
Techniques for Efficient Fragment Detection in Web Pages

Lakshmish Ramaswamy 1
∗

Arun Iyengar 2 Ling Liu 1 Fred Douglis 2

1 College of Computing, Georgia Tech 2 IBM T.J. Watson Research Center
801 Atlantic Drive P.O. Box 704
Atlanta GA 30332 Yorktown Heights, NY 10598

{laks, lingliu}@cc.gatech.edu {aruni, fdouglis}@us.ibm.com

ABSTRACT
The existing approaches to fragment-based publishing, delivery
and caching of web pages assume that the web pages are man-
ually fragmented at their respective web sites. However manual
fragmentation of web pages is expensive, error prone, and not
scalable. This paper proposes a novel scheme to automatically
detect and flag possible fragments in a web site. Our approach is
based on an analysis of the web pages dynamically generated at
given web sites with respect to their information sharing behavior,
personalization characteristics and change patterns.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems - Information storage and retrieval]: Informa-
tion search and retrieval

General Terms: Design, Algorithms

Keywords: Fragment-based publishing, Fragment caching,
Fragment detection

1. INTRODUCTION
Dynamic content on the web has posed serious challenges
to the scalability of the web in general and the performance
of individual web sites in particular. There has been con-
siderable research towards alleviating this problem. One
promising research direction that has been pursued and suc-
cessfully commercialized in recent years is Fragment based
publishing, delivery and caching of web pages [2, 7, 8].
Research on fragment-based publishing and caching has

been prompted by the following observations:

• Web pages don’t always have a single theme or func-
tionality. Often web pages have several pieces of infor-
mation, whose themes and functions are independent.

• Generally, web pages aren’t completely dynamic or
personalized. Often the dynamic and personalized con-
tent are embedded in relatively static web pages.

∗Most of this work was done while Lakshmish was an intern
at IBM Research in the summers of 2002 and 2003.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM 2003 November 3–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011 ...$5.00.

• Web pages from the same web site tend to share infor-
mation among themselves.

Conceptually a fragment can be defined as a part of a web
page (or more generally part of another fragment), which
has a distinct theme or functionality associated with it and
which is distinguishable from the other parts of the web
page. In fragment-based publishing, the cacheability and
the lifetime are specified at a fragment level rather than the
page level.
The advantages of fragment-based schemes are apparent

and have been conclusively demonstrated in the literature [7,
8]. By separating the non-personalized content from the
personalized content and marking them as such, it increases
the cacheable content of the web sites. Furthermore, with
fragment-based publishing, the amount of data that gets
invalidated at the caches is reduced. In addition, the infor-
mation that is shared across web pages needs to be stored
only once, which improves the disk space utilization at the
caches.
Though there have been considerable research efforts on

performance and benefits of fragment-based publishing and
caching, there has been little research on detecting such frag-
ments in existing web sites. Most of the research efforts on
fragment caching rely upon the web administrator or the
web page designer to manually fragment the pages on the
web site. However, manual fragment detection is both very
costly and error prone.
In this paper, we propose a novel scheme to automatically

detect and flag possible fragments in a web site. We analyze
web pages with respect to their information sharing behav-
ior, personalization characteristics, and the changes occur-
ring to them over time. Based on this analysis, our system
detects and flags the “interesting” fragments in a web site.
The research contributions of this paper are along three di-
mensions. First, we formally define the concept of a Candi-
date Fragment, which forms the basis for fragment detection
schemes. Second, we provide an infrastructure for detecting
fragments within a web site, including an efficient document
model and fast string encoding algorithm for fragment detec-
tion. Third, we present two algorithms for detecting frag-
ments that are shared among M documents or that have
different lifetime characteristics, which we call the Shared
Fragment Detection Algorithm and Lifetime-Personalization
based (L-P) Fragment Detection Algorithm respectively.

516

2. A FRAGMENT MODEL OF WEB PAGES
The web documents considered in this paper are HTML

documents. We assume that all HTML documents are well-
formed [6]. Documents that are not well formed can be
converted to well-formed documents. We refer to such a
transformation as document normalization. HTML Tidy [3]
is a well-known Internet tool for transforming an arbitrary
HTML document into a well-formed one.

2.1 Candidate Fragments
We introduce the notion of candidate fragments as follows:

• Each Web page of a web site is a candidate fragment.

• A part of a candidate fragment is itself a candidate
fragment if any one of the following two conditions are
satisfied:

– The part is shared among “M” already existing
candidate fragments, where M > 1

– The part has different personalization and life-
time characteristics than those of its encompass-
ing (parent or ancestor) candidate fragment.

It is evident from the definition that the two conditions
are independent and these conditions define fragments that
benefit caching from two different and independent perspec-
tives. We call the fragments satisfying Condition 1 Shared
fragments, and the fragments satisfying Condition 2 L-P
fragments (denoting Lifetime-Personalization based frag-
ments). Lifetime characteristics of a fragment govern the
time duration for which the fragment, if cached, would stay
fresh (in tune with the value at the server). The personal-
ization characteristics of a fragment correspond to the vari-
ations of the fragment in relation to cookies or parameters
of the URL.
It can be observed that the two independent conditions

in the candidate fragment definition correspond well to two
key aims of fragment caching. By identifying and creating
fragments out of the parts that are shared across more than
one fragment, we avoid unnecessary duplication of informa-
tion at the caches. By creating fragments that have different
lifetime and personalization properties we not only improve
the cacheable content but also minimize the amount and
frequency of the information that needs to be invalidated.

3. FRAGMENT DETECTION: THE BASICS
The primary goal of our system is to detect and flag candi-
date fragments from pages of a given web site. The fragment
detection process is divided into three steps. First, the sys-
tem is conceived to construct an Augmented Fragment Tree
(see Section 3.1) for the pages of a web site. Second, the sys-
tem applies the fragment detection algorithms to augmented
fragment trees of the web pages to detect the candidate frag-
ments. In the third step, the system collects statistics about
the fragments such as the size, how many pages share the
fragment, access rates etc. These statistics aid the admin-
istrator to decide whether to turn on the fragmentation.
Figure 1 gives a sketch of the architecture of our fragment
detection system.
Our fragment detection framework has two independent

schemes: a scheme to detect Shared fragments and another
scheme to detect L-P fragments. Both of the schemes are
located in one large framework, probably collocated with a

server-side cache, and work on the web page dumps from
the web site.

Figure 1: Fragment Detection System Architecture

The scheme to detect Shared fragments works on various
pages from the same web site, whereas the L-P fragments
approach works on different versions of each web page (if
the web page has more than one version). For example, in
order to detect L-P fragments, we have to locate parts of
a fragment that have different lifetime and personalization
characteristics. This can be done by comparing different
versions of the web page and detecting the parts that have
changed and the parts that have remained constant. How-
ever, to detect Shared fragments, we are looking for parts of
a fragment that are shared by other fragments, which natu-
rally leads us to work with a collection of different web pages
from the same web site.
While the inputs to the L-P fragment detection scheme

and the Shared fragment detection approach differ, both
schemes rely upon the Augmented Fragment Tree represen-
tation of its input web pages, which is described in the next
subsection. The output of our fragment detection system is
a set of fragments that are shared among a given number
of documents or that have different lifetime characteristics.
This information will be served as recommendations to the
fragment caching policy manager or the respective web ad-
ministrator (see Figure 1).

3.1 Augmented Fragment Tree
A good model to represent the web pages is one of the keys
to efficient and accurate fragment detection. We introduce
the concept of an Augmented Fragment Tree as a model to
represent web pages.
An augmented fragment (AF) tree is a hierarchical rep-

resentation of the structure of an HTML document. It is
a compact DOM tree [1] with all the text-formatting tags
removed, and each node augmented with additional infor-
mation for efficient comparison of different documents and
different fragments of documents. Each node in the tree is
annotated with the following fields:

• Node Identifier (Node-ID): A vector indicating the lo-
cation of the node in the tree.

• Node-Value: A string indicating the value of the node.
The value of a leaf node is the text itself and the value
of an internal node is NULL (empty string).

• Subtree-Value: A string that is defined recursively. For
a leaf node, the Subtree-Value is equal to its Node-

517

Value. For all internal nodes, the Subtree-Value is a
concatenation of the Subtree-Values of all its children
nodes and its own Node-Value. The Subtree-Value of a
node can be perceived as the fragment (content region)
of a web document anchored at this subtree node.

• Subtree-Size: An integer whose value is the length of
Subtree-Value in bytes. This represents the size of the
structure in the document being represented by this
node.

• Subtree-Signature: An encoding of the subtree value
for fast comparison. We choose shingles [5, 9] as the
encoding mechanism (see the discussion below). There-
fore we also refer to the Subtree-Signature as Subtree-
Shingle.

Shingles [5, 9] are essentially fingerprints of the document
(or equivalently a string). But unlike other fingerprints like
MD5, if the document changes by a small amount, its shingle
also changes by a small amount.
Figure 2 illustrates this property by giving examples of the

MD5 hash and the shingles of two strings. The first and the
second strings in the figure are essentially the same strings
with small perturbations. It can be seen that the MD5 hash
of the two strings are totally different, whereas the shingles
of the two strings vary just by a single value out of the 8
values in the shingles set (shingle values appearing in both
sets are underlined in the diagram). This property of shin-
gles has made it very popular in estimating the resemblance
and containment of documents [5, 4].

Figure 2: Example of Shingle Vs MD5

3.2 AF Tree Construction
The first step of our fragment detection process is to convert
web pages to their corresponding AF trees. The AF tree can
be constructed in two steps. The first step is to transform a
web document to its DOM tree and prune the fragment tree
by eliminating the text formatting nodes. The result of the
first step is a specialized DOM tree that contains only the
content structure tags (e.g., like <TABLE>, <TR>, <P>).
The second step is to annotate the fragment tree obtained
in the first step with Node-ID, Node-Value, Subtree-Value,
and Subtree-Shingle.

4. FRAGMENT DETECTION ALGORITHMS
Having described the structure of the AF tree and method-

ology to construct it, we now describe the algorithms to de-
tect Shared and L-P fragments.

4.1 Detecting Shared Fragments
The Shared fragment detection algorithm operates on var-

ious web pages from the same web site and detects candi-
date fragments that are “approximately” shared. In our
framework for Shared fragment detection, we add three ad-
ditional parameters to define the appropriateness of such
approximately shared fragments. These parameters can be
configured based on the needs of the particular web site.
The accuracy and the performance of the algorithm are de-
pendent on the values of these parameters.

• Minimum Fragment Size(MinFragSize): This pa-
rameter specifies the minimum size of the detected
fragment.

• Sharing Factor(ShareFactor): This indicates the
minimum number of pages that should share a seg-
ment in order for it to be declared a fragment.

• Minimum Matching Factor(MinMatchFactor): This
parameter specifies the minimum overlap between the
Subtree-Shingles to be considered as a shared frag-
ment.

The shared fragment detection algorithm performs the de-
tection in three steps. First, it creates a pool of all the
nodes belonging to AF trees of every web page of the web
site, removing all nodes that do not meet the MinFragSize
threshold. Then the algorithm processes each node in the
pool in decreasing order of their sizes. While processing each
node, it is compared against other nodes in the pool and
groups the nodes that are similar. The similarity between
nodes is measured by comparing their SubtreeShingles. If
the number of nodes a group has is equal or higher than
ShareFactor, then that group of nodes is flagged as a can-
didate fragment. The third step ensures that the scheme
detects only the fragments that are maximally shared by
eliminating those fragments that are not maximally shared.
This is done by checking whether there was a larger frag-
ment which has already been detected that contained the
ancestors of all the nodes in the current group and no other
nodes. If such a fragment has already been detected, then
this is not a maximally shared fragment and hence not de-
clared as a candidate fragment. Otherwise it is declared as
a fragment, and all the nodes in the group are removed from
the nodes pool.

4.2 Detecting L-P Fragments
We detect the L-P fragments by comparing different ver-

sions of already existing candidate fragments (web pages)
and identifying the changes occurring among the different
versions.
The input to this algorithm is a set of AF trees corre-

sponding to different versions of web pages. These ver-
sions may be time-spaced or versions generated with dif-
ferent cookies.
The nodes of the AF trees in this algorithm have an ad-

ditional field termed as the NodeStatus, which can take any
value from {UnChanged, V alueChanged,PositionChanged}.

518

The scheme compares two versions of a web page at each
step and detects L-P candidate fragments. Each step out-
puts a set of candidate fragments, which are merged to ob-
tain the Object Dependency Graph (ODG) of the entire
document. Object Dependency Graph [7] is a graphical
representation of the containment relationship between the
fragments of a web site. Each step of the algorithm exe-
cutes in two passes. In the first pass the algorithm marks
the nodes that have changed in value or in position between
the two versions of the AF tree. This is done by recursively
comparing each node of the AF tree of one version with the
most similar node from the AF tree of the second version.
The content and the position of the two nodes are compared
and accordingly the NodeStatus of the nodes are marked as
V alueChanged, PositionChanged or Unchanged. The sec-
ond pass of the algorithm detects the candidate fragments
and merges them to obtain an Object Dependency Graph.
Similar to the Shared fragment detection algorithm, we

have a few configurable parameters in this algorithm:

• Minimum Fragment Size(MinFragSize): This pa-
rameter indicates the minimum size of the detected
fragment.

• Child Change Threshold(ChildChangeThreshold):
This parameter indicates the minimum fraction of chil-
dren of a node that should change in value before the
parent node itself can be declared as V alueChanged.

5. EXPERIMENTAL EVALUATION
We have performed a range of experiments to evaluate

our automatic fragment detection scheme. In this section we
give a brief overview of two sets of experiments. The first set
of experiments tests the two fragment detection algorithms,
showing the benefits and effectiveness of the algorithms. The
second set studies the impact of the fragments detected by
our system on improving the caching efficiency.
The input to the schemes is a collection of web pages

including different versions of each page. Therefore we peri-
odically fetched web pages from different web sites like BBC
(http://news.bbc.co.uk), Internetnews
(http://www.internetnews.com), Slashdot
(http://www.slashdot.org) etc. and created a web ‘dump’
for each web site.
In the first set of experiments we evaluated our shared

fragment detection scheme and the impact of the parame-
ters MinMatchFactor and MinFragSize on the detected
shared fragments. For example on a dataset of 75 web
pages from BBC website, which were collected on the 14th of
July 2002, our shared fragment detection algorithm detected
350 fragments when MinFragSize was set to 30 bytes and
MinMatchFactor was set to 70%. In all our experiments
we noticed that our algorithm detected a larger number of
smaller sized fragments when MinMatchFactor was set to
higher values. For the same BBC dataset, the number of
fragments increased to 358 when the MinMatchFactor was
increased to 90%. In our experiments we also noticed that a
large percentage of detected fragments are shared by 2 pages
and only a few fragments are shared by more than 50% of
the web pages.
Our second experiment was aimed at studying the per-

formance of the L-P fragment detection algorithm. Though
we experimented with a number of web sites, due to space
limitations, we briefly discuss our experiments on the web

site from Slashdot (http://www.slashdot.org). A total of 79
fragments were detected when the ChildChangeThreshold
was set to 0.50, and 285 fragments were detected when
ChildChangeThreshold was set to 0.70. We observed higher
numbers of fragments being detected when
ChildChangeThreshold is set to higher values in all our
experiments.
In our final set of experiments we study the impact of frag-

ment caching on the performance of the cache, the server and
the network when the web sites incorporate the fragments
detected by our system into their respective web pages.
Incorporating the detected fragments improves the perfor-

mance of the caches and the web servers in at least two ways.
First, as the information that is shared among web pages is
stored only once, the disk-space required to store the data
from the web site is reduced. For example, our experiments
on the BBC web site show that disk space requirements are
reduced by around 22% by using the fragments detected by
our algorithm.
Secondly, incorporating fragments into web sites reduces

the amount of data invalidated in the caches. This in turn
causes a reduction in the traffic between the origin servers
and the cache. Our experiments show that for each web site
this reduction is closely related to the average number of
fragments in the web pages, their invalidation rates and the
request rates to the web pages in the web site. However,
the amount of data transferred between server and cache in
a page-level caching scheme is higher than the data trans-
ferred between server and cache in a fragment-level caching
scheme.

6. CONCLUSION
This paper addresses the problem of automatic fragment

detection in web pages. We provided a formal definition of
a fragment and proposed an infrastructure to detect frag-
ments in web sites. Two algorithms are developed for au-
tomatic detection of fragments that are shared across web
pages and fragments that have distinct lifetime and person-
alization characteristics. We report the evaluation of the
proposed scheme through a series of experiments, showing
the effectiveness of the proposed algorithms.

7. REFERENCES
[1] Document object model - w3c recommendation.

http://www.w3.org/DOM.
[2] Edge Side Includes Standard Specification.

http://www.esi.org.
[3] Html tidy. http://www.w3.org/People/Raggett/tidy/.
[4] Z. Bar-Yossef and S. Rajagopalan. Template Detection via

Data Mining and its Applications. In Proceedings of
WWW-2002, May 2002.

[5] A. Broder. On resemblance and Containment of Documents.
In Proceedings of SEQUENCES-97, 1997.

[6] D. Buttler and L. Liu. A Fully Automated Object
Extraction System for the World Wide Web. In Proceedings
of ICDCS-2001, 2001.

[7] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and
P. Reed. Publishing System for Efficiently Creating Dynamic
Web Content. In Proceedings of IEEE INFOCOM 2000,
May 2000.

[8] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, Suresha,
and K. Ramamritham. Proxy-Based Accelaration of
Dynamically Generated Content on the World Wide Web:
An Approach and Implementation. In Proceedings of
SIGMOD-2002, June 2002.

[9] U. Manber. Finding Similar Files in a Large File System. In
Proceedings of USENIX-1994, January 1994.

519

