
TrustMe: Anonymous Management of Trust Relationships in Decentralized P2P
Systems

Aameek Singh
College of Computing, Georgia Tech

aameek@cc.gatech.edu

Ling Liu
College of Computing, Georgia Tech

lingliu@cc.gatech.edu

Abstract

Decentralized Peer to Peer (P2P) networks offer both op-
portunities and threats. Its open and decentralized nature
makes it extremely susceptible to malicious users spreading
harmful content like viruses, trojans or, even just wasting
valuable resources of the network. In order to minimize such
threats, the use of community-based reputations as trust mea-
surements is fast becoming a de-facto standard. The idea is
to dynamically assign each peer a trust rating based on its
performance in the network and store it at a suitable place.
Any peer wishing to interact with another peer can make an
informed decision based on such a rating.

An important challenge in managing such trust relation-
ships is to design a protocol to secure the placement and ac-
cess of these trust ratings. Surprisingly, all the related work
in this area either support very limited anonymity or assume
anonymity to be an undesired feature and neglect it.

In this paper, we motivate the importance of anonymity,
especially in such trust based systems. We then present
TrustMe � a secure and anonymous underlying protocol for
trust management. The protocol provides mutual anonymity
for both the trust host and the trust querying peer. Through
a series of simulation-based experiments, we show that the
TrustMe protocol is extremely secure in the face of a vari-
ety of possible attacks and present a thorough analysis of the
protocol.

1. Introduction

Peer-to-Peer overlay networks are increasingly gaining
acceptance on the Internet as they provide an infrastructure
in which the desired information and products can be located
and traded. While P2P systems based on central indices have
run into legal problems, the decentalized systems have con-
tinued to flourish. Gnutella, Kazaa, Freenet [3] are extremely
popular amongst the WWW community with millions of
users worldwide. One of the most attractive features of a typ-
ical P2P resource-sharing application is the anonymity that it
provides to the requester and the provider of a resource.

However, the open nature of the P2P networks also makes
the system vulnerable to malicious users trying to infect the
network. Genuine looking files may actually contain viruses,
which can potentially destroy data and infect programs on
a peer’s hard drive. Though the use of anti-virus software
can detect such incidents, there is hardly any mechanism to

prevent this threat or to punish such malicious users. Also,
there is no accountability of a peer for providing a particular
resource. Such drawbacks are some of the primary hurdles
in the promotion of P2P systems to a more useful setting.

Assuming a pure P2P environment, strategies for tack-
ling such issues have to be decentralized in nature, i.e. we
need to develop mechanisms which avoid presence of cen-
tral trusted authorities. Many existing P2P communities
have used community-based reputations to estimate the trust-
worthiness and predict the future behavior of peers. Con-
cretely, the current systems associate with each peer, a trust-
worthiness metric and allow other peers to have access to
this information and decide by themselves whether to inter-
act with that peer or not. Such a metric is primarily based
on peer-reviews i.e. each peer on interacting with another
peer, rates the performance of the peer on a common scale
and vice versa. This trustworthiness metric is usually called
reputation-based trust value. A high trust value indicates
that the peer has gained good reputation in terms of its past
performance and thus is more trustworthy, whereas a low
trust value means the peer has relatively poor quality of ser-
vice (QoS) in the past and are rated with low reputations by
other peers in the community.

A typical transaction in trust-enabled P2P resource shar-
ing networks will be as follows - A peer will query for a
particular resource using the normal P2P protocol queries.
It then will receive a number of offers from various peers
within the network, who are willing to provide that resource
(provider peers). Then the requestor peer will query for the
trust values of the provider peers and select the best peer
to provide the service. After interacting with the chosen
provider peer, it will then rate the provider peer based on
its performance and vice versa. Two important issues are in-
volved in this process: (1) what trust metrics are effective for
computing the reputation-based trust? And (2) how to dis-
tribute, store, and access the trust values of peers securely?
The first issue is related to trust models used for building
trust among peers. The second issue is related to secure stor-
age and secure access of trust values against possible mis-
uses and abuses by malicious peers. A fair amount of work
has been done in the area of computing reputation-based trust
ratings [2, 8, 15]. However, the area of developing secure un-
derlying protocols to distribute and access the trust ratings in
the overlay network has been, relatively unexplored.

In this paper we present TrustMe � an anonymous and



secure protocol for maintaining and accessing trust rating in-
formation. TrustMe uses Public Key cryptography schemes
to provide security and is resistant to various attacks. We ar-
gue that the distribution and access of trust ratings should be
distinguished from the routine functions such as file inquiry
and downloading performed in a P2P system. In this paper,
we attempt to answer questions like:

� Where should the trust value of a peer be stored?
Clearly, no peer should hold its own trust value (in
which case, every peer would be the most trustworthy!).
Also, because of the decentralized nature, there is no
central place where it can be stored.

� How to securely access other peers’ trust values?
P2P protocols follow message forwarding mechanisms,
where a message reaches the desired peer after going
through a number of other peers in the network. Hence
we cannot send un-encrypted messages, since anybody
can fake critical information.

A unique characteristic of the TrustMe protocol is its support
for mutual anonymity in managing peers’ trust relationships.
Not only the peers who access trust ratings of other peers
remain anonymous but also peers who store trust ratings of
other peers are protected from targeted attacks by keeping
their identity hidden. In addition, the TrustMe design ensures
the following properties:

1. Security: Due to decentralized management of trust re-
lationships, the trust rating of a peer is stored at other
peers in the network and it is extremely important to
protect these trust hosting peers from targetted attacks.

2. Reliability: It is important to ensure that anybody
querying for a trust value gets the true trust value in-
spite of presence of various malicious users.

3. Accountability: In a peer-review based trust systems, it
is important that peers are accountable for the feedback
they provide about other peers. Any malicious peer try-
ing to manipulate trust ratings should be identifiable.

In the remaining sections, we first briefly overview the re-
lated work. Then we describe the proposed trust manage-
ment protocol, TrustMe. We report initial results of our
simulation-based experiments, showing the effectiveness and
the cost of the TrustMe protocol.

2. Related Work
Most of the security threats presented in Peer-to-Peer in-

formation sharing environments are due to two main features
of the peer-to-peer design: anonymous peer-to-peer commu-
nication (for example, Gnutella servants (peers) are anony-
mous and are only identified by a self-identified servant id)
and variety of the shared information (e.g., the files autho-
rized to be shared in Gnutella can include all media types,
including executable and binary files). The former feature
involves a weakness due to the combination of low account-
ability and low trust of the individual peers. Under the shield
of anonymity, malicious peers can answer to virtually any

query providing tampered-with information. The two fea-
tures combined make the P2P environments more vulnerable
to certain security attacks compared to the centralized sys-
tems.

While some adhoc mechanisms have been applied in the
current systems (blacklisting hosts, checking file signatures,
virus scans, etc.), there is a greater need for more dependable
security framework and protocols. Amongst the e-commerce
community, the notion of reputation-based trust metrics has
received a great deal of attention. While a formal treatment
appeared in [10], a number of other approaches like [1, 16],
have been found to be relatively more useful. The most suc-
cessful usage of trust in an industrial setting is the reputation
system of eBay, where each user rates other users and shares
the information with other participants. However, none of
the aforementioned are well suited to a distributed and decen-
tralized environment existing in pure P2P systems. Whereas
[10, 1, 16] suffer from the inherent complexity involved in
maintaining the trust models, the eBay model relies on a cen-
tralized server to store and present the knowledge.

Within the P2P community, recently several efforts have
been engaged in mechanisms for building reputation-based
trust models [2, 15, 8]. However, there is scarce amount of
research in developing secure means of accessing and main-
taining such models in decentralized P2P systems. In the
absence of such mechanisms, there are huge threats possi-
ble, which can render the trust models effectively useless by
preventing users gaining access to the correct trust ratings.
Meanwhile, the security research in the P2P environment has
focussed on the issues of identity [7], and Distributed Hash
Tables (DHT) [12].

To the best of our knowledge, only [4] has attempted to
present a secure protocol at message level in addition to a
trust model. Their protocol is based on a polling based mech-
anism and use public key cryptography to provide various se-
curity features. In contrast, the TrustMe design argues that,
to provide secure, reliable, and accountable distribution and
access of trust ratings of peers, it is not only important to
authenticate the P2P messages but also critical to ensure re-
questor anonymity and provider anonymity for distributed
management of trust relationships in dcentralized P2P sys-
tems.

3. TrustMe: A Protocol for Anonymous Trust
Management

3.1. Anonymity: Why is it essential ?

One of the major factors in the rise of the P2P systems is
the anonymity they provide. It has been felt to be extremely
essential to design mechanisms that provide privacy and es-
cape censorship. There have been various attempts to de-
velop such systems even outside the P2P realm with Crowds
[5] and commercial available anonymizers as examples. Also
within the scope of the P2P, the anonymous services provided
by Freenet [3] and FreeHaven [6] have received attention.
Another line of work [14] uses trusted third parties, estab-
lished at super-peer nodes to provide mutual anonymity to



both initiatior and responder for hybrid P2P systems.
Unfortunately from a security point of view, anonymity

has been regarded as a rogue element. Most of the trust based
P2P systems [4, 8] have sacrificed anonymity in order to pro-
vide secure underlying protocols. This is a huge threat, with
the potential to disrupt the whole functioning of the system.
If a malicious peer can identify the peers who are reporting
its poor trust values, it can launch targetted attacks prevent-
ing them from doing so. Such attacks can range from spam,
threatening emails at best, to a complete DoS attack at worst.
And yet these are only the possible electronic confrontation
means. Such possibilities demotivate peers from reviewing
other peers and letting their reviews be publicly available.
This lack of anonymity has been expressed as the possible
cause of eBay users having very little negative ratings.

On the other end of the spectrum, a peer would like to
maintain anonymity while querying for another peer’s trust
value. It could very well be an employee looking for ratings
of available career counsellors or a corporation seeking new
suppliers without letting their current supplier know about it.

Clearly an anonymous protocol for such trust based sys-
tems will go a long way in uplifting the P2P computing to
more mission-critical applications.

3.2. Protocol Design Considerations
There are two popular approaches to derive trust ratings

of peers based on their reputations: Transaction-based rat-
ing and user-based rating. In the transaction-based approach,
peers provide feedbacks upon completion of each transac-
tion, and the trust rating of a peer is computed based on all
transactions it has performed with other peers. In the user-
based approach a peer gives a reputation rating to another
peer based on all its experiences with that peer, instead of a
per-transaction basis. The trust rating of the peer is an aggre-
gation of all ratings obtained from the rest of the peers.

Most of the current work, including TrustMe, use the user-
based approach because of its greater robustness against ma-
licious groups acting together. A representative work is pre-
sented by Cornelli et al [4], in which any peer, say Peer
A, who wants to query for the trust value of another peer,
say Peer B, broadcasts a query to the network. Then the
peers who have interacted with Peer B and would like to
express their opinions reply back with their

�
IP, Port � tu-

ple, encrypted with public key of Peer A. After receiving the
replies, Peer A will individually contact the voters and ask
them to confirm their votes to filter out incorrect fake mes-
sages. There are a number of drawbacks of this approach:

� No persistence: The trust metrics are not persistent. All
the peers who have interacted with Peer B, but are not
present in network cannot have their reviews counted.
This can be potentially exploited by a collective of mali-
cious peers who are always present in the network send-
ing the same high/low value for Peer B, thus masking
the opinions of various other peers who would have gen-
uine ratings. As our experiments indicate (ref Section-
4), even a small number of malicious peers can totally
dominate the ratings of a targetted peer.

� No anonymity: The peers expressing opinions lose
their anonymity. A peer can potentially query for its
own trust value (if protected against this, ask a friend
to query), and identify the peers who are giving poor
trust values for it. Now these peers can be selectively
targetted with other attacks like DoS. This is equivalent
to voters not having a right to secret ballot.

� Tedious decision-making: The decision making pro-
cess becomes extremely lengthy and tedious. Peer A
has to contact all the voters and confirm their votes, thus
increasing the time taken to make a decision on whether
it wants to trust Peer B or not. Also Peer A has to com-
bine all the valid votes before arriving at a decision.

Ideally, the system should be such that voters have secret bal-
lot, votes stay in the system even when the voters have logged
out and the decision making process is fast. TrustMe is de-
signed with all these qualities in mind. We place the trust
rating of each peer at a random Peer X which replies to all
queries for the trust values it holds. A peer can anonymously
issue a query and get the true value without needing to know
the identity of Peer X. Also a single reply message from Peer
X is enough to make a decision.

Eigenrep [8] presented an alternative approach. They pro-
pose a simplistic underlying protocol based on a DHT based
mechanism like CAN [11] or Chord [13]. Each peer has a
set of mother peers, which hold the trust values of that peer.
The mother peers are decided based on hashing the ID of the
peer (Different hashes are used to obtain a number of mother
peers). If Peer A wants to query for the trust value of Peer
B, it just hashes its ID to obtain the various mother peers and
then queries them for the trust values. Then, it decides by
taking the majority of those values. This kind of approach
also suffers from a number of shortcomings:

� Insecure communication: After hashing a peer’s ID
to obtain various mother peers, the communication be-
tween the mother peer and the querying peer is not se-
cured. This is vulnerable to a host of threats like Man-
in-the-middle/Bucket-brigade [9] attacks.

� DHT Threats: By relying on a DHT based design, the
system automatically becomes prone to numerous other
possible attacks, like those discussed in [12]. Mali-
cious routing-information tampering, malicious lookup
replies and a host of other possible scenarios come into
the picture. Even a small percentage of malicious nodes
can have devastating consequences. The security solu-
tions to some of these attacks are extremely complex
and are not compatible with the current available sys-
tems.

� No anonymity: Also in such a scheme the identity of
mother peers is exposed. And as already mentioned, a
malicious node can attack those mother peers to prevent
them from sending the true trust values.

� Group threats: Another problem is that since user-
chosen IDs are used to hash, after significant monitor-
ing, a malicious group of nodes (or a single node simu-
lating a group of nodes) can select good combinations of



IDs to have a favorable scenario, for example, in which
trust values of a particular node in the group are most
likely to be hosted by other group members.

To handle such problems, TrustMe uses a random assignment
of Trust-Holding Agent peers (henceforth called THA peers)
and uses smart Public Key mechanisms to prevent any loss of
anonymity. Also it ensures all communication to be secure.

The following notations are used:
THA-peer stands for a peer which holds the trust value for
a particular peer. A private key is denoted by the alphabet�

and a public key by the alphabet � . A special private
key is denoted by � � and a special public key by ��� (ref.
Section-3.3.1). The trust value is denoted by the abbreviation���

. The time stamp (time at a particular instant) is denoted
by
� � . The symbol ‘ � ’ stands for concatenation i.e. �	� 


denotes X followed by 
 . Encryption of a message � by a
particular key � is given by �	���� . The Bootstrap server
(entry point for peers in a network) is denoted by ��� . ���
stands for the identifier of a peer in the network. It can be
user-chosen or an IP address. ����� stands for a special peer
identifier assigned by the BS (ref. Section-3.3.1). A peer
offering some resources is called an offering peer and the
peer querying for trust values of offering peers is called the
querying peer. A query for the trust value of a particular peer
is called the trust query. Also the words node and peer will
be used interchangebly.

3.3. Protocol

TrustMe broadly functions in the following manner. Each
peer is equipped with a couple of public-private key pairs.
The trust values of a peer (say Peer B) are randomly assigned
to another peer (THA peer) in the network. This assignment
is done by the bootstrap server in a way that the trust holding
responsibilities are equally distributed amongst the partici-
pating peers. This assignment is unknown to all peers in-
cluding Peer B. All the communication with the THA peer is
carried out using a special key which indicates its knowledge
of the trust value of Peer B. Any peer (say Peer A) interested
in querying for the trust value of Peer B can broadcast a trust
query for Peer B. The THA peer replies with the trust value
along with some other information. Depending upon the trust
value, Peer A can decide to interact with Peer B or not. Also
after an interaction, Peer A can securely file a report (after
giving adequate proof of the interataction) for Peer B, indi-
cating Peer A’s new trust value for Peer B. Then, the THA
peer can modify the trust rating of Peer B. To provide secu-
rity, reliability and accountability, TrustMe uses smart public
key cryptography mechanisms.

3.3.1 Details

Firstly, the bootstrap server has a pair of keys
� �����

, � ��� � .
The � ��� key is known to all peers in the network. This can
be easily achieved by distributing it at the time of a peer join.
In case of multiple bootstrap servers, either they can share a
single pair or all the keys can be distributed during the join.
This pair of keys is primary used as a certification mechanism
certifying the validity of a node (i.e. it joined the network in a

correct manner) and thus helps in pseudo-identification. Also
TrustMe requires each Peer � to possess a couple of private-
public pair of keys before it joins the network (

� ���
, � � � and� ����

, � �� � ). The former is used for providing/receiving ser-
vices whereas the latter is used while serving as the THA
peer for other peers in the network.

When a Peer � joins the network, the bootstrap server gen-
erates another private-public pair, called the Special-Private
and Special-Public –

� � ��� , ��� � � . They are special in the
sense that even Peer � does not have the knowlege of � � � .
The bootstrap server assigns a set of peers to be the THA
peers for Peer � and only those peers know � � � . It is used
as an authentication mechanism (receiving a message en-
crypted with � � � indicates that it is coming from a THA
peer) and as secure transmission mechanism (encrypting a
message with ��� � means that only the THA peer can read
it). Overall, the following information about Peer � is se-
curely transmitted to the THA peers –

� ��� � , � � , � ��� , ��� � � .
The exact procedure in which this is achieved is explained
later in Section-3.3.3. For the moment, assume that a set
of peers are made the THA peers for Peer � (i.e. they pos-
sess the abovementioned information about Peer � ). Also the
bootstrap server assigns an identifier to the peer � denoted
by ����� � . This identifier is assigned when Peer � joins the
network and is given by:

����� ��� ����� "! ��#%$ �'&)(+*,&�-/.0� � �� �
Notice that any node reading ���1� � can be assured that

it is a valid node (since nobody can fake
�����

). However,
it does not compromise the identity of Peer � . � �� is used to
prevent the loss of anonymity in a particular attack explained
later. There are four phases in the entire protocol:

Query: Any peer, say Peer 2 , intending to query for the trust
value of Peer � can just broadcast the trust query message
containing �1� � . Typically, a peer will simultaneously query
for a number of peers (who offered their services for a par-
ticular resource). In such a case the trust query would be the
concatenated IDs of all such peers.3 4215"67�98:59�<;=5">?>4>?59�<@BA/� � ��� �DC � �1� �?E �F>4>?>D� ��� �4G

Note that because of the message forwarding mechanism
of the P2P system, the querying peer cannot be identified
by looking at the query message. This provides complete
privacy to the querying peer.

Reply: On receiving a trust query for Peer � , its THA peer,
say Peer H can generate a reply and forward it back to the net-
work. The goal of this message is to ensure that the querying
peer can identify it to be generated by a THA peer and that
it has not been tampered with, enroute. The reply message
looks like:I JHK59�L� � �1� � � � � � ��� � � � ���  ��� � � �M� �����ON0� ���N  � �P�9�
There are a number of points to note:

� The ��� � field indicates that the reply message contains
the trust value for Peer � . The ��� � key is provided to
decrypt the encrypted part and the � � key is used later
to communicate with Peer � .



� Any peer in the network can read the trust value for
Peer � . This is not undesirable, since anyway, any peer
can query for that trust value specifically and know the
value.

� The use of encryption with � � � makes sure that the re-
ply is coming from a THA peer. This prevents any peer
from just randomly sending a value.

� The use of ����� N , apart from ensuring that a valid node
is replying, ensures accountability. Though no peer can
identify the THA peer, the malicious THA peers can be
blacklisted by their ���1� N values.

� The use of
� � ensures that a message is not replayed at

a later time. Also it provides a caching opportunity, in
which peers can cache the value and can use the same
trust value within a particular time window.

� The use of
� �N  � �P� and the presence of � �N in ����� N en-

sures that no peer can use another peer’s ����� N (which
can be extracted from its earlier replies) and send replies
trying to pose as that peer.

� Note that, there is still a possibility of any peer to gen-
erate a random combination of

� � � � , ��� � � and use that
as a fake reply message. We will explain how this can
be prevented later in Section-3.3.2.

Collecting Proof-of-Interaction: Whenever two peers
(Peer � and 2 ) interact, they exchange

���  � � � � � � ��� � � ’s
with each other, i.e. Peer � gets

� �  � �M� � � � �1� � � from Peer2 and Peer 2 gets
� �  � �M� � � � �1� � � . This value is used as

a proof of an interaction. Note that no peer can generate
such a value in a fake manner, since it does not know the
other peer’s private key.

� � is used to prevent replaying
of such a message. The use of �1� � and � � is for added
protection against somebody using a message from Peer � ’s
interaction with some other peer. Another important use of
the interaction message is that if a group of co-operating
peers are attempting to boost each other’s rating, they will
need to exchange such messages every time (unless they
compromise on each others’ private keys as well), thus
making them pay for every malicious attempt.

Report: After having interacted with a Peer � , Peer 2 can file
a report indicating Peer 2 ’s new trust value,

�
, for Peer � , by

broadcasting the Report message. For this, we need to ensure
that only the THA peer can read the message and that only
a peer which has actually interacted with Peer � can send the
report. The Report message is of the form:

��� � � ��� � "! I -��0*����L.0� � � � � � � �  � �  � �M� � � � �1� � �9� �
The important features of the Report message are:

� Only the THA peers can read the message (since they
are the only ones possessing � ��� ). This serves as a se-
cret ballot mechanism.

� Note that the THA peer will need the ��� of the report-
ing peer to update the global trust value since the global
value is based on the individual trust values of all peers.
This ID can be obtained by decrypting with � � (con-
tained in the message) and � � (already known; it is the
THA peer for Peer � ).

� The interaction-exchange message is further encrypted
with

� � and � � is sent to decrypt it. This is done to pre-
vent any peer from sending a fake report, in an unlikely
scenario of it getting hold of the

���  � �M� � � � �1� � � value
from another interaction. The tallying of � � outside and
the � � in the interaction-exchange message ensures that
the right peer is sending the report.

3.3.2 Discussion
Now let us look at various possible attack scenarios and how
TrustMe prevents it:

� Manipulating Reply Messages: This can be attempted
by either a malicious THA peer or a non-THA peer.
THA Peer: A THA peer can send a wrong trust value in
the reply. To prevent this, the bootstrap server assigns a
number of THA peers for a single peer. Then the query-
ing peer can take a majority vote amongst them and se-
lect that value. This ensures reliability. Also TrustMe
presents a possibility to punish such a malicious peer.
If we broadcase all the reply messages, the THA peers
will be able to see what other THA peers are replying
with. And later on, they can include in their reply mes-
sages – the ����� N ’s of THA peers which are sending
wrong values. A querying peer can easily identify such
peers by looking at what the majority of peers are advis-
ing against. Also, since the assignment of THA peers is
random, there is extremely small possibility of majority
of peers being malicious and co-operative, thus making
the above mechanism secure.
There is another possibility of a malicious THA peer to
get a ���1� N of another THA peer (it can see the broad-
casted reply) and send a wrong trust value using that����� N . However, as mentioned earlier, this is easily
prevented by the use of � � in ���1� N and the

� �  � �P� in
the reply message.
Non-THA Peer: It can either attempt to replay a genuine
reply message at a later time or try and use a fake pair of� � � � , ��� � � keys. The former scenario is prevented by
including

� � in the reply message. Any message older
than a user-decided window is disregarded. The latter
scenario can be also easily prevented by the following
mechanism. The offering peers (the peers which offered
resources and are being queried for their trust values)
send their � � and ��� � keys as a part of the offer, which
preceeds the Query phase. That can be tallied with the
value in the reply. Though this can be used to prevent
anybody from tampering another peer’s trust value (no
peer can generate the correct � � � for another peer), it
is still possible for an offering peer itself to generate the
fake reply message (it can send an incorrect ��� � with
the offer and send fake reply accordingly). This also
can be prevented, since other THA peers would send
the same value of correct ��� � . So on receiving any con-
flicting reply messages, a peer just rejects the offer from
that peer and potentially blacklists it.

� Manipulating Proof-of-Interaction Messages: A
proof-of-interaction message can be manipulated either



by attempting to replay an old message or by using a
fake pair of

� � � , � � � keys. The replay is avoided by the
use of

� � . Any report message, containing the proof-
of-interaction message outside a reasonable time frame,
is discarded. The other possibility is that a peer uses a
fake pair of

� � � , � � � keys. Note that it is not possible
for an offering peer to fake, since its THA peer would
have included its true � � value in the reply message. To
prevent the querying peer from faking, the offering peer
can also get its actual public key from its THA peer.

� Manipulating Report Messages: There is very little
that can be done to manipulate a report message. As
mentioned earlier, no peer can fake a report message and
also that it is secure in the sense that only the THA peer
can read the message. Only possibility is that a peer
can rate another peer in a wrong manner, e.g., giving a
poor rating inspite of good performance. This is tackled
on the trust model level. Any good trust model will not
effect a peer’s trust rating because of a single peer.

� Attempting to Identify THA peers: In case only one
private-public key pair is used, that is,

� �
, � � is used

wherever
� � �

, � � � is used, there exists a possibility of
identifying the THA peers. Some peer can monitor the
network for a long time and on reading various reply
messages can construct a mapping of ��� � ’s with their
corresponding � � ’s. Then on reading ����� � ’s of THA
peers, it can identify it. The use of a second pair pre-
vents this from happening. The

� ���
, � � � pair is only

used while acting as a THA peer.

Till now we have demostrated how the protocol achieves
complete anonymity, security, reliability and accountabil-
ity. In the following, we summarize a few other important
aspects of the TrustMe protocol:

� Persistence: Any peer just has to file a report to make
sure its experiences are accounted for in the trust value
of the interacting peer. After that, even if that peer logs
out of the system, its review is counted. This way, we
provide persistence to votes and provide a stronger trust
mechanism. As our experiments indicate (Sec-4), non-
persistent systems can provide highly misleading trust
values in the presence of even a small number of mali-
cious peers.

� No Central Trusted Authority: It is important to no-
tice that the bootstrap server does not act as a CTA. It
is rather a form of a certification authority. The use
of
�����

is only as a pseudo-identification mechanism,
which peers can use to mark other peers. It does not sig-
nify, in any manner, a peer being trusted or not. All the
trust mechanisms are within the network and the boot-
strap server does not participate in it.

� Small decision time: Notice that only a reply messages
is enough for a peer to make a decision on whether to
interact with a particular peer or not. This is extremely
convenient and fast.

� Ease of contribution: It is extremely easy for a peer to
contribute its trust value for another peer – by sending

a single report message. This is a highly convenient as
opposed to notifying each THA peer as in Eigenrep [8].

3.3.3 Peer Join
In this section, we will explain how a peer join is handled.
Whenever Peer � contacts a bootstrap server for joining the
network, the bootstrap server will collect its � � and � �� val-
ues. It also generates a new pair of private and public keys -� � ��� , ��� � � . It gives ��� � to Peer � . Then, from a cache of
available peers in the network, the bootstrap server will se-
lect a set of peers that will serve as the THA peer for Peer � .
For the THA peer, say Peer H , it then prepares a Trust-Host-
message:

��� ���  �L� � ����� N � � ��� ������ N � � �N ��1� � � � � � � � � � ��� � � �
This message can be given to Peer � to be broadcasted to the
network and the THA peer on receiving such a message up-
dates its local database. Note that no peer can generate such
a message (because it doesnt know

�����
) and also only PeerH can read the entire information, because only it knows

���N .
The use of ����� N both outside and inside is for efficiency
purposes. The one on the outside prevents every peer to do a
decryption by � ��� to check if the message is for itself and
the one on the inside ensures that a fake message is not used
(by prefixing a “friendly” ����� N to the rest of the message).

Note that one attack is still possible in this scenario. The
Peer � does not broadcast the messages and generates a fake� � � � , ��� � � pair and sends it to friendly peers, which will
later reply with excellent trust ratings for Peer � . This can be
prevented in two ways:

1. The broadcast can be done by the bootstrap server.

2. Any peer interacting with Peer � , before interacting,
can ask for this message (or a shortened version like� ��� J���1� N � ��� � � ) and tally the ����� N with what it will
be getting from other THA peers.

3.3.4 Peer Leave
There are essentially two main things to be taken care of
whenever Peer � leaves the system:

1. Data about peers for which Peer � is the THA peer: Be-
fore exiting, Peer � contacts the bootstrap server and gets
a new peer which will take its place. It broadcasts a rel-
evant

��� ���
message, thus assigning the responsibility

to a new peer. Note that a more convenient buffer mech-
anism can also be implemented by assigning � THA
peers for a peer, whereas using information from only� at every step ( ��� � ). Then such a step will need
to take place only after the number of THA peers goes
below � .

2. Data at THA peers for Peer � : To invalidate such infor-
mation, every THA peer maintains a time stamp when-
ever a peer’s records are accessed and if the information
is not accessed for a long enough time, it just deletes it
from its database.



4. Analysis

First, we look at the importance of persistence in a typ-
ical trust based decentralized P2P system. As mentioned
earlier [4] presented a non-persistent system in which peers
make decisions based on locally available trust values. Lo-
cally available trust values are obtained by combining indi-
vidual ratings from peers (which have interacted with the de-
sired peer) currently present in the network. Hence, it does
not take into account the ratings from peers which interacted
with the desired peer and later left the system. Global trust
values are those which take into account the trust ratings of
all the peers which ever interacted with the desired peer (as
in TrustMe based systems), thus providing a true account.
We simulated that scenario with a randomly generated net-
work of 500 peers and periodically removed 5% of the peers.
Figure-1 presents the mean squared errors of local trust val-
ues for three kinds of peer behaviour - (a) Inconsistent - in
which peers rated every other peer randomly between 0 and
1; (b) Consistent - in which “good” peers always get rated
between � � >�� 5��:� and “poor” peers always between � � 5�� >��=� ;
(c) Malicious - in which there were 10 malicious peers al-
ways rating the good peers as poor and poor peers as good.
Each transaction selects a random querying peer and a ran-
dom queried peer and comprises of the complete four phases
(from querying to reporting) of the protocol.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

M
ea

n 
S

qu
ar

ed
 E

rr
or

 in
 T

ru
st

 V
al

ue
s

Number of Transactions

Consistent Behaviour
Inconsistent Behaviour

Malicious Behaviour

Figure 1: Mean Squared Errors for Non-Persistent Systems

The Consistent behaviour scenario has the least MSE,
since in this case the local values will always be a close ap-
proximation to the global values. The Inconsistent behaviour
scenario is a little worse since a peer might lose the peers
who are rating it as good (they might have left the system)
and all the current peers might be rating it as bad or vice
versa. The Malicious behaviour scenario is the worst since a
few malicious peers deliberately try to reverse the ratings of
the peers and tend to mislead the querying peer the most.

Figure-2 shows the effects of a targetted attack by 10 mali-
cious peers on a particular peer. They target a high trust value
peer by rating it as bad everytime somebody queries for its
trust value. As a result the systems based on locally available
values rates the peer between � > � � � > � , whereas its actual
trust value lies between � >
	 � � > � . This proves that having as
little as 10 malicious peers, the trust value in a non-persistent
system can be highly misleading.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

T
ru

st
 V

al
ue

s

Number of Transactions

Local
Global

Figure 2: Targetted attack on a single peer

Next we look at the costs of various protocols. There are
two components to the costs. The first is the cost of using
cryptography primitives. This is of the same order for all the
currently available systems since all are based on public key
cryptography. The second component is the messaging costs
because of the increased number of messages due to different
protocols. Figure-3 presents the messaging costs of polling
and TrustMe based systems. The TrustMe based systems are
twice as expensive as the polling based systems. The primary
component of the cost in both the mechanisms is the cost of
broadcasting. In the polling mechanism, only the query is
broadcasted, whereas in TrustMe the query and the report
are both broadcasted. The graph shows that the number of
messages increase linearly with the number of trasactions for
both non-persistent and persistent trust based systems. The
messaging costs vary little with the number of THA peers.
This is because the cost of broadcasting does not change sig-
nificantly with the addition of new THA peers.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

T
ot

al
 N

um
be

r 
of

 M
es

sa
ge

s

Number of Transactions

TrustMe THA=3
TrustMe THA=7

Polling

Figure 3: Messaging Costs

Next, we compare the response times of these systems.
We assume a response to be complete when the querying peer
receives the first message that provides it with enough infor-
mation to take a decision. Note that, it might still be expect-
ing other messages in order to strictly verify the authenticity
of the first message. We make this choice, since we can al-
ways choose a peer to accept services from, at the receipt
of such a message and abort the process in case this mes-
sage is proved to be in-authentic. The cumulative response
times is the total response time for all the transactions and is



measured in time units where each unit is equal to the time
taken to exchange one message from a peer to its neighbour
(assuming it to be the same for all). We used 3 THA peers.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

C
um

ul
at

iv
e 

R
es

po
ns

e 
T

im
e

Number of Transactions

TrustMe
Polling

TrustMe with Caching

Figure 4: Cumulative Response Times

As Figure-4 shows, TrustMe based systems have the least
cumulative response time. The reason for this is the fact that
receiving a single reply from a THA peer is enough for the
local peer to make a decision. On the other hand, the polling
based mechanism is more expensive, since it has to collect
the replies from all peers and then combine them. Caching
trust values also significantly reduces the response times of
the querying peers. Every peer while forwarding a query re-
ply, caches that reply locally and responds to the queries with
that cached value. Hence, the trust values will be available
closer than normal. Here the term “close” is an overlay net-
work property and not the geographical proximity. Figure-5
shows the variation of the cumulative response times with
the number of THA peers. As the number of THA peers in-
creases, there is a greater chance of a THA peer being close
to the querying peer and hence reducing the response times.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

C
um

ul
at

iv
e 

R
es

po
ns

e 
T

im
e

Number of Transactions

3 THA Peers
5 THA Peers
7 THA Peers
9 THA Peers

11 THA Peers
13 THA Peers
15 THA Peers

Figure 5: Cumulative Response Times

5. Conclusions and Future Work
We have described the design of TrustMe � a secure and

anonymous underlying protocol for trust management. The
protocol provides mutual anonymity for both the trust host
and the trust querying peer, aiming at providing secure, re-
liable, and accountable distribution and access of ratings of
peers. We have also presented a thorough security analy-
sis of the protocol and reported some initial experimental re-
sults, showing that the TrustMe protocol has desirable fea-

tures of anonymity, reliability, accountability and is secure in
the presence of a variety of possible attacks.

One of our ongoing work on TrustMe is to explore various
other cryptographic primitives which can be more efficient as
compared to public key cryptography. The use of broadcast
authentication mechanisms like TESLA which are based on
symmetric key cryptography could be worth exploring. Also,
we intend to study mechanisms when some sort of a central
authority is available.

References
[1] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual

communities. In HICSS, 2000.
[2] K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer

information system. In CIKM, 2001.
[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A

distributed anonymous information storage and retrieval sys-
tem. Lecture Notes in Computer Science, 2001.

[4] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. Choosing reputable servents in a p2p net-
work. In Eleventh International World Wide Web Conference,
Honolulu, Hawaii, May 2002.

[5] Crowds. http://www.research.att.com/projects/crowds/.
[6] R. Dingledine, M. J. Freedman, and D. Molnar. The free

haven project: Distributed anonymous storage service. In
Proceedings of the Workshop on Design Issues in Anonymity
and Unobservability, July 2000.

[7] J. Douceur. The sybil attack. In IPTPS02 Workshop, Cam-
bridge, MA (USA), March 2002.

[8] S. Kamvar, M. Schlosser, and H. Garcia-Molina. Eigenrep:
Reputation management in p2p networks. In Twelvth Inter-
national World Wide Web Conference, 2003.

[9] C. Kaufman, R. Perlman, and M. Speciner. Network security:
private communication in a public world. Prentice-Hall, Inc.,
1995.

[10] S. Marsh. Formalising trust as a computational concept. In
Ph.D. Thesis, University of Stirling, 1994.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In Pro-
ceedings of ACM SIGCOMM 2001, 2001.

[12] E. Sit and R. Morris. Security considerations for peer-to-peer
distributed hash tables. In IPTPS02 Workshop, Cambridge,
MA (USA), March 2002.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2001.

[14] L. Xiao, Z. Xu, and X. Zhang. Mutual anonymity protocols
for hybrid p2p systems. In 23rd International Conference on
Distributed Computing Systems, Providence, Rhode Island,
May 2003.

[15] L. Xiong and L. Liu. A reputation-based trust model for peer-
to-peer ecommerce communities. In IEEE International Con-
ference on Electronic Commerce, 2003.

[16] B. Yu and M. P. Singh. A social mechanism of reputation
management in electronic communities. In Cooperative In-
formation Agents, 2000.


