tree formation pro-
cess for adaptation to changing network dynamics caused by
mobility, or addition or deletion of motes. In order to select the
most recent parent and forming loop free routing trees, each
TAM originated by the root node contains an increasing se-
quence number. Every node strictly prefers higher sequence
numbered TAMs.

After the formation of the routing tree, motes start sending
sensor data to their parents, which in turn relay the data to their
parents, and so on. In Subsection III-C we discuss how PINCO
compresses single-valued data in the mote buffers into GDs as
it propagates towards the root. In the next section we discuss
data collection schemes in wireless sensor networks.

III. D ATA COLLECTION IN WIRELESSSENSORNETWORKS

In this section we classify data collection schemes, discuss
their respective merits and weaknesses, and present PINCO, an
in-network compression scheme for data collection in wireless
sensor networks.

A. Plain Data Collection

Plain data collection is an approach where each sensor node
sends its measurement to a basenode, at which data is stored and
processed [6]. Since in a sensor network, nodes are deployed in
close physical proximity of a stimulus of interest for increasing
the accuracy and reliability of the collected information, each
sensor reading has to be propagated back to the basenode over
multi-hops using the wireless communication channel. The dis-
advantage of this approach is the high communication cost it in-
curs on the node’s small energy budget due to the large amount
of data communicated in the network. However, this approach
does not put any constraint on the structure of the requested



3

query and has the advantage of being able to support an un-
limited set of queries and statistical measures on the collected
data.

B. In-network Data Aggregation

In-network aggregation is an approach that has recently been
studied in detail by several researchers [13] [14] [12]. In-
network aggregation reduces the communication between the
nodes by combining data from different sources according to an
application specific aggregation function. In this approach, sen-
sor nodes transmit only the data that is sufficient to answer the
aggregate query at hand, which can be one of the traditional ag-
gregate operations MIN, MAX, AVG, and COUNT or any other
aggregate query that has a suitable function for performing in-
network aggregation. A representative query is given below in
Example 1.
Example 1: Consider a network of sensor nodes that collect
temperature data and route to a basenode. A continuous aggre-
gate query like “report back the maximum temperature every
t secs” can be efficiently computed by pushing the query into
the network so that each node only sends data that is the max-
imum of the temperature values produced by all the nodes in
the subtree rooted at that node. There are two approaches to in-
network aggregation, namely: pipelined aggregation [14] and
interval based aggregation [13]. We describe each of them be-
low:

1) Pipelined Aggregation: In pipelined aggregation each
node combines the data it received from its children in the pre-
vious interval with the data it currently produced. To elaborate,
first consider a leaf node in the routing tree. The leaf sensor
node produces a data item periodically everyt seconds and as
it produces a data item, it immediately transmits it to its par-
ent node. For the non-leaf node, at the time it has received
data from its children it has already transmitted its previous ag-
gregate to its parent. Therefore it combines the data received
from its children with the data it recently produced by taking
the maximum (following Example 1) and transmits the result-
ing aggregate to its parent.

It is clear that pipelined aggregation has much lower commu-
nication cost compared to the plain data collection approach.
However, in the pipelined approach some level of temporal re-
dundancy in the sensor data is needed since aggregates are com-
puted by combining data from different time intervals.

2) Interval Based Aggregation:Interval based aggregation
is very similar to pipelined aggregation, except that nodes
aggregate data sensed for the same time interval. In this
approach, each node waits for its children to transmit their data
until a certain time assigned by its parent, and then combines
the received data with its own data for the same time interval
and transmits the aggregate to its parent. Therefore, unlike
pipelined aggregation, interval based aggregation does not
need temporal redundancy in the sensor data for achieving
good performance. But in this scheme the query re-evaluation
interval (i.e. t) has to be larger than the latency time between
the basenode and the furthest leaf node in the routing tree. This
might be a limitation for sensor applications when the network
topologies result in deep routing trees. Also child nodes
transmitting data in time intervals specified by their parents

may lead to synchronization between them and increase the
contention in the MAC level.

In general, all aggregation approaches are targeted for appli-
cations where only aggregates on the sensor data is of interest.
Several queries and statistical measures cannot be supported us-
ing aggregation; variance, median, histograms, maps, and com-
plex SQL type queries to name a few. Also, if the aggregation
function of the requested query lacks some properties such as
duplicate insensitivity, monotonicity, or exemplarity[19] the
amount of communication occuring in the network can quickly
approach that of a plain data collection scheme.

C. In-network Compression

In many applications such as habitat monitoring, full data
collection is desirable in order to perform off-line mining of the
collected data or to support complex queries on it. Consider the
simple application from Example 1 in Section III-B. Assume
that instead of a maximum temperature aggregate we are inter-
ested in mining the time evolving temperature maps for moving
patterns of an object. In case there exists a catalog describing
positions of each sensor node, retrieving full data from the net-
work including the node identifiers and timestamps, will enable
us to perform such operations. However, using plain data col-
lection will require too much energy consumption, and there-
fore decrease system lifetime. Our approach to this problem is
to perform in-network compression so that full data collection
is possible while reducing the energy consumption.

The PINCO algorithm given in Algorithm 1 is applicable to
data of any dimension and size. Researchers may also imple-
ment their ownmerge()function to exploit redundancies char-
acteristic to their application or to test their own compression
algorithms1. We next describe our proposed in-network com-
pression scheme for single-valued sensor readings (e.g. light,
acoustics, magnetic field, power, acceleration, and tempera-
ture).

Pipelined In-network Compression for Single-valued Data:
PINCO trades higher latency for reduced energy consump-

tion. Sensor data is buffered at each node and then delayed for
some appropriate time satisfying the e2e latency bound as ex-
plained in Subsection II-B. Available redundancy is reduced by
exploiting the commonalities among the buffered data. Since
each node buffers its own data and it is possible to compress
data sensed at the same time intervals, PINCO does not re-
quire temporal redundancy for good performance although it
is a pipelined compression scheme.

A data item produced is a tuple of three values; ann-bit
sensor measurement, a node identifier, and a timestamp. It is
denoted by a tuple shown as〈measurement,nodeid,timestamp〉.
A compressed group of items is also a tuple but with four at-
tributes. The first attribute is the shared prefix which is the
most significant bits that are common to all sensor measure-
ments in that group. The shared prefix length (spl) is a system
parameter that specifies how much commonality in the sensor
measurements is required when forming a group. The second

1PINCO source code for both the ns-2 and TinyOS-0.6 will be made available
on the Internet to the researchers.



4

Algorithm 1 PINCO Algorithm
Description: receiveDataGroup function is called when a new data
item is produced or a new data group is received from a child node.
function receiveDataGroup(DataGroup ng)

for all g ∈ buffer do
{Merge the new group to the current group. Leave the remaining
(if any) in the new group. If a merge is not possible the new group
is not modified. Otherwise a full merging is done if possible, in
which case the remaining is empty. If the current group gets full
during merging, a partial merge is performed and the un-merged
portion of the new group remains.}
ng = g.merge(ng)
{If the current group is full, send it and remove it from the buffer.}
if g.isFull then

sendDataGroup(g)
buffer.remove(g)

end if
{If the new group is empty, exit loop.}
if ng.size = 0 then

break
end if

end for
{If the new group is non-empty, add it into the buffer as a new
group.}
if ng.size 6= 0 then

ng.entryT ime = currentT ime
buffer.add(ng)

end if
{While the buffer is full, evict the group with the largest size and
send it.}
while buffer.size > maxBufferSize do

g = argmaxg∈bufferg.size
sendDataGroup(g)
buffer.remove(g)

end while

Description: scanBuffer function is called periodically to send ex-
pired data groups to the parent node.
function scanBuffer()

for all g ∈ buffer do
{If the current group got expired, send it and remove it from the
buffer.}
waitT ime = currentT ime− g.entryT ime
if waitT ime >= maxWaitingT ime then

sendDataGroup(g)
buffer.remove(g)

end if
end for

attribute is a list of suffixes where each suffix is a data item’s
n− spl least significant bits. The third and fourth attributes are
lists of node identifiers and timestamps respectively. The order
of the node identifiers and timestamps match with the order of
the sensor measurements. A GD is denoted by a tuple shown as
〈shared prefix,suffix list,nodeid list,timestamp list〉.

Any data item produced is converted to a GD by itself before
being buffered. During a GD’s lifetime in a node’s buffer, it is
merged with newly produced GDs by the node itself or recently
received GDs from the child nodes, if possible. Two GDs can
be merged only if they have the same shared prefix values. The
merge operation is done in a straightforward manner preserving
the order in the four attributes of the groups. A similar com-
pression scheme can also be implemented on the timestamp list
further increasing the energy savings.

If any new data item added to an existing group has the same
sensor measurement value with the shared prefix of the group,
its suffix value (i.e. zero) is not inserted to the suffix list. But its
node identifier and timestamp values are inserted to the head of
the corresponding lists. When decompressing zero is assigned
to a data item’s missing suffix value. This way it is possible to
achieve a significant reduction in the bit rate of the measure-
ment data which remains entirely lossless.

Having larger buffers reserved for GDs will increase the
compression ratio by exploiting temporal redundancy among
the sensor measurements to a greater extent. However, this will
increase the observed e2e latency which will become a consid-
eration if the application is online monitoring rather than offline
monitoring.

If some level of error is tolerated in the collected data,
PINCO will further compress GDs with some loss in the sensor
measurements. Assume the user can tolerate an error ofε, then
any suffix smaller thanε in the suffix list will be set to zero and
deleted from the list increasing the compression ratio of a GD.

IV. PERFORMANCEEVALUATION

A. Simulation-based Performance Evaluation

We implemented PINCO in the ns-2.26 snapshot of the ns-
2 simulator [2] and used its CSMA model as the medium ac-
cess control protocol. Tree-based routing protocol and PINCO
scheme is implemented as separate ns-2 modules. To simu-
late mote networks, packet size is set to mote packet size (30
bytes). ns-2 connectivity model is used which is based on the
geographic distance between the nodes.

The data-collection application in our simulations creates the
temperature map of the scenario field. Sensor node’s in the field
are immobile, and their geographic positions are cataloged dur-
ing the deployment period and stored in the basenode where the
requested query is initiated. Two temperature distribution pat-
terns are used. In the first one, temperature in the field varies
with the distance from a central point where the temperature is
sampled from a normal distribution every second. In the second
one, temperature at each node is sampled from a uniform distri-
bution independent of the others. Number of nodes in the field
is chosen as 50, 100, and 150 for different simulation scenarios
and the simulation time is 300 seconds.

We have observed that minimum-hop based routing tree cre-
atedstraggler nodes in our simulations. Stragglers are nodes
that miss some of the broadcasted TAMs because of the MAC
level contention and therefore connect to the routing tree via
backward linksin which the recipient of the TAM is closer from
the basenode than the transmitter. In order to avoid straggler
nodes we improved our tree formation algorithm so that any
node hearing a TAM with hop distance two or more greater
than its own hop distance rebroadcasts a TAM thereby enforc-
ing all feasible shortest paths in the routing tree among a node’s
neighbors.

Simulation results have shown that for good performance,
PINCO parameters have to be tweaked for specific application
characteristics. Using our results we investigated the effect of
PINCO parameters on two performance measures: observed
e2e latency and transmission cost, in other words the amount
of dissipated energy.



5

1

2

3

4

5

0
5

10
15

20
25

30
0

1

2

3

4

5

6

7

Sampling Period (sec)e2e Latency Bound (sec)

O
bs

er
ve

d 
e2

e 
La

te
nc

y 
(s

ec
)

1

2

3

4

5

0
5

10
15

20
25

30

2

4

6

8

10

12

14

16

x 104

Sampling Period (sec)
e2e Latency Bound (sec)

Tr
an

sm
is

si
on

 C
os

t (
B

yt
e)



Fig. 1. Impact of e2e Latency Bound and Sampling Period

0
2

4
6

8
10

8

10

12

14

16
0

1

2

3

4

5

e2e Latency Bound (sec)Shared Prefix Length

O
bs

er
ve

d 
e2

e 
La

te
nc

y 
(s

ec
)

0
2

4
6

8
10 8

10

12

14

16

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x 105

Shared Prefix Length

e2e Latency Bound (sec)

Tr
an

sm
is

si
on

 C
os

t (
B

yt
es

)

Fig. 2. Impact of e2e Latency Bound and Shared Prefix Length

0

5

10

15

20

8

10

12

14

16
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Tolerated ErrorShared Prefix Length

O
bs

er
ve

d 
e2

e 
La

te
nc

y 
(s

ec
)

0

5

10

15

20 8
9

10
11

12
13

14
15

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

x 105

Shared Prefix LengthTolerated Error

Tr
an

sm
is

si
on

 C
os

t (
B

yt
es

)

Fig. 3. Impact of Tolerated Error and Shared Prefix Length

Since PINCO trades higher latency for reduced energy con-
sumption, increasing the e2e latency bound decreases the trans-
mission cost of our application (see Figure 1). When the sam-
pling period is smaller, marginal decrease in the transmission
cost is higher as an additional delay in a node’s buffer increases
the likelihood of a group getting merged with other recently
received groups. As expected, observed e2e latency increases
with increasing e2e latency bound. The amount of increase in
the latency is smaller for small sampling periods because with
a high data rate groups quickly reach their limit size (i.e. the

packet size) and gets transmitted from the buffer.

For a new data item to be inserted into a group, its shared pre-
fix has to match with that of a group. Therefore shared prefix
length (spl) determines the number of groups in a buffer. SPL
equal to 16 corresponds to a plain data collection approach with
duplicate data suppression since all data items in a group must
have the same sensor measurement. From Figure 2, we can
see that energy dissipation is reduced with PINCO compared
to a duplicate suppressing plain data collection scheme. Also
observed e2e latency improves with optimumspl. Although



6

reducing thespl increases grouping, it does not necessarily in-
crease the compression ratio. With a smallerspl, each suffix
is larger in size, hence higher transmission cost on a node. In-
specting Figure 2, we can see that an optimumspl (in this case
12) has to be chosen depending on the variance among the sen-
sor temperature readings.

In the following we present a mathematical analysis of
grouping in a buffer to find the optimumspl. For simplicity
we assume sensor readings are gaussian distributed with mean
µ and varianceσ2. Since for high compression ratiospl has to
be chosen appropriately so that it is neither too small resulting
in large suffix values, nor too big decreasing the likelihood of
grouping in a buffer, our objective function for maximization is
the compression ratio (CR) given as below:

CR(spl) = spl ∗ P{x ε GD} (1)

andP{x ε GD} = P{E[SP] < x < E[SP] + 2(n−spl)}
wherex is any sensor reading andn is its size, and E[SP] is

the expectation of the shared prefix. Since SP is the discretized
form of x with step size of2n−spl, E[SP] is the summation of
rectangles approximating toµ. Assuming E[SP] to bespl

n ∗ µ,
a complex form forspl optimizing (1) can be found.

Inspecting the complex form for optimumspl, (2) can be
chosen as its approximate estimator. Also, the standard devi-
ation estimatêσ can be found by low-pass filtering the recent
values withασ̂ + (1 − α)(x − σ̂) whereα is any number in
[0,1] reflecting our expectation on the tendency of sensor data
to change both in time and space.

ŝpl = n − log2(σ̂) (2)

However, adaptively adjustingspl brings overhead along
with its simplicity because each GD has to indicate itsspl. (2)
must be used only when the system designer does not have any
prior knowledge or tool to determine the optimumspl.

Transmission cost in an application decreases with the
amount of tolerated error (ε) as can be seen in Figure 3. As the
suffix values smaller thanε are deleted from the group, com-
pression ratio increases at the expense of some tolerated loss
added to the sensor readings.

B. Deployment-based Performance Evaluation

Encouraged by PINCO’s good performance based on simu-
lation results, we started implementing the PINCO scheme on
rene2 platform using TinyOS version 0.6. Our initial results
show that one-directional links are very likely in mote com-
munication conflicting with ns-2 physical layer model assump-
tion of connectivity which is based on georgraphical distance.
We are planning to modify our routing protocol to utilize only
bi-directional links by blacklisting one-directional links using
MAC level acknowledgements. Although we still did not fin-
ish with the complete PINCO scheme implementation, initial
results show that performance increase with PINCO is as ex-
pected and agreeing with the simulation results.

V. CONCLUSION AND FUTURE WORK

Data collection schemes for wireless senosor networks push
the requested query into the network and process the raw data

using an aggregation function. However, when full-data collec-
tion applications rather than aggregates on a phenomenon are
needed, aggregation is not useful. In this paper, we have shown
that in-network compression enables energy-efficient full-data
collection applications. Our in-network compression scheme
trades higher latency for lower energy consumption. With the
presented PINCO scheme for single-valued data, it is possible
to recompress data groups to reduce redundancies that are avail-
able in different stages of routing through the network.

We believe that PINCO is a very useful framework in han-
dling energy-efficient full-data collection applications and help-
ing us to discover tradeoffs when tweaking in-network com-
pression schemes for different degrees of performance require-
ments. For this reason, as the continuation of this work we are
planning to develop PINCO schemes for complex types of sen-
sor data such as audio and video rather than single-valued data
as it is in this work.

AcknowledgementWe thank Gregory Abowd and Umakishore Ra-
machandran for providing comments and Peter Jensen for helping with
the hardware.

REFERENCES

[1] http://www.atmel.com/atmel/products/prod23.html. Atmel 8-bit RISC
Processor.

[2] http://www.isi.edu/nsnam. ns-2 Network Simulator.
[3] http://www.rfm.com/products/data/tr1000.pdf. RF Monolithics.
[4] http://www.smalltimes.com. Small Times: Big News in Small Tech.
[5] http://www.xbow.com. Crossbow Technology, Inc.
[6] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.

In Proceedings of the Second International Conference on Mobile Data
Management, volume 43, pages 551–558, Hong Kong, January 2001.

[7] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar. Next century
challenges: Scalable coordination in sensor networks. InMobile Com-
puting and Networking, pages 263–270, 1999.

[8] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker. An empirical study of epidemic algorithms in large scale mul-
tihop wireless networks, 2002. Submitted for publication, February 2002.

[9] J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin,
and D. Ganesan. Building efficient wireless sensor networks with low-
level naming. InSymposium on Operating Systems Principles, pages 146–
159, 2001.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
architecture directions for networked sensors. InInternational Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems, 2000.

[11] J. M. Kahn, R. H. Katz, and K. Pister. Next century challenges: Mobile
networking for ”smart dust”. InACM/IEEE International Conference on
Mobile Computing and Networking, 199.

[12] B. Krishnamachari, D. Estrin, and S. Wicker. Impact of data aggrega-
tion in sensor networks. InInternational Workshop on Distributed Event-
Based Systems, 2002.

[13] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: a tiny aggre-
gation service for ad-hoc sensor networks. InOSDI, December 2002.

[14] S. Madden, R. Szewczyk, M. Franklin, and D. Culler. Supporting aggre-
gate queries over ad-hoc wireless sensor networks. InIEEE Workshop on
Mobile Computing Systems and Applications, 2002.

[15] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. In
Comm. ACM, volume 43, pages 551–558, 2000.

[16] H. Wang, D. Estrin, and L. Girod. Preprocessing in a tiered sensor net-
work for habitat monitoring. InEURASIP JASP special issue of sensor
networks, volume 4, pages 392–401, March 2003.

[17] B. Warneke, M. Last, B. Liebowitz, and K. Pister. Smart dust: Commu-
nicating with a cubic-milimeter computer. InComputer Magazine, IEEE,
pages 44–51, Piscataway, NJ, January 2001.

[18] A. Woo and D. Culler. A transmission control scheme for media access
in sensor networks. InMobicom, 2001.

[19] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitor-
ing wireless sensor networks. InIEEE International Workshop on Sensor
Network Protocols and Applications, Anchorage, AK, May 2003.


