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ABSTRACT
The advances in wireless communication and decreasing costs
of mobile devices have enabled users to access desired infor-
mation at any time. Coupled with positioning technologies
like GPS, this opens up an exciting domain of location based
services, allowing a mobile user to query for objects based on
its current position. Main bottlenecks in such infrastructures
are the draining of power of the mobile devices and the lim-
ited network bandwidth available. To alleviate these prob-
lems, broadcasting spatial information about relevant objects
has been widely accepted as an efficient mechanism. An im-
portant class of queries for such an infrastructure is the k-
nearest neighbor (kNN) queries, in which users are interested
in k closest objects to their position. In this paper, we de-
scribe mechanisms to perform exact kNN search on conven-
tional sequential-access R-trees, and optimize established kNN
search algorithms. We also propose a novel use of histograms
for guiding the search and derive analytical results on maxi-
mum queue size and node access count. In addition, we discuss
the effects of different broadcast organizations on search per-
formance and challenge the traditional use of Depth-First (dfs)
organization. We also extend our mechanisms to support kNN
search with non-spatial constraints. While we demonstrate our
ideas using a broadcast index, they are equally applicable to
any kind of sequential access medium like tertiary tape storage.
We validate our mechanisms through an extensive experimen-
tal analysis and present our findings.

1. INTRODUCTION
With the coming era of ubiquitous computing, the popu-

larity of mobile communications and emergence of positioning
technologies like GPS have laid a strong foundation for location
based services (LBSs) [6, 21]. Location based services provide
users with information that is specialized to their location, for
example, the nearest gas station or the five closest restaurants.

In mobile wireless environments, LBSs are accessed through
a common wireless channel, which connects the users to the
service provider. There are two important constraints of such
mobile wireless environments: (i) Limited network bandwidth,
and (ii) Power constrained user devices (mobile units). Effi-
cient mechanisms to overcome these constraints will eventually
play a pivotal role in providing such location based services.
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One straight-forward way of providing location-based service
is to let each mobile unit query the LBS server by establishing
a one-to-one connection and have the server reply to mobile
units on a per-query basis. However, this on-demand access
model has a few critical drawbacks. First, due to large number
of users that need access to the service, it creates a processing
bottleneck on the server side and contention on the wireless
medium. Second, it fails to exploit the similarity of content
desired by all users.

Another way of providing location-based service is to use
the broadcast access model, in which information is continu-
ously broadcasted on the wireless medium and each mobile
unit tunes-in to the broadcast and reads relevant information
whenever a query is issued. This prevents the costly transmis-
sion of queries from individual mobile devices to the server,
thus reducing the processing and bandwidth bottlenecks. As
a result, the broadcast model is considered most suited to such
scneraios and has been an important topic of interest in the
research community [13, 5, 26, 2, 3, 29, 12]. An important
challenge in this model of access is to devise efficient indexing
and searching mechanisms for energy efficient querying of loca-
tion dependent broadcast data. The goal is to minimize energy
consumption at the mobile unit, thus increasing its lifetime.

One essential class of queries is the k-nearest neighbor queries,
often categorized as the “kNN Search on the Air” problem [30]
in the current context. In totality, it can be described as broad-
casting location dependent data, together with a spatial index
on the wireless medium and searching this broadcast to answer
kNN queries in an energy efficient manner. To illustrate the
problem, consider a battlefield scenario where several mobile
units report their positions to a central server through a wire-
less channel. The server builds a spatial index on this position
information and securely broadcasts it to the battlefield. Then
the mobile devices can tune in and process the broadcast to
answer spatial queries on the broadcasted position informa-
tion. One such query can be posed by a soldier as: “Give me
the positions and names of the 10 nearest friendly units”. In
a different scenario, taking place in a commercial setting, the
server can broadcast locations of various restaurants to answer
queries like: “Give me the positions of the 5 nearest restau-
rants”.

In this paper, we study the problem of exact kNN search on
R-trees [8] in wireless broadcast environments. Our results also
apply for kNN search on serialized R-trees for any sequential
access medium. We chose R-trees as the basis of our work
because of its two primary advantages. First, it can be used to
support other important kinds of queries, like range queries.
This prevents developing exclusive, incompatible solutions for
each class of queries. Second, it is well studied and established
as an efficient indexing mechanism.

Our main technical contributions are as follows:



– We develop an algorithm, called w-opt, which introduces
revisions and optimizations over well established kNN
search algorithms, and provides better performance on
wireless mediums.

– We describe the effects of different broadcast organiza-
tions on search performance and show that commonly
employed depth first serialization of the tree, under cer-
tain conditions, results in reading many nodes that do
not contribute to the query result, thus causing higher
energy consumption.

– We propose the use of histograms for guiding the search,
and develop an associated algorithm, called w-hist algo-
rithm. It uses simple equi-spaced grid histograms to sup-
plement the index and achieve further pruning of nodes,
resulting in lower number of node accesses and smaller
memory requirements.

– We also derive analytical results on maximum queue size
and node access count, for uniform data distributions.
Furthermore, we show how to extend the use of his-
tograms for supporting kNN search with non-spatial con-
straints (we only consider equality constraints on types).

– We provide experimental results to evaluate the intro-
duced mechanisms and understand the tradeoffs involved
in using them. In our experiments, we use both synthet-
ically generated uniform data and real data with skewed
distribution.

The rest of the paper is structured as follows. Related work
is discussed in Section 2 and an overview of kNN search on R-
trees is presented in Section 3. Section 4 introduces techniques
to optimize kNN search on serialized R-trees and Section 5
studies the index organization tradeoffs. In Section 6, the use
of histograms is explained in the context of kNN search on
the air and analytical results are derived for maximum queue
size and node access count. Queries with type constraints are
discussed in Section 7. Section 8 presents experimental results
and Section 9 concludes the paper.

2. RELATED WORK
In this section we list three different areas of related research.

The first two, R-tree indexes and indexing on the air, establish
the basis of our work. The last one, spatial index broadcast,
consists of work closely related to ours, which has considered
energy efficient search on spatial data in wireless broadcast
environments.
R-tree Indexes: R-trees [8] are spatial index structures widely
used to index n-dimensional points or rectangles. Due to prac-
ticality of implementing them on secondary storage and their
good search performance in low-dimensional spaces, R-trees
have enjoyed wide deployment. R-trees can be thought of as
the multidimensional version of B+-trees. An R-tree node con-
sists of (i) a minimum bounding rectangle (mbr) which encom-
passes mbrs of all nodes under its branch, (ii) mbrs of its chil-
dren nodes, and (iii) pointers to its children nodes. A node
at the leaf level contains mbrs of data objects and pointers
to data objects, instead of child mbrs and pointers. Figure 1
shows an example R-tree structure at the top and the set of
indexed points together with the node mbrs at the bottom.

The research on R-trees is still active, especially in the field
of mobile object indexing [16, 23]. Several variations of R-
trees exist including R∗-trees [4] and R+-trees [25]. R∗-trees
have been shown to work well for various data and query dis-
tributions and in this paper we use R∗-trees for performance
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Figure 1: Illustration of an R-tree index

evaluation.

Indexing on the Air: In wireless broadcast, it is crucial
that energy is conserved on the mobile unit side when answer-
ing queries on the broadcasted data. To alleviate the vast
energy consumption problem of searching un-indexed data, air
indexes were introduced in [13]. Air indexes trade latency in
order to reduce energy consumption. Using the index, the mo-
bile unit can selectively tune-in only to the relevant portion
of the broadcast and thus optimize its energy consumption.
However, the inclusion of the index increases the total size of
the broadcast cycle and thus increases latency. This latency
involved in searching broadcasted data is measured as access
latency, which is defined as the time difference between the
point at which a query is posed and the point at which result
of the query is fully computed. The energy consumption is
measured as tune-in time, which is defined as the total time
during which the mobile unit was listening to data from the
wireless medium. Both access latency and tune-in time are
measured in terms of number of packets, where a packet corre-
sponds to the physical unit of access on the broadcast medium,
similar to disk blocks. Similar to [13], our work also assumes
that a single index node corresponds to a single packet.

Air indexing strives to decrease tune-in time while keeping
the increase in access latency due to the broadcast of extra
index information minimal. The (1, m) indexing approach [13],
widely adopted by many other researchers, interleaves data and
index on the medium for the purpose of improving the access
latency. The (1, m) indexing approach can be applied to most
of the tree based indexes, including ours. Hence, in our work,
we only concentrate on improving the tune-in time associated
with index search in broadcast environments.

Broadcast disks [2] is another commonly used [3, 29, 12] tech-
nique for efficient data access. Broadcast disks build a memory
hierarchy through the use of repetitive broadcasts by adjusting
the occurrence frequency of data items based on their popu-
larity. We do not consider broadcast disks, since our focus in
this paper is on spatial data broadcast and air indexes form
an ideal framework for our work.

Spatial Index Broadcast: Recently, researchers have con-
sidered energy efficient query evaluation over location depen-
dent data in wireless broadcast environments [30, 10, 28, 15].
In [28], authors have discussed processing of nearest neighbor
(k = 1) queries on location dependent data. Their approach is
based on building a voronoi diagram [18] and broadcasting it
with the use of a new index structure called D-tree. However
their approach does not extend to k nearest neighbor search.



Algorithm 1: R-tree kNN search

1: ItemQueue ← {rootNode}// sorted by MINDIST
2: ResultQueue ← Ø // sorted by MINMAXDIST, size ≤ k
3: while ItemQueue �= Ø do
4: item = ItemQueue.pop()
5: if item is an object then
6: ResultQueue.add(item)
7: if all items in ResultQueue are objects then
8: return ResultQueue
9: end if

10: else if item is a node then
11: Read item from the medium
12: for all citem in item.childrenList do
13: if MINDIST(citem, P ) > kthdist then
14: continue
15: end if
16: ItemQueue.add(citem)
17: ResultQueue.add(citem)
18: end for
19: ResultQueue.remove(item)
20: end if
21: end while

Algorithm 2: R-tree kNN search adapted for wireless

1: ItemQueue ← {rootNode}// sorted by appearance order
2: ResultQueue ← Ø // sorted by MINMAXDIST, size ≤ k
3: while ItemQueue �= Ø do
4: item = ItemQueue.pop()
5: if MINDIST(item, P ) > kthdist then
6: continue
7: else if item is an object then
8: ResultQueue.add(item)
9: else if item is a node then

10: Read item from the medium
11: for all citem in item.childrenList do
12: if MINDIST(citem, P ) > kthdist then
13: continue
14: end if
15: ItemQueue.add(citem)
16: ResultQueue.add(citem)
17: end for
18: ResultQueue.remove(item)
19: end if
20: end while
21:

In addition, the indexing structures are exclusive to this class
of queries. In [10], authors have studied the problem of an-
swering range queries over location dependent data for mem-
ory limited devices, but their techniques are not extendable to
nearest neighbor queries. In [30], authors have studied pro-
cessing of k nearest neighbor queries on location dependent
data. However, they only provide approximate search tech-
niques. Moreover, [30] favors a list based structure in place of
R-trees for small values of k. Also, their experimental compar-
ison is based on R-trees, not R∗-tree variants, which are known
to be more efficient. In our work, instead of introducing yet
another indexing structure, we describe techniques to adapt
and revise kNN search on R-tree family for wireless broadcast
and more importantly also provide exact results.

3. BACKGROUND
In this section we give a brief overview of kNN search on

R-trees. The description is based on Roussopoulos et. al’s [22]
algorithm for kNN search on R-trees. Before describing the
algorithm, we give definitions of three measures that are es-
sential for the description of the algorithm and will be used in
the rest of the paper. For a given query point P , a node N ,
and an object O,

• MINDIST(N, P ) is the minimum distance from P to N ’s
mbr. MINDIST(O, P ) is the minimum distance from P
to O’s mbr (in case O is a point, O’s mbr reduces to its
position).

• MAXDIST(N, P ) is the maximum distance from P to
N ’s mbr, where MAXDIST(O, P ) is equal to MINDIST(O, P ).

• MINMAXDIST(N, P ) is the maximum possible minimum-
distance between P and the mbr of closest object re-
siding in N ’s mbr. MINMAXDIST(O, P ) is equal to
MINDIST(O, P ).

Note that, the first two definitions imply that, no object resid-
ing under node N ’s mbr can have a MINDIST value for point
P less than MINDIST(N, P ) or larger than MAXDIST(N, P ).
The third definition implies that, the object which resides un-
der node N ’s mbr and has the smallest MINDIST value for
point P , has a MINDIST value of at most MINMAXDIST(N, P ).

The conventional kNN search algorithm keeps two data struc-
tures to guide its operations. These are ItemQueue and ResultQueue.
Both of them store either node or object identifiers together
with their mbrs. ItemQueue is sorted on the MINDIST mea-
sure and does not have a predefined size. On the other hand,
ResultQueue is sorted on the MINMAXDIST measure and can
have at most k entries. We define the variable kthdist such
that it takes the value ∞ if there are less than k entries in
ResultQueue, otherwise it takes the value of MINMAXDIST
measure for the kth item in ResultQueue.

The algorithm works iteratively. Initially ItemQueue con-
tains only the root node. At each iteration, the topmost item
in ItemQueue is popped. If the item is a node (say N) entry,
then the node is read from the medium. Entries for the chil-
dren nodes of N , whose MINDIST values from the query point
are smaller than the kthdist, are added to ItemQueue and
ResultQueue, and N ’s entry is removed from ResultQueue if
it is there. If the initially popped item is an object, then it
is added only to ResultQueue and the termination condition
is checked. In case all entries in ResultQueue refer to objects
then the search halts. Algorithm 1 gives the pseudo code of
kNN search on R-trees.

4. KNN SEARCH FOR WIRELESS MEDIUM
While searching a serialized R-tree in the wireless broadcast

scenario, using Algorithm 1 as a base, it is not possible to sort
ItemQueue on the MINDIST measure. Since the MINDIST
ordering of tree nodes is not consistent with their order of ap-
pearance in the broadcast, reading a node from the medium
based on the topmost item in the MINDIST sorted ItemQueue
may result in leaving behind other tree nodes that have entries
in ItemQueue. As these other nodes are left behind on the
medium, accessing them in the future steps of the algorithm
will require a wait until the next index broadcast, which is
prohibitive in terms of access latency. As a result, the items in
ItemQueue have to be sorted based on their appearance order
on the medium. In accordance with this observation, previous
work [30, 15] on this topic have considered searching serial-
ized R-trees for k nearest neighbors using queues sorted on
appearance order. Furthermore, when an item is popped from
ItemQueue, we can first check whether the MINDIST value
of the item is larger than kthdist. If so, it is safe to prune the



item and proceed with the next iteration1. It is also impor-
tant to mention that the stop condition in Algorithm 1 (lines
7-8) is no more valid as it is not guaranteed that the rest of
the items in ItemQueue cannot generate an object closer than
the current k, since the queue is no more sorted on MINDIST
measure. As a result, the search halts when the ItemQueue
becomes empty. Algorithm 2 gives the pseudo code of kNN
search on R-trees adapted for wireless medium.

The adapted version of kNN search for wireless medium is
obviously far from being optimal due to its almost unguided
exploration of the nodes. The efficiency of the search, in terms
of tune-in time, relies on the pruning capabilities of the algo-
rithm and the organization of the index. Next, we illustrate
that some cases that do not occur in the original version of the
algorithm, but appear in the adapted version can be pruned
by a simple yet effective optimization.

u v w

u < v < w

mindist = 15
minmaxdist = 20
maxdist = 27

level l

mindist = 11
minmaxdist = 14
maxdist = 21

mindist = 0
minmaxdist = 5
maxdist = 10

. . .

Figure 2: The topmost two levels of an example tree

4.1 The w-opt Algorithm
In this section, we describe the w-opt algorithm and how it

improves kNN search performance on wireless medium. Before
giving the details, we first illustrate a particular inefficiency of
the adapted algorithm with an example. This forms the bases
of our improved algorithm.

Consider searching the tree depicted in Figure 2 for two
nearest neighbors. Clearly, the candidates for the two near-
est neighbors should come only from nodes under w, since its
mbr covers at least two objects (one at distance at most 5
and another at distance between 5 and 10) closer than any
other object under node u and v. Now, assume that nodes
u, v and w are organized on the medium such that u appears
before v and v before w. As a result, after the root node is
processed, node u’s entry appears on top of ItemQueue since
the queue is sorted by appearance order. ResultQueue on the
other hand is sorted based on MINMAXDIST, thus consists of
entries of w and v in order and kthdist is equal to the MIN-
MAXDIST of v, which is 14. Next, u’s entry is popped from
the queue and is discarded since its MINDIST is larger than
the kthdist (15 > 14). In the next iteration of the algorithm,
v’s entry is popped from the queue and the node v is read from
the medium as it does not satisfy the pruning constraint, its
MINDIST, which is 11, is smaller than the kthdist, which is 14.
This is an important pitfall of the adapted algorithm. Node
v is read even when it will not contribute to the result! The
original algorithm would have explored w before v because the
ItemQueue is sorted by MINDIST. In fact, the original algo-
rithm will examine several other nodes (with MINDIST values
less than node v’s), until the node v’s entry comes to the front
of the queue. Then v will have a much higher chance of being
discarded. This is because kthdist will improve as better and

1Notice that this pruning condition is never satisfied when
ItemQueue is sorted on the MINDIST measure.

better nodes are explored.
In Figure 2, it is indeed possible to prevent node v from

being read from the medium by the adapted algorithm. If
the minimum fanout of the tree is fmin, then we know that
there are at least f l−1

min objects under node w’s mbr (assum-
ing the leaf nodes are at level 1 and the root node is at level
l). Given this knowledge, at the time when we add w’s entry
to ItemQueue, we can say that there is one object at most
MINMAXDIST(w, P ) away from the query point and at least
f l−1

min−1 objects at most MAXDIST(w, P ) away from the query
point, where P is the query point. Returning back to the fig-
ure, this means there is one object at most 5 unit away from
the query point and f l−1

min−1 ≥ 1 objects at most 10 units away
from the query point. This information allows us to discard v
in the next iteration since its MINDIST is 11 and we already
know there exists an object at most 5 units away and another
object at most 10 units away from the query point. It is im-
portant to notice that the additional information employed,
which uses the MAXDIST measure and the existence of f i

min

objects under a node at level i, helps us to cut down the num-
ber of nodes read from the medium, because it suppresses the
unguided node exploration nature of the adapted algorithm.

Utilizing the above observation, we improve the adapted
kNN search algorithm as follows:

• While adding a node entry, say node N at level i, with its
MINMAXDIST measure to ResultQueue, we also insert
f i

min − 1 additional entries with the MAXDIST measure
of node N . ResultQueue is sorted on the associated mea-
sures of the entries. When we explicitly remove a node
from ResultQueue, we remove all entries associated with
that node.

In the rest of the paper we refer to the R-tree kNN search
algorithm designed for a random access medium as the con-
ventional algorithm, adaptation of the conventional algorithm
to wireless broadcast medium as the wireless conventional al-
gorithm (w-conv for short) and the improved version of the
adapted algorithm as the optimized wireless algorithm (w-opt
for short).

5. DFS VS. BFS
The way a spatial index is organized on the broadcast medium

impacts the number of index nodes read by the kNN search al-
gorithm, thus affecting the tune-in time. Previous work on
range and kNN search in broadcast environments [28, 10, 30,
15] that has considered using R-trees, used a depth first search
(dfs) order serialization of the tree, mostly because the con-
ventional algorithm is based on a heuristically guided dfs. We
present an argument in favor of serializing the tree based on
breadth first search (bfs) order and in Section 8 we experi-
mentally show that bfs is actually the better choice.
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Figure 3: Example illus-
trating the downside of dfs
organization

For a given query point
P , let QP,k denote the
position of kth nearest
neighbor of point P . A
kNN search algorithm on
R-trees is said to be op-
timal if it only accesses
nodes whose mbr’s inter-
sect with the circle cen-
tered at P with radius
equal to the distance be-
tween P and QP,k [24].
Figure 3 shows a query
point P and the circle formed around it using its distance from



its kth nearest neighbour. Let us call this circle result circle
of the query point. Since the kNN search on wireless medium
is not optimal, it is possible to read a node from the medium
such that the mbr of the node does not intersect with the result
circle of the query point. Figure 3 shows one such example tree
node u. If tree is serialized on dfs order, then the algorithm
will access several other nodes (from the nodes of the tree un-
der the area A in Figure 3) under node u until the algorithm
is done with the branch rooted at node u without contributing
any objects to the result. In fact, we have the following result,

Theorem 1. For a dfs serialized tree, if the w-opt kNN
search algorithm reads a node Ni at level i (the leaf nodes are
at level 1) whose MINMAXDIST is smaller than the kthdist,
then it must read at least i nodes from the branch rooted at
node Ni irrespective of whether Ni intersects with result circle
or not.

Proof: Since the algorithm visits nodes in dfs order on the
broadcast medium, only the nodes under Ni’s branch can be
accessed until the branch has totally passed on the medium.
Let O be the closest object under Ni’s mbr to the query point.
Since Ni’s MINMAXDIST is smaller than the kthdist, O’s dis-
tance to the query point is smaller than the value of kthdist at
the time Ni is popped from the queue. Furthermore, no node
under Ni’s branch can have a MINMAXDIST value smaller
than O’s distance to the query point. (This follows since oth-
erwise we’ll have another object under Ni’s mbr that is closer
to the query point than O, which is a contradiction.) As a
result, kthdist cannot have a value smaller than O’s distance
to the query point, at any time before the algorithm leaves
Ni’s branch behind. It directly follows that any node under
Ni’s branch whose mbr contains O must be read, since its
MINDIST can be at most equal to O’s distance to the query
point which cannot be larger than kthdist. There are at least
i nodes whose mbrs contain O under Ni’s branch since Ni is
at level i. Thus the result is proved. �

The bfs ordering clearly does not share the same problem.
This is because the nodes are serialized level by level and there
is no recursive containment relationship between successive
nodes within a level. However, bfs serialization may have a
larger memory requirement due to the growth in ItemQueue.
We investigate this issue analytically in Section 6 and experi-
mentally in Section 8.

6. THE W-HIST ALGORITHM
In this section we introduce the w-hist algorithm, which im-

proves the pruning capabilities of wireless kNN search algo-
rithms with the use of simple histograms. Histograms have
been profoundly used in databases for the purpose of selectiv-
ity estimation of range queries [20, 14, 17, 9]. Although various
types of histograms have been introduced in the literature, we
employ a grid like histogram that stores the number of objects
located under each cell. Since our aim is to reduce the tune-in
time, the histogram itself should be small enough not to in-
crease the tune-in time, as it has to be read in order to extract
useful information from it. Using complex histograms will not
allow this.

The histograms can be used to obtain an upper bound on
size of the result circle of a kNN query. Let A denote the area
of the square region which contains all objects. We denote a
histogram with cell size c as Hc. Hc partitions the area of
interest as an equi-spaced grid with cell size equal to c. Hc

has �√A/c�2 square cells of size c × c. A cell is denoted as
Hc{i, j}, where i and j are cell indices. Each cell stores the

number of objects that lie under the cell’s boundaries2, denoted
as Hc[i, j].Figure 4 illustrates an example 7x7 histogram.
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Figure 4: Example illus-
trating the usage of an his-
togram for k = 4

Note that given a query
point P and any sub-
set of k objects from the
object set, the distance
between P and the far-
thest object in the subset
is larger than the radius
of the result circle. As
a result, any circle cen-
tered at point P that cov-
ers some set of histogram
cells such that the to-
tal number of objects lo-
cated under these histogram cells is larger than k, covers the
result circle. More formally, let C(P, r) denote a circle cen-
tered at point P with radius r and let r∗ denote the radius of
the result circle for k nearest neighbors of point P . Then we
can state:

If ∃Q s.t.
∑

(i,j)∈Q

Hc[i, j] ≥ k, and (1)

∀(i, j) ∈ Q, Hc{i, j} ⊂ C(P, r)

Then r ≥ r∗.

Consider that the histogram cells are sorted based on their
distance from the query point P and are organized into a list.
Then we define Q+ to be the set of non-empty histogram cells
(Hc[i, j] > 0) formed by picking cells from the sorted list until
the sum of the cell contents reach or exceed k. Now we define
the pruning circle, denoted as PC, which is used to prune
nodes during the kNN search. The PC satisfies the left-side
of (1) and is defined as follows: Pruning circle is the smallest
circle centered at point P that covers the histogram cells in
Q+. The radius of the pruning circle is denoted as r+.

The radius of the pruning circle, r+, can be calculated by a
linear scan of the histogram cells, by keeping only O(k) state.
This is simply because the set Q+ can be of at most size k. The
closest k cells to the query point can be stored and maintained
during the scan and this set can be pruned at the end of the
scan to get Q+. Once we have Q+, the maximum of maximum-
distances of cells in Q+ to the query point P gives r+.

Figure 4 illustrates how r+ is calculated for an example his-
togram and query point with k = 4. For the histogram and
the query point in Figure 4, the four closest non-empty cells
are the ones marked as c, b, e, and f (The first six cells, which
yield four non-empty cells, according to their closeness to the
query point are a, b, c, d, e, and f). The object count of the
cell c (which is 1) and the sum of the object counts for the
cells c and b (which is 3), are both smaller than 4. However,
the sum reaches 5 when we add the cell e to the list. Thus we
have Q+ = {c, b, e}. The maximum distance of e to the query
point is the largest among the cells in Q+. As a result it gives
the value of r+.

Utilizing the histogram and the pruning circle extracted from
it for a given query point, we can modify the wireless kNN
search algorithm by adding the following pruning condition:

• When a newly discovered node is to be added to ItemQueue,
say node N , it can be discarded if its mbr does not in-
tersect with the pruning circle, i.e. if N.mbr ∩ PC = ∅.

We name the optimized wireless algorithm which also uses
the histograms as the histogram supported optimized wireless

2We assume objects are points, otherwise the center of each
object can be used to determine which grid cell it belongs.



n Number of objects
A Area of the square region covering all objects
c Histogram cell size

PC Pruning circle
r+ Radius of PC
Ni Tree node at level i
l Height of the tree
f Minimum fanout of the tree
si Average side length of a node mbr at level i
k number of NNs searched

QSmax Maximum size of ItemQueue during the search
ACtot Number of nodes/packets accessed i.e. tune-in time

Table 1: Notations used

area = A

s(i)
r

area = si
2

area =  si
2 + π*r2 + 4*r*si

Figure 5: Node mbr at level i intersecting
with the pruning circle with radius r

algorithm, w-hist for short. In Section 8 we experimentally
show that histograms are really effective in improving the tune-
in time and decreasing the maximum size of the ItemQueue.
We also examine the sensitiveness of different index serial-
ization approaches to the use of histograms. In the rest of
this section, we derive upper bounds on the expected size of
ItemQueue and the expected number of total nodes accessed
by the kNN search algorithm, when searching trees organized
in bfs manner. The notations used in the rest of the section
are summarized in Table 1.

6.1 Queue Size
For devices with scarce memory, like sensor devices [11], the

memory requirement of the kNN search algorithm may be-
come a restriction. In the context of spatial broadcast, work
presented in [10] studied methods to bound the memory re-
quirement for range searches on serialized spatial broadcast
indexes. In our wireless kNN search algorithm, only structure
that does not have a fixed size is ItemQueue. However, by us-
ing arbitrarily fine grained histograms we can limit the queue
size. Theoretically, at one extreme case, the maximum queue
size will take its minimum possible value, which is achieved
when the pruning circle becomes identical to the result circle.
We have the following upper bound for expected value of the
queue size:

Theorem 2. Assuming a uniform data and query distribu-
tion, an upper bound on the expected maximum size (in terms
of nodes) of the ItemQueue for a bfs serialized tree is given
as a function of n, A, c, f , k as follows:

E[QSmax] < maxi∈[1..l]

(
f i ∗ sl−i

2 + π ∗ δ2 + 4 ∗ δ ∗ sl−i

sl
2 + π ∗ δ2 + 4 ∗ δ ∗ sl

)
,

where l = 1 + �logf

n

f
�, δ = 2 ∗

√
(c2 ∗ � k ∗A

n ∗ c2
�)/π,

and sj =
√

A/n ∗ (
√

f j − 1)

Proof: Let us denote the number of items in the queue after
all nodes at level l − i + 1 are processed as QSi. Then the
queue size can be considered as a branching process. Initially
we have,

E[QS0] = 1

To get an upper bound on the queue size, we will only consider
pruning due to the pruning circle PC, thus we have:

E[QSi] < f ∗ P{Ni.child.mbr ∩ PC �= ∅ | Ni.mbr ∩ PC �= ∅}
∗E[QSi − 1], for i ∈ [1..l]

We have P{Ni.child.mbr ∩ PC �= ∅ | Ni.mbr ∩ PC �= ∅} =
P{Ni.child.mbr∩PC �=∅}

P{Ni.mbr∩PC �=∅} =
si−1

2+π∗r2
++4∗r+∗si−1

si
2+π∗r2

++4∗r+∗si
. Figure 5 shows

that for a fixed mbr, the query point should lie inside the
shaded area in order for PC to intersect with the mbr. Then
the derivation follows, as the probability that a randomly lo-
cated circle with radius r intersects with a randomly located
square of side length si is approximately3 equal to (si

2 + π ∗
r2 + 4 ∗ r ∗ si)/A. From induction we have,

E[QSi] < f i ∗ sl−i
2 + π ∗ r2

+ + 4 ∗ r+ ∗ sl−i

sl
2 + π ∗ r2

+ + 4 ∗ r+ ∗ sl
, for i ∈ [1..l] (2)

We have l = 1 + �logf
n
f
� ([7]) and si ≈

√
A/n ∗ (

√
f i − 1)

([27]). Average size of Q+ is � k∗A
n∗c2
� and we leave it to the

reader to verify that r+ < δ = 2 ∗
√

(c2 ∗ � k∗A
n∗c2
�)/π. Integrat-

ing these into (2) proves the result. �

6.2 Tune-in Time
Histograms can also be used to derive an upper bound on

the number of nodes read by the algorithm, i.e. tune-in time
in terms of packets. Similar to the result on maximum queue
size, we have:

Theorem 3. Assuming a uniform data and query distribu-
tion, an upper bound on the expected number of packets/nodes
read by the algorithm is given as follows:

E[ACtot] < hsize +

l−1∑
i=0

(
f i ∗ sl−i

2 + π ∗ δ2 + 4 ∗ δ ∗ sl−i

sl
2 + π ∗ δ2 + 4 ∗ δ ∗ sl

)
,

where hsize = �4 ∗ �
√

A/c�2/packet size� (3)

Proof: Assuming each cell of the histogram stores a 4byte in-
teger and packet size denotes the size of packets in bytes, size
of the histogram is given by �4 ∗ �√A/c�2/packet size�. The
second term in the equation is derived in a similar way to The-
orem 2, by assuming that only the pruning circle is used for
pruning nodes of the tree during the search. �

Note that increasing the histogram size may result in in-
creasing the tune-in time as the histogram itself has to be read
from the medium. In fact, using a histogram cell size smaller
than the cell size that minimizes equation 3 will increase the
tune-in time.

While the analytical results in this section are based on uni-
form data distribution, we evaluate real-life skewed data in our
experimental results in Section-8.

7. SEARCH WITH NON-SPATIAL PREDICATES
The objects indexed by a spatial index can have non-spatial

attributes that may need to be taken into account when an-
swering queries [19]. For instance, going back to our example

3boundary conditions are not considered



scenario in Section 1, the query can ask only for k nearest Chi-
nese restaurants instead of general restaurants. In this section
we consider how to answer kNN queries that may specify an
optional constraint on a single attribute, namely the type of
the objects being queried.

We denote the number of distinct types as t, where out of n
objects ni of them belong to type i, thus

∑t
i=1 ni = n. In this

paper we only consider two types of kNN queries, (1) queries
that do not specify a type and (2) queries that specify a single
type. In order to support queries with type constraints, we
need to modify both the search algorithm and the index orga-
nization. We look into two different methods:

i) t-index
In t-index method, we use t separate spatial indexes each in-
dexing only its associated type. There is also a lookup struc-
ture that has pointers for each type pointing to the beginning
of the index associated with that type. Although this is really
efficient for queries with type constrains, for queries without
constraints on types, it will require to lookup all indexes. In
order to improve the performance of queries without type con-
straints, the order of the indexes can be selected such that an
index corresponding to type i comes before the one correspond-
ing to j on the broadcast medium if ni > nj . This enables us
to restrict the solution space earlier, as the types with more
number of objects tend to give a better approximation to the
actual result.

ii) t-hist/1-index
In t-hist/1-index method, we use a single spatial index which
indexes all objects. Although this is really efficient for queries
without type constrains, it is not possible to search k nearest
neighbors when a type constraint is present. To enable the
processing of such queries, we also include t histograms on the
broadcast, each one built for a particular type. There is also a
lookup structure that has pointers for each type pointing to the
beginning of the histogram associated with that type. More-
over the leaf nodes of the tree now also mark the type of each
object. Queries with type constraints can now be processed
on the index by only using the pruning circle derived from the
associated histogram of the given type. In order to improve
the performance of queries with type constraints, we can also
prune a node whose mbr does not intersect with a non-empty
cell of the histogram of the associated type. We name this
latter optimization as t-hist/1-index/hp method. Note that it
can improve the performance especially for the types that have
small number of objects belonging to them.

In Section 8 we compare the performance of both the meth-
ods. Note that it is only fair to compare them when the to-
tal index size (together with histograms) occupied by the two
methods is same. In other words, we should have t ∗ hsize +
isize(n) ≈ ∑t

i=1 isize(ni), where isize is size of the spatial

index and is given as isize(n) =
∑1+�logf

n
f
�

i=1 f i−1.

8. EXPERIMENTS
In this section we present our experimental results used to

evaluate the methods introduced in this paper and understand
tradeoffs involved in using them. We describe three sets of
experiments. The first set of experiments investigate the im-
provement provided by w-opt search and bfs serialization of
the index. The second set of experiments investigate the effect
of using histograms on tune-in time and the sensitivity of dif-
ferent serializations to the usage of histograms. The third and
final set of experiments compare t-hist/1-index and t-index
approaches for kNN queries with type constraints. We use two

types of data in our experiments, (i) uniformly distributed set
of points in unit square and (ii) a skewed dataset composed
of city locations in Greece from [1] (scaled to fit unit square).
The query points are selected at uniform random from the unit
square. In all experiments, we employed an R∗-tree [4] index.

8.1 w-opt Search and bfs Serialization
We describe experimental results with regard to effects of

w-opt search and bfs serialization on tune-in time and queue
size under three different scenarios: (1) varying packet(node)
size, (2) varying number of objects, and (3) varying k.

8.1.1 Varying Packet Size
Figure 6 plots tune-in time (in terms of packets) and max-

imum size of ItemQueue (in terms of nodes) as a function of
packet (node) size in bytes. In this experiment k is taken as 10
and 5000 uniformly distributed objects are used. The line la-
belled as conventional represents the kNN search algorithm on
a random access medium and is used as a baseline. The results
show that, w-opt algorithm shows up to 33% improvement in
tune-in time for a dfs organization and up to 30% improvement
in tune-in time for a bfs organization, when compared to w-
conv. Another observation is that bfs organization provides
up to 55% improvement over dfs organization. Also, even in
the worst case the best tune-in time achieved using the best
wireless search algorithm and organization (bfs/w-opt) is only
twice the tune-in time of the baseline. The queue size results
show that bfs organization have larger memory requirement
when compared to dfs, but the w-opt algorithm helps decreas-
ing the memory requirement for both organizations.

The differences in both tune-in time and maximum queue
size values of different approaches vanish as the packet size
increases to large values. This is because, for very large packet
size values, the index fits into very small number of packets
and ever algorithm ends up reading all the packets to reach
appropriate nodes. If we increase the number of objects (thus
the index size) in accordance with the increasing packet size,
observations for small packet sizes still hold.

8.1.2 Varying Number of Objects
Figure 7 plots tune-in time and maximum size of the ItemQueue

as a function of number of indexed objects (uniformly dis-
tributed). In this experiment k is taken as 10 and packet size
is fixed to 1024 bytes. Clearly, the tune-in time will increase
with increasing number of objects, since the total index size
increases and there are more candidate nodes that need to be
read from the medium. Notice that w-opt algorithm provides
up to 40% improvement in tune-in time for dfs organization
and up to 20% improvement for bfs organization. Further-
more, as the number of objects increase, the bfs organization
shows an increasing advantage over dfs organization in terms
of tune-in time (up to 53% improvement for w-opt). This shows
our claim that in many scenarios, the bfs organization is ac-
tually a better choice. Also, Figure 7 shows that the w-opt al-
gorithm provides up to 21% improvement in maximum queue
size for bfs organization. The improvement in maximum queue
size is marginal for dfs organization (around 3%). Comparing
amongst the two organizations with w-opt, dfs organization
provides up to 45% improvement in maximum queue size as
compared to bfs.

Figure 9 plots the same measures with k set to 5. Again
similar trends are observed, w-opt search and bfs organization
prevailing over other configurations when tune-in time is con-
sidered. However, comparing Figure 9 and Figure 7 reveals
that the improvement in tune-in time increases with increas-
ing k. In fact one can prove that for NN search (k = 1) w-opt
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Figure 6: Tune-in time and maximum ItemQueue
size for different packet sizes
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Figure 7: Tune-in time and maximum ItemQueue
size for different number of objects when k=10
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Figure 8: Tune-in time and maximum ItemQueue
size for different k’s
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Figure 9: Tune-in time and maximum ItemQueue
size for different number of objects when k=5
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Figure 10: Tune-in time and ItemQueue size as a
function of histogram size for uniform data
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Figure 11: Tune-in time and ItemQueue size as a
function of histogram size for city locations data
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Figure 12: Tune-in time as a function of number
of objects for different histogram sizes
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Figure 13: Tune-in time as a function of k for
different histogram sizes
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Figure 14: Tune-in time and maximum ItemQueue
size for different packet sizes and approaches us-
ing no histograms or histograms with analytically
derived sizes
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Figure 15: Tune-in per-
formance for queries
with type constraints
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reduces to w-conv.

8.1.3 Varying k

Figure 8 plots tune-in time and maximum size of the ItemQueue
as a function of k. In this experiment packet size is fixed to
1024 bytes and 5000 uniformly distributed objects are used.
From the tune-in time graph we observe that, after k = 4 the
w-opt algorithm starts to provide significant improvement over
w-conv and after k=8 w-opt performs better than w-conv in-
dependent of the index serialization order. Queue size results
show that memory requirement of bfs organization grows fast
with increasing k when w-conv is used and significantly drops
when w-opt is used. This shows that the use of w-opt algo-
rithm is crucial for bfs organization, if the number of items
requested is high.

8.2 Histograms and w-hist search

8.2.1 Varying Histogram Size
Figure 10 and Figure 11 plot tune-in time and maximum

size of ItemQueue as a function of histogram size (in terms
of packets). In these experiments k is taken as 10 and packet
size is fixed to 1024 bytes. Figure 10 uses 5000 uniformly dis-
tributed objects and Figure 11 uses a data set consisting of
real city locations (5073 points). The results from Figure 10
show that even a single packet histogram improves the tune-
in time. In fact, for this experimental setup, histograms with
larger sizes do not provide better tune-in times as the addi-
tional pruning capability achieved with the fine-graininess of
the histogram cannot compensate the cost of reading the his-
togram itself. More interestingly, the effect of using a his-
togram is more prominent with the dfs organization and with
histograms the best performance achieved with bfs and dfs
organizations are effectively the same. Nevertheless, Figure 11
shows that with skewed data the latter observation no more
holds and bfs organization with w-opt search outperforms all
alternatives. This does not indicate that histograms are use-
less for skewed data sets. This is because Figure 11 also shows
that a small histogram can significantly (more than 50%) de-
crease the queue size while only increasing the tune-in time
marginally (around 5%).

8.2.2 Varying Number of Objects and k

Figure 12 plots tune-in time as a function of number of ob-
jects for different histogram sizes. Similarly, Figure 13 plots
tune-in time as a function of k for different histogram sizes.
Both experiments use 1024 byte packets and uniformly dis-
tributed objects. k is set to 10 in Figure 12 and 5000 objects
are used in Figure 13. Figure 12 shows that for larger number
of objects it is better to use larger histograms. It is also ob-
served that dfs organization is more sensitive to the increase in
the number of objects. As seen from the graph corresponding
to dfs, using a 4 packet histogram becomes more efficient than
using a single packet histogram as number of objects increase.
And if we keep increasing the number of objects, according to
the displayed trend, using an 8 packet histogram will become
more efficient than using a 4 packet histogram. Although a
similar phenomenon can be observed for bfs organization, the
gap between tune-in times of approaches that use different his-
togram sizes change very slowly for bfs organization (no line
crossings are observed for bfs organization in Figure 12).

8.2.3 Varying Packet Size
Figure 14 plots tune-in time and maximum size of ItemQueue

as a function of packet size for four different approaches: bfs/w-
opt, dfs/w-opt, bfs/w-hist.∗ and bfs/w-hist.∗. Here w-hist.∗

corresponds to the case in which a histogram whose cell size
minimizes Equation 3, is used. Again in this experiment k is
taken as 10 and 5000 uniformly distributed objects are used.
The figure shows that for uniform data distributions, Equa-
tion 3 can provide a histogram size that improves the tune-in
performance.

8.3 Queries with Non-spatial Predicates
In order to compare t-hist/1-index and t-index methods for

supporting evaluation of kNN queries with type constraints,
we setup a scenario in which we have 100 different types. The
number of objects belonging to each type follows a Zipf distri-
bution with parameter 0.8 where the total number of objects
is 5000. We perform two experiments using this scenario. In
the first experiment we compare tune-in times of kNN queries
with type constraints. Figure 15 plots the result as a function
of type rank. Type with rank 1 has the most number of objects
belonging to it. In the second experiment we compare tune-in
times of kNN queries without type constraints. Figure 16 plots
the result as a function of type rank.

As expected, Figure 15 shows that t-index performs much
better for queries with type constraints. On the other hand
Figure 16 shows that t-index performs poorly for queries with-
out type constraints. Conversely, t-hist/1-index performs much
better for queries without type constraints and poorly for queries
with type constraints. In spite of t-hist/1-index’s poor perfor-
mance for type constrained queries, t-hist/1-index/hp method,
which is powered by the histogram pruning optimization de-
scribed in Section 7, achieves significant improvement in tune
in-time, especially for queries having constraints on infrequent
types. Although it does not outperform t-index for type con-
strained queries, t-hist/1-index/hp shows a good balance be-
tween two types of queries and can be a good choice for work-
loads that contain sufficiently large number of queries without
type constraints.

9. CONCLUSIONS
In this paper, we explored the issue of energy efficient kNN

search on broadcasted R-tree indexes over location-dependent
data. We proposed an optimization technique which improves
the tune-in time of kNN search and discussed tradeoffs involved
in organizing the index on the broadcast medium. Further-
more, we investigated the use of histograms as a technique to
improve tune-in time and memory requirement of kNN search.
We also studied the problem of kNN search with non-spatial
constraints. We showed that:

– The introduced w-opt search technique significantly de-
creases tune-in time, irrespective of how the index is or-
ganized (bfs or dfs) on the medium.

– Organizing the index in bfs manner provides consider-
ably better tune-in time but has a higher memory re-
quirement due to queue size.

– Using histograms can further improve tune-in time for
uniformly distributed data with the improvement being
more for dfs organization in comparison to bfs organi-
zation.

– On skewed data sets, histograms improve the tune-in
time for dfs organization. For bfs organization they sig-
nificantly cut the maximum queue size in return for a
minor increase in tune-in time.

– The use of histograms can be extended to support an-
swering kNN queries with type constraints, which yields



better performance when compared to building separate
indexes for each type, for workloads containing sufficiently
large number of queries without type constraints.

As future work, we plan to continue working on energy-
efficient spatial data broadcast on wireless environments, espe-
cially on the issues of caching and pre-fetching in the context
of continuous and adaptive kNN search for moving points.
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