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Abstract—We present PeerCQ, a decentralized architecture for Internet scale information monitoring using a network of

heterogeneous peer nodes. PeerCQ uses Continual Queries (CQs) as its primitives to express information-monitoring requests. The

PeerCQ development has three unique characteristics. First, we develop a systematic and serverless approach to large scale

information monitoring, aiming at providing a fully distributed, highly scalable, and self-configurable architecture for scalable and

reliable processing of a large number of CQs over a network of loosely coupled, heterogeneous, and possibly unreliable nodes (peers).

Second, we introduce an effective service partitioning scheme at the P2P protocol layer to distribute the processing of CQs over a

peer-to-peer information monitoring overlay network while maintaining a good balance between system utilization and load balance in

the presence of peer joins, departures, and failures. A unique feature of our service partitioning scheme is its ability to incorporate

strategies for handling hot spot monitoring requests and peer heterogeneity into the load balancing scheme in PeerCQ. Third, but not

least, we develop a dynamic passive replication scheme to enable reliable processing of long-running information monitoring requests

in an environment of inherently unreliable peers, including an analytical model to discuss its fault tolerance properties. We report a set

of experiments demonstrating the feasibility and the effectiveness of the PeerCQ approach to large-scale peer-to-peer information

monitoring.

Index Terms—Distributed information monitoring, peer-to-peer networks, continual query systems.
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1 INTRODUCTION

PEER-TO-PEER (P2P) systems are massively distributed
computing systems in which peers (nodes) commu-

nicate directly with one another to distribute tasks,
exchange information, or share resources. There are
currently several P2P systems in operation and many more
are under development. Gnutella [6] and Kazaa [8] are
among the most prominent first generation peer-to-peer file
sharing systems operational today. These systems are often
referred to as unstructured P2P networks and they share
two unique characteristics. First, the topology of the overlay
network and the placement of the files within the network
are largely unconstrained. Second, they use a decentralized
file lookup scheme. Requests for files are flooded with a
certain scope. There is no guarantee of finding an existing
file within a bounded number of hops. The random
topology combined with flooding-based routing is clearly
not scalable since the load on each peer grows linearly with
the total number of queries in the network, which in turn
grows with the size of the system.

Chord [19], Pastry [16], Tapestry [20], CAN [14] are
examples of the second generation of peer-to-peer systems.
Their routing and location schemes are structured based on
distributed hash tables. In contrast to the first generation
P2P systems such as Gnutella and Kazaa, these systems
provide guaranteed content location (persistence and
availability) through tighter control of the data placement
and the topology construction within a P2P network.
Queries on existing objects are guaranteed to be answered

in a bounded number of network hops. Their P2P routing
and location schemes are also considered more scalable.
These systems differ from one another in terms of their
concrete P2P protocol design, including the distributed
hash algorithms, the lookup costs, the level of support for
network locality, and the size and dependency of routing
table with respect to the size of the P2P overlay network.

Surprisingly, many existing P2P protocols [1], [19], [14],
[16], [6] do not distinguish peer heterogeneity in terms of
computing and communication capacity. As a result, these
protocolsdistribute tasks andplacedata topeers assumingall
peers participate and contribute equally to the system. Work
done in analyzing characteristics of Gnutella in [18] shows
that peers participating in these systems are heterogeneous
with respect to many characteristics, such as connection
speeds, CPU, shared disk space, and peers’ willingness to
participate. These evidences show that P2P applications
should respect the peer heterogeneity and user (application)
characteristics in order to be more robust [18].

In this paper, we describe PeerCQ [5], a peer-to-peer
information monitoring system which utilizes a large set of
heterogeneous peers to form a peer-to-peer information
monitoring network. Many application systems today have
the need to track changes in multiple information sources
on the Web and notify users of changes if some condition
over the information sources is met. A typical example in
the business world is to monitor availability and price
information of specific products, such as “monitor the price
of 5 mega pixel digital cameras during the next two months
and notify me when one with price less than $500 becomes
available,” “monitor the IBM stock price and notify me
when it increases by 5 percent.” In a large scale information
monitoring system [9], many users may issue the same
information monitoring request, such as tracking IBM stock
price changes during a given period of time. We call such

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005 767

. The authors are with the College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332. E-mail: {bgedik, lingliu}@cc.gatech.edu.

Manuscript received 21 Oct. 2003; revised 23 Nov. 2004; accepted 30 Nov.
2004; published online 15 Apr. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0187-1003.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



phenomena the hot spot queries (monitoring requests).
Optimizations for hot spot queries can significantly reduce
the amount of duplicate processing and enhance the overall
system utilization.

In general, offering information-monitoring service using
a client/server architecture imposes two challenging
requirements on the server side. First, the server should
have the ability to handle tens of thousands or millions of
distributed triggers firing over hundreds or thousands of
Web sites. Second, the server should be scalable as the
number of triggers to be evaluated and the number of Web
sites to be monitored increase. It is widely recognized that
the client/server approach to large-scale information mon-
itoring is expensive to scale and expensive to maintain. The
server side forms a single point of failure.

Compared to information monitoring in client-server
systems, peer-to-peer information monitoring has a number
of obvious advantages. First, there is no additional adminis-
trativemanagement cost as the systemgrows. Second, there is
no hardware or connection cost since the peers are the user
machines and the connections to the data sources are the user
connections. Third, there is no upgrade cost due to scaling
since resources grow with clients. The only cost for PeerCQ
information monitoring from the perspective of a service
provider is the cost of developing thePeerCQapplication and
making it work effectively in practice.

PeerCQ uses continual queries as its primitives to express
information monitoring requests. Continual Queries (CQs)
[9] are standing queries that monitor information updates
and return results whenever the updates reach certain
specified thresholds. There are three main components of a
CQ: query, trigger, and stop condition. Whenever the trigger
condition becomes true, the query part is executed and the
part of the query result that is different from the result of the
previous execution is returned. The stop condition specifies
the termination of a CQ.

PeerCQ poses several technical challenges in providing
information monitoring services using a P2P computing
paradigm. The first challenge is the need for a smart
service-partitioning mechanism. The main issue regarding
service partitioning is to achieve a good balance between
improving the overall system utilization and maintaining
the load balance among peers of the system. By balanced
load, we mean there are no peers that are overloaded. By
system utilization, we mean that, when taken as a whole,
the system does not incur a large amount of duplicated
computations or consume unnecessary resources such as
the network bandwidth between the peers and the data
sources. Several factors can affect the load balancing
decision, including the computing capacity and the desired
resource contribution of the peers, the willingness of
peers to participate, and the characteristics of the
continual queries. The second technical challenge is the
reliability of CQ processing in the presence of peer
departures and failures. The study reported in [18] shows
that large scale peer-to-peer systems are confronted with
high peer turnover rate.

2 SYSTEM OVERVIEW

Peers in the PeerCQ system are user machines on the
Internet that execute information monitoring applications.
Peers act both as clients and servers in terms of their roles in

serving information monitoring requests. An information-
monitoring job, expressed as a continual query (CQ), can be
posted from any peer in the system. There is no scheduling
node in the system. No peers have any global knowledge
about other peers in the system.

There are three main mechanisms that make up the
PeerCQ system. The first mechanism is the overlay network
membership. Peer membership allows peers to commu-
nicate directly with one another to distribute tasks or
exchange information. A new node can join the PeerCQ
system by contacting an existing peer (an entry node) in the
PeerCQ network. There are several bootstrapping methods
to determine an entry node. We may assume that a PeerCQ
service has an associated DNS domain name. It takes care of
resolving the mapping of PeerCQ’s domain name to the
IP address of one or more PeerCQ bootstrapping nodes. A
bootstrapping node maintains a short list of PeerCQ nodes
that are currently alive in the system. To join PeerCQ, a new
node looks up the PeerCQ domain name in DNS to obtain a
bootstrapping node’s IP address. The bootstrapping node
randomly chooses several entry nodes from the short list of
nodes and supplies their IP addresses. Upon contact with
an entry node of PeerCQ, the new node is integrated into
the system through the PeerCQ protocol’s initialization
procedures.

The second mechanism is the PeerCQ protocol, including
the service partitioning and the routing-query-based lookup
algorithm. In PeerCQ, every peer participates in the process
of evaluating CQs and any peer can post a new CQ of its
own interest. When a new CQ is posted by a peer, this peer
first determines which peer will process this CQ, with the
objective of utilizing system resources and balancing the
load on peers. Upon a peer’s entrance into the system, a set
of CQs that needs to be redistributed to this new peer is
determined by taking into account the same objectives.
Similarly, when a peer departs from the system, the set of
CQs for which it was responsible is reassigned to the rest of
the peers while maintaining the same objectives—maximize
the system utilization and balance the load of peers.

The third mechanism is the processing of information
monitoring requests in the form of continual queries (CQs).
Each information monitoring request is assigned to an
identifier. Based on an identifier matching criteria, CQs are
executed at their assigned peers and cleanly migrated to
other peers in the presence of failure or peer entrance and
departure.

Each peer in the P2P network is equipped with the
PeerCQ middleware, a two-layer software system. The
lower layer is the PeerCQ protocol layer responsible for
peer-to-peer communication. The upper layer is the
information monitoring subsystem responsible for CQ
subscription, trigger evaluation, and change notification.
Any domain-specific information monitoring requirements
can be incorporated at this layer.

A user composes his or her information monitoring
request in terms of a CQ and posts it to the PeerCQ system
via an entry peer, say Peer A. Based on the PeerCQ’s
service partition scheme (see Section 3.2), Peer A is not
responsible for this CQ. Thus, it triggers the PeerCQ’s P2P
lookup function. The PeerCQ system determines which
peer will be responsible for processing this CQ using the
PeerCQ service partitioning scheme. Assume that Peer B

was chosen to execute this CQ. Peer B is referred to as the
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executor peer of this CQ. After the CQ is assigned to Peer B,
it starts its execution there. During this execution, when an
interested information update is detected, the query is fired
and the peer that posts this CQ is notified with the newly
updated information. The notification could be realized by
e-mail or by sending it directly to Peer A if it is online at the
time of notification. Note that, even if a peer is not
participating in the system at a given time, its previously
posted CQs are in execution at other peers.

3 THE PEERCQ P2P PROTOCOL

The PeerCQ protocol specifies three important types of peer
coordination: 1) how to find the peers that are best to serve
the given information monitoring requests in terms of load
balance and overall system utilization, 2) how new nodes
join the system, and 3) how PeerCQ manages failures or
departures of existing nodes.

3.1 Overview

Similar tomost of the distributed hash table (DHT) based P2P
protocols [7], [1], [19], [16], [20], [12], PeerCQ provides a fast
and distributed computation of a hash function, mapping
information monitoring requests (in the form of continual
queries) to nodes responsible for them. PeerCQ protocol
design differs from other DHT-based protocols, such as
Chord [19], Pastry [16], Tapestry [20], and CAN [14], in a
number of ways. First, PeerCQ provides two efficient
mapping functions as the basic building blocks for
distributing information monitoring requests (CQs) to peers
with heterogeneous capabilities. The mapping of peers to
identifiers takes into account peer heterogeneity and load
dynamics at peers to incorporate peer awareness into the
service partitioning scheme. The mapping of CQs to
identifiers incorporates CQ grouping optimization [12] for
hot spot CQs found frequently in large scale information
monitoring applications, striving for efficient processing of
a large number of information monitoring requests and
minimizing the cost for duplicate processing of hot spot
CQs. Second, PeerCQ introduces relaxed matching algo-
rithms on top of the strict matching based on numerical
distance between CQ identifiers and peer identifiers when
distributing CQs to peers, aiming at achieving good load
balance and good system utilization.

In PeerCQ, an information monitoring request (subscrip-
tion) is described in terms of a continual query (CQ).
Formally, a CQ is defined as a quadruplet, denoted by cq :
ðcq id; trigger; query; stop condÞ [10]. cq id is the unique
identifier of the CQ, which is an m-bit unsigned value.
trigger defines the target data source to be monitored
(mon src), the data items to be tracked for changes
(mon item), and the condition that specifies the update
threshold (amount of changes) of interest (mon cond). query
part specifies what information should be delivered when
themon cond is satisfied. stop cond specifies the termination
condition for the CQ. For notational convenience, in the rest
of the paper, a CQ is referenced as a tuple of seven
attributes, namely,

cq : ðcq id;mon src;mon item;mon cond; query;

notification; stop condÞ:

Consider the example monitoring request “monitor Nasdaq
index and tell me IBM stock price when Nasdaq index value

increases by 5 percent in the next three months.” One way to
express this request is to use the following continual query:
h cq id,mon src: http://www.quote.com,mon item: Nasdaq
index (/quotes.aspx?symbols=NASDAQ), mon cond: in-
crease by 5 percent, query: IBM stock price (/quotes.aspx?-
symbols=NYSE:IBM), notification: my email, stop cond:
next 3 months i.

The PeerCQ system provides a distributed service
partitioning and lookup service that allows applications to
register, lookup, and remove an information monitoring
subscription using an m-bit CQ identifier as a handle. It
maps each CQ subscription to a unique, effectively random
m-bit CQ identifier. To enable efficient processing of
multiple CQs with similar trigger conditions, the CQ-to-
identifier mapping also takes into account the similarity of
CQs such that CQs with similar trigger conditions can be
assigned to the same peers (see Section 3.2 for details). This
property of the PeerCQ is referred to as CQ-awareness.

Similarly, each peer in PeerCQ corresponds to a set of
m-bit identifiers, depending on the amount of resources
donated by each peer. A peer that donates more resources is
assigned to more identifiers. We refer to this property as
Peer-awareness. It addresses the service partitioning problem
by taking into account peer heterogeneity and by distribut-
ing CQs over peers such that the load of each peer is
commensurate with the peer capacities (in terms of cpu,
memory, disk, and network bandwidth). Formally, let P
denote the set of all peers in the system. A peer p is
described as a tuple of two attributes, denoted by
p : ðfpeer idsg; ðpeer propsÞÞ. peer ids is a set of m-bit
identifiers. No peers share any identifiers, i.e.,

8p; p0 2 P; p:peer ids \ p0:peer ids ¼ ;:

The identifier length m must be large enough to make the
probability of two nodes or two CQs hashing to the same
identifier negligible. peer props is a composite attribute
which is composed of several peer properties, including the
IP address of the peer, peer resources such as connection
type, CPU power, and memory, and so on. The concrete
resource donation model may be defined by PeerCQ
applications (see Section 3.2 for further details).

Identifiers are ordered in an m-bit identifier circle
modulo 2m. The 2m identifiers are organized in an
increasing order in the clockwise direction. To guide the
explanation of the PeerCQ protocol, we define a number of
notations:

. The distance between two identifiers i, j, denoted
as Distði; jÞ, is the shortest distance between
them on the identifier circle, defined by
Distði; jÞ ¼ minðji� jj; 2m � ji� jjÞ. By this defini-
tion, Distði; jÞ ¼ Distðj; iÞ holds.

. Let pathði; jÞ denote the set of all identifiers on the
clockwise path from identifier i to identifier j on the
identifier circle. An identifier k is said to be in-
between identifiers i and j, denoted as k 2 pathði; jÞ, if
k 6¼ i, k 6¼ j, and it can be reached before j going in
the clockwise path starting at i.

. A peer p0 with its peer identifier j is said to be an
immediate right neighbor to a peer p with its peer
identifier i, denoted by ðp0; jÞ ¼ IRNðp; iÞ, if there
are no other peers having identifiers in the clockwise
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path from i to j on the identifier circle. Formally, the
following condition holds:

i 2 p:peer ids ^ j 2 p0:peer ids^ 6 9 p00 2 P

s:t: 9k 2 p00:peer ids s:t: k 2 pathði; jÞ:

The peer p with its peer identifier i can also be
referred to as the immediate left neighbor (ILN) of peer
p0 with its identifier j. The definition is symmetric.

. A neighbor list of a peer p0 associated with one of its
identifiers i0, denoted as NeighborListðp0; i0Þ, is
formally defined as follows:

NeighborListðp0; i0Þ ¼ ½ðp�r; i�rÞ; . . . ; ðp�1; i�1Þ;
ðp0; i0Þ; ðp1; i1Þ; . . . ; ðpr; irÞ�;

s.t.

r̂

k¼1

ððpk; ikÞ ¼ IRNðpk�1; ik�1ÞÞ ^
r̂

k¼1

ððp�k; i�kÞ

¼ ILNðp�kþ1; i�kþ1ÞÞ:

The size of the neighbor list is 2rþ 1 and we call r
the neighbor list parameter. Informally, the neighbor
list of a peer p0 with identifier i0 consists of three
components: 1) the first r number of identifiers on
the clockwise path starting from i0, 2) the first r
number of identifiers on the counter clockwise path
starting from i0, and 3) i0 itself. For each identifier,
the neighbor list also stores the peer who owns this
identifier.

The basic application interface (API) provided by the
PeerCQ system consists of four basic functions, shown in
Table 1. The first two API calls are functions for nodes to
join or leave the PeerCQ system. The p:joinðstatusÞ function
adds a node p to the PeerCQ system and returns status
information regarding the result of this operation. The
p:leaveðstatusÞ function departs a node p from the system
and returns a status value indicating whether an error has
occurred or not. Given a peer p, when p:postðcq; cq idÞ is
called, PeerCQ finds the destination peer that should be
responsible for executing the cq posted by peer p and ships
cq to that destination peer for execution. We call p the
initiator peer of the given CQ and the destination peer the
executor peer of the CQ. p:postðcq; cq idÞ returns the cq id as
a result of the operation. The function p:terminateðcq idÞ is
used by the issuer peer of a CQ to terminate the processing
of its CQ specified by the identifier cq id.

3.2 Capability-Sensitive Service Partitioning

The PeerCQ protocol extends the existing routed-query-
based P2P protocols, such as Chord [19] or Pastry [16], to
include a capability-sensitive service partitioning scheme.

Service partitioning can be described as the assignment of
CQs to peers. By capability-sensitive, we mean that the
PeerCQ service partitioning scheme extends a randomized
partition algorithm, commonly used in most of the current
DHT-based protocols, with both peer-awareness and CQ-
awareness capability. As demonstrated in [19], [16], [20], [12],
randomized partitioning schemes are easy to implement in
decentralized systems. However, they perform poorly in
terms of load balancing in heterogeneous peer-to-peer
environments.

PeerCQ capability-sensitive service partitioning manages
the assignment of CQs to appropriate peers in three stages:
1) mapping peers to identifiers to address peer-awareness,
2) mapping CQs to identifiers to address CQ-awareness,
and 3) matching CQs to peers in a two-phase matching
algorithm. The main objective for the PeerCQs capability-
aware service partitioning is twofold. First, we want to
balance the load of peers in the system while improving the
overall system utilization. Second, we want to optimize the
hot spot CQs such that the system as a whole does not incur
a large amount of redundant computations or consume
unnecessary resources such as the network bandwidth
between the peers and the data sources.

We implement peer-awareness based on peer donation
and dynamic mapping of peers to identifiers. Each peer
donates a self-specified portion of its resources to the
system and can dynamically adjust the amount of donations
through on-demand or periodical revision of donations. The
scheduling decisions are based on the amount of donated
resources. We implement CQ-awareness by distributing CQs
having similar triggers to the same peers. Two CQs, cq and
cq0, are considered similar if they are interested in monitor-
ing updates on the same item from the same source, i.e.,

cq:mon src ¼ cq0:mon src ^ cq:mon item ¼ cq0:mon item:

These CQs share the same monitoring source (a stock quote
Web site) and the same monitoring item (IBM stock price).
By CQ-awareness, we mean that CQs with similar triggers
will be assigned to and processed by the same peers.

3.2.1 Mapping Peers to Identifiers

In PeerCQ, a peer is mapped to a set of m-bit identifiers,
called the peer’s identifier set (peer ids). m is a system
parameter and it should be large enough to ensure that no
two nodes share an identifier or this probability is
negligible. To balance the load of peers with heterogeneous
resource donations when distributing CQs to peers, the
peers that donate more resources are assigned more peer
identifiers so that the probability that more CQs will be
matched to those peers is higher. Fig. 1 shows an example of
mapping of two peers, say p0 and p00, to their peer
identifiers. Based on the amount of donations, peer p0 has
three peer identifiers, whereas peer p00 has six. The example
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shows that p00 is assigned more CQs than p0 using the strict
matching defined in Section 3.2.3.

The number of identifiers to which a peer is mapped is
calculated based on a peer donation scheme. We introduce
the concept of ED (effective donation) for each peer in the
PeerCQ network. The ED of a peer is a measure of its
donated resources effectively perceived by the PeerCQ
system. For each peer, an effective donation value is first
calculated and later used to determine the number of
identifiers onto which this peer is going to be mapped. The
calculation of ED is given in [5]. The mapping of a peer to
peer identifier needs to be as uniform as possible. This can
be achieved by using base hashing functions like MD5 or
SHA1 (or any well-known message digest function). The
following algorithm explains how the peer identifier set is
formed given the effective donation of a peer:

generatePeerIDs(p, ED)

p.peer_ids = empty

for i = 1 to donation_to_ident(ED)

d = concat(p.peer_props.IP, counter)

add SHA1(d, m) into p.peer_ids

increment counter

The function donation_to_ident is responsible for
mapping the effective donation value of a peer to the
number of m-bit identifiers in the 2m identifier space, which
forms the peer’s peer identifier set. SHA1 is a message
digest function. The first parameter of this digest function is
the input message that will be digested. The input message
is formed by concatenating the IP address of the peer and a
counter which is initialized to a one second real time clock
at the initialization time and incremented each time a peer
identifier is generated. This concatenation forms a unique
input message for each peer identifier. The second para-
meter, m, is the length of the output in bits.

In summary, the peer-to-identifier mapping algorithm
maps a peer to a set of randomly chosenm-bit identifiers on
the m-bit identifier circle. The number of identifiers each
peer will be mapped to is determined in terms of the
effective donation (ED) of the peer, initially computed upon
the entry of the peer into the PeerCQ overlay network. In
order to handle runtime fluctuations of workload at each
peer node, a peer can revise its effective donation through
periodic updates or by an on-demand revision upon
sudden load surge experienced at the peer node.

3.2.2 Mapping CQs to Identifiers

Thismapping functionmaps aCQ to anm-bit identifier in the
identifier space with modulo 2m. An important design goal

for this mapping function is to implement CQ-awareness by
mapping CQs with similar triggers (the same monitoring
sources and same monitoring items) to the same peers as
much as possible in order to produce the CQ-to-peer
matching that achieves higher overall utilization of the
system.

A CQ identifier is composed of two parts. The first part is
expected to be identical for similar CQs and the second part
is expected to be uniformly random to ensure the unique-
ness of the CQ identifiers. This mechanism allows similar
CQs to be mapped into a contiguous region on the m-bit
identifier circle. The length of a CQ identifier is m. The
length of the first part of an m-bit CQ identifier is a, which
is a system parameter called grouping factor. Given m and a,
the method that maps CQs to the CQ identifiers uses two
message digest functions. A sketch of the method is
described as follows:

calculateCQID(p, cq)

d = concat(cq.mon_src,cq.mon_item)

part1 = SHA1(d,a)

d = concat(p.peer_props.IP, counter)

part2 = SHA1(d, m-a)

cq.cq_id = concat(part1,part2)

increment counter

The first digest function generates the same output for
similar CQs and the second digest function generates a
globally unique output for each CQ posted by a peer.
Although there is a small probability of generating the same
identifier for two different CQs, the collisions can be detected
by querying the network with the generated identifier before
posting the CQ. A similar argument is valid for peer
identifiers. The first parameter of the first digest function is
the concatenation of the data source and the item of interest
being monitored. The second parameter is the length of the
output in bits. The seconddigest functiongenerates a random
number of length m� a for each CQ. The first parameter of
the second digest function is the concatenation of the IP
address of the peer posting this CQ and a counter which is
initialized to a one second real-time clock at the initialization
time and incremented each time a CQ identifier is generated.
The second parameter is the length of the output in terms of
bits. The CQ-to-identifier mapping returns an m-bit CQ
identifier cq id by concatenating the outputs of these two
digest functions.

According to the parameter a (grouping factor) of the
first digest function, the identifier circle is divided into
2a contiguous regions. The CQ-to-identifier mapping im-
plements the idea of assigning similar CQs to the same
peers by mapping them to a point inside a contiguous
region on the identifier circle. As the number of CQs is
expected to be larger than the number of peers, the number
of CQs mapped inside one of these regions is larger than the
number of peers mapped. Introducing smaller regions (i.e.,
the grouping factor a is larger) increases the probability that
two similar CQs are matched to the same peer. This by no
means implies that the peers within a contiguous region are
assigned only to CQs that are similar for two reasons. First,
if the grouping factor a is not large enough, then two
nonsimilar CQs might be mapped into the same contiguous
region by the hashing function used (SHA1 in our case).
Second, peers might have more than one identifier, possibly
belonging to different contiguous regions. Given the
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nonuniform nature of the monitoring requests, there is a
trade-off between reducing redundancy in CQ evaluation
and balancing load. By setting larger values for the
grouping factor a, two extreme situations may occur. On
one hand, there may be regions on the identifier circle in
which peers are responsible for too many CQs and, on the
other hand, there are some other regions in which peers
may be assigned too few CQs and are starving. Thus, the
grouping factor a should be chosen carefully to optimize the
processing of similar CQs while keeping a good balance of
the peer loads. We refer to the grouping provided by the
CQ-to-identifier mapping as the level-one grouping. A fine-
tuning of the level-one grouping will be described later in
the relaxed matching discussion.

3.2.3 Assignment of CQs to Peers: The Two Phase

Matching Algorithm

In PeerCQ, the assignments of CQs to peers are based on a
matching algorithm defined between CQs and peers,
derived from a relationship between CQ identifiers and
peer identifiers. The matching algorithm consists of two
phases: the strict phase and the relaxed phase.

In the Strict Matching phase, a simple matching criterion,
similar to the one defined in Consistent Hashing [8], is used.
A distinct feature of the PeerCQ strict matching algorithm is
the two identifier mappings that are carefully designed to
achieve some level of peer-awareness and CQ-awareness,
namely, the mapping of CQs to CQ identifiers that enables
the assignment of CQs having similar triggers to the same
peers and the mapping of peers with heterogeneous
resource donations to a varying set of peer identifiers. In
the Relaxed Matching phase, an extension to strict matching
is applied to relax the matching criteria to include
application semantics in order to achieve the desired level
of peer-awareness and CQ-awareness.

Strict Matching. The idea of strict matching is to assign a
CQ to a peer such that the chosen peer has a peer identifier
that is numerically closest to the CQ identifier among all
peer identifiers on the identifier circle. Formally, strict
matching can be defined as follows: The function
strict matchðcqÞ returns a peer p with identifier j, denoted
by a pair ðp; jÞ, iff the following condition holds:

strict matchðcqÞ ¼ ðp; jÞ; where
j 2 p:peer ids ^ 8p0 2 P; 8k 2 p0:peer ids;

Distðj; cq:cq idÞ � Distðk; cq:cq idÞ:

Peer p is called the ownerof the cq. Thismatching is strict in the
sense that it follows theabsolutenumerical closenessbetween
the CQ identifier and the peer identifier to determine the
destination peer. In other words, suppose two adjacent peer
identifiers (together with their peers) ðp; iÞ and ðq; jÞ on the
identifier circle such that the CQ identifier lies between i and
j. If Distði; cq idÞ � Distðj; cq idÞ, then the peer p associated
with identifier i is the owner peer of this CQ.

Relaxed Matching. The goal of Relaxed Matching is to
fine-tune the performance of PeerCQ service partitioning by
incorporating additional characteristics of the information
monitoring applications. Concretely, in the Relaxed Match-
ing phase, the assignments of CQs to peers are revised to
take into account factors such as the network proximity of
peers to remote data sources, whether the information to be
monitored is in the peer’s cache, and how peers are

currently loaded. By taking into account the network
proximity between the peer responsible for executing a
CQ and the remote data source being monitored by this CQ,
the utilization of the network resources is improved. By
considering the current load of peers and whether the
information to be monitored is already in the cache, one can
further improve the system utilization.

We calculate these three measures for each match made
between a CQ and a peer at the strict matching phase. Let p
denote a peer and cq denote the CQ assigned to p.

. Cache affinity factor is a measure of the availability
of a CQ that is being executed at a peer p, which
monitors the same data source and the same data
item as cq. It is defined as follows:

CAF ðp:peer props:cache; cq:mon itemÞ ¼
1 if cq:mon item is in p:peer props:cache

0 otherwise:

�

. Peer load factor is a measure of a peer p’s will-
ingness to accept an additional CQ to execute,
considering its current load. The PLF factor provides
an opportunity for reassigning a CQ to a less loaded
peer whenever the executor peer of this CQ needs to
be determined. It is defined as follows:

PLF ðp:peer props:loadÞ ¼

1
if p:peer props:load �
thresh �max load

1� p:peer props:load
MAX LOAD

if p:peer props:load > thresh�
max load:

8>>><
>>>:

. Data source distance factor is a measure of the
network proximity of the peer p to the data source of
the CQ specified by identifier cq. SDF is defined as
follows:

SDF ðcq:mon src; p:peer props:IP Þ ¼
1

ping timeðcq:mon src; p:peer props:IP Þ :

Let UtilityF ðp; cqÞ denote the utility function of relaxed
matching which returns a utility value for assigning cq to
peer p, calculated based on the three measures given above:

UtilityF ðp; cqÞ ¼ PLF ðp:peer props:loadÞ�
ðCAF ðp:peer props:cache; cq:mon itemÞþ
w � SDF ðp:peer props:IP ; cq:mon srcÞÞ:

Note that the peer load factor PLF is multiplied by the sum
of cache affinity factor CAF and the data source distance
factor SDF . This gives more importance to the peer load
factor. For instance, a peer which has a cache ready for the
CQ and is also very close to the data source will not be
selected to execute the CQ if it is heavily loaded. w is used
as a constant to adjust the importance of the data source
distance factor with respect to the cache affinity factor. For
instance, a newly entered peer, which does not have a cache
ready for the given CQ but is much closer to the data source
being monitored by the CQ, can be assigned to execute the
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CQ depending on the importance of SDF relative to CAF
as adjusted by the w value.

Although the PLF (peer load factor) used in the relaxed
matching helps assigning a CQ to a less loaded peer, an
increase in the load of a peer after CQs are assigned is not
considered by the PLF . However, the PeerCQ design
provides easy mechanisms to address such situations. The
dynamic changes in the load of a peer can be handled by
adjusting the number of peer identifiers. For instance, an
increase in the load due to other processes executed by the
peer can be handled by decreasing the number of peer
identifiers possessed by the peer. This will offload the CQs
associated with the dropped peer identifiers to other less
loaded peers (as determined by the PLF component of
relaxed matching).

Formally, relaxed matching can be defined as follows:
The function relaxed matchðcqÞ returns a peer p with
identifier i, denoted by a pair ðp; iÞ, if and only if the
following holds:

relaxed matchðcqÞ ¼ ðp; iÞ; where
ðp0; jÞ ¼ strict matchðcqÞ ^ ðp; iÞ 2 NeighborListðp0; jÞ ^
8ðp00; kÞ 2 NeighborListðp0; jÞ; UtilityF ðp; cqÞ
� UtilityF ðp00; cqÞ:

The idea behind the relaxed matching can be summarized as
follows: The peer that is matched to a given CQ according to
the strict matching, i.e., the owner of the CQ, has the
opportunity to query its neighbors to seewhether there exists
a peer that is better suited to process the CQ in terms of load
awareness, cache awareness, and network proximity of the
data sources beingmonitored. In case such a neighbor exists,
the owner peer will assign this CQ to one of its neighbors for
execution.We call the neighbor node chosen according to the
relaxed matching the executor of the CQ.

It is interesting to note that the cache-awareness property
of the relaxed matching provides an additional level of CQ
awareness by favoring the selection of a peer as a CQ’s
executor if the peer has a cache ready for the CQ (which
means that one or more similar CQs are already executing
at that peer). We refer to the cache-awareness-based
grouping as level-two grouping, which can be seen as an
enhancement to the mapping of similar CQs to the same
peer in the strict matching phase.

An extreme case of relaxed matching is called random
relaxed matching. Random relaxed matching is similar to
relaxed matching except that, instead of using a value
function to find the best peer to execute a CQ, it makes a
random decision among the neighbors of the CQ owner. In
the rest of the paper, we call the original relaxed matching
optimized relaxed matching. Unless otherwise specified, the
terms relaxed matching and optimized relax matching are
used interchangeably.

3.3 PeerCQ Service Lookup

The PeerCQ service lookup implements the two-phase
matching described in the previous section. Given a CQ, the
lookup operation is able to locate its owner and executor
using only OðlogNÞ messages in a fully decentralized P2P
environment, where N is the number of peers. Similarly to
several existing design of the DHT lookup services [17],
[21], [13], [20], the lookup operation in PeerCQ is performed
by routing the lookup queries toward their destination

peers using routing information maintained at each peer.
The routing information consists of a routing table and a
neighbor list for each identifier possessed by a peer. The
routing table is used to locate a peer that is more likely to
answer the lookup query, where a neighbor list is used to
locate the owner peer and the executor peer of the CQ.

Two basic API functions are provided to find peers that
are most appropriate to execute a CQ based on the
matching algorithms described in the previous section:

. p:lookupðiÞ: The lookup function takes an m-bit
identifier i as its input parameter and returns a
peer-identifier pair ðp; jÞ satisfying the matching
criteria used in strict matching, i.e.,

j 2 p:peer ids ^ 8p0 2 P;

8k 2 p0:peer ids;Distðj; cq:cq idÞ � Distðk; cq:cq idÞ:

. p:get neighborsðiÞ: This function takes an identifier
from the peer identifier set of p as a parameter.
It returns the neighbor list of 2rþ 1 peers
associated with the identifier i of the peer p,
i.e., NeighborListðp; iÞ.

The p:lookupðiÞ function implements a routed-query-
based lookup algorithm. Lookup is performed by recur-
sively forwarding a lookup query containing a CQ identifier
to a peer whose peer identifier is closer to the CQ identifier
in terms of the strict matching until it reaches the owner
peer of this CQ. A naive way of answering a lookup query
is to iterate on the identifier circle using only the neighbor
list until the matching is satisfied. The routing tables are
used simply to speed up this process. Initialization and
maintenance of the routing tables and the neighbor lists do
not require any global knowledge. The number of messages
used by our lookup operation is logarithmic with respect to
the number of peers in the system. More importantly,
neither the mappings introduced by PeerCQ nor the
implementation of PeerCQ’s relaxed matching increases
the asymptotic complexity of the number of messages
required by the lookup service to carry out CQ to peer
matching. Readers may refer to [5] for details of the PeerCQ
lookup protocol.

3.4 Peer Joins and Departures

In a dynamic P2P network, peers can join or depart at any
time and peer nodes may fail without notice. A key
challenge in implementing these operations is how to
preserve the ability of the system to locate every CQ in
the network and the ability of the system to balance the load
when distributing or redistributing CQs. To achieve these
objectives, PeerCQ needs to preserve the following two
principles: 1) Each peer identifier’s routing table and
neighbor list are correctly maintained. 2) The strict match-
ing and the relaxed matching are preserved for every CQ.

The maintenance of the routing information for DHT-
based P2P systems in the presence of peer joins and
departures is studied in the context of several P2P systems
[17], [20], [12], [19]. Due to space restrictions, we focus on
the mechanisms used in PeerCQ to ensure the second
principle in the following subsection and refer the readers
to our technical report [4] for detailed discussion and
algorithms on the routing information maintenance. We
first describe how to maintain strict matching during peer
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joins or departures. Then, we extend the discussion to the
maintenance of relaxed matching. We defer the discussion
on how PeerCQ handles node failures to the next section.

3.4.1 Maintaining the Two-Phase Matching of CQs to

Peers

It is important to maintain the two-phase matching criteria
in order to preserve the ability of the system to sustain the
installed CQs while balancing the peer load in the presence
of peer joins, departures, and failures.

Joins, Departures with Strict Matching. Assuming that,
after a new peer p joins the PeerCQ network, its routing
table and neighbor list information are initialized, the
subset of CQs that need to transfer their ownership to this
newly joined peer p can be calculated as follows: For each
identifier i 2 p:peer ids, a set of CQs owned by p’s
immediate left and right neighbors before p joins the
system is migrated to p if they meet the strict matching
criteria. The departure of a peer p requires a similar but
reverse action to be taken. Again, for each identifier
i 2 p:peer ids, p distributes all CQs it owns to the immediate
left and right neighbors associated with i according to strict
matching.

Joins, Departures with Relaxed Matching. For CQs
migrated to a new peer p, p becomes the owner of these
CQs. By applying the relaxed matching, the executor peer
can be located from p’s neighbor list. Concretely, each peer
keeps two possibly intersecting sets of CQs, namely, Owned
CQs and Executed CQs. The owned CQs set is formed by the
CQs that are assigned to a peer according to strict matching
and the executed CQs set is formed by the CQs that are
assigned to a peer according to relaxed matching. CQs in
the executed CQs set of a peer are executed by that peer,
whereas the CQs in the owned CQs set are kept by the
owner peer for control purposes.

A peer p upon entering the system first initializes its
owned CQs set as described in the strict matching case.
Then, it determines where to execute these CQs based on
relaxed matching. If peers different from the previous
executors are chosen to execute these CQs, then they are
migrated from the previous executors to the new executors.
Peers whose neighbor lists are affected due to the entrance
of peer p into the system also reevaluate the relaxed
matching phase for their owned CQs since p’s entrance
might have caused the violation of relaxed matching for
some peers.

The departure process follows a reverse path. A
departing peer p distributes its owned CQs to its immediate
neighbors in terms of strict matching. Then, the neighbors
determine which peers will execute these CQs according to
the relaxed matching. The departing peer p also returns
CQs in its executed CQs set to their owners and these owner
peers find the new executor peers of these CQs according to
the relaxed matching.

Concurrent Joins & Departures. Concurrent joins and
departures of peers introduce additional challenges in
initializing routing information of newly joined peers,
updating routing information of existing peers, and redis-
tributing CQs. More concretely, the problem is how to
guarantee concurrent updates of neighbor lists correctly
and efficiently as the PeerCQ network evolves. In order to
provide consistency in the presence of concurrent joins and
departures, in the first prototype of PeerCQ, we enable only

one join or one departure operation at a time within a

neighbor list. This is achieved by a distributed synchroniza-

tion algorithm executed within neighbor list boundaries

which serializes the modifications to the neighbor list of

each peer identifier. We use a mutual exclusion algorithm

[15] to ensure the correctness instead of a weaker solution

based on periodic polls to detect and correct inconsistencies,

as is done in Chord [19].

3.5 Handling Node Failures with Dynamic
Replication

It is known that failures are unavoidable in a dynamic peer-

to-peer network where peer nodes correspond to user

machines. A failure in PeerCQ is a disconnection of a peer

from the PeerCQ network without notifying the system.

This can happen due to a network problem, computer

crash, or improper program termination. Byzantine failures

that include malicious program behavior are not considered

in this paper. We assume a fail-stop model where timeouts

can be used for detecting failures. In PeerCQ, failures are

detected through periodic pollings between peers in a

neighbor list.
Failures threaten the system reliability in two aspects.

First, a failure may result in incorrect routing information.

Second, a failure of a peer will cause CQ losses if no

additional mechanisms are employed. The former problem

is solved using routing maintenance mechanisms similar to

those in handling peer departure. The only difference is that

the detection of a failure triggers the maintenance of the

routing information instead of a volunteer disconnection

notification. However, the latter problem requires a more

involved solution.
There are two important considerations in PeerCQ

regarding providing fault-tolerant reliable service. One is

to provide CQ durability and the other is to provide

uninterrupted CQ processing. CQ durability refers to the

ability of PeerCQ to maintain the property that no CQs

executed at a peer will get lost when it departs or fails

unexpectedly. Uninterrupted CQ processing refers to the

ability of PeerCQ to pick up those CQs dropped due to the

departure or failure of an existing peer and continue their

processing. Whenever CQ durability is violated, the

uninterrupted CQ processing will be violated, too. Further-

more, when a peer p fails, if there are existing peers that

hold additional replicas of the CQs that p runs as their

executor, but that do not have sufficient information on the

execution state of those CQs, then the execution of these

CQs will be interrupted, possibly resulting in some

inconsistent behavior. The proper resumption of the CQ

execution upon the failure of its executor peer requires the

replicas to hold both the CQs and their runtime state

information.

3.5.1 PeerCQ Replication Scheme

In order to ensure smooth CQ execution and to prevent

failures from interrupting CQ processing and threatening

CQ durability, we need to replicate each CQ. We describe

PeerCQ replication formally as follows: A CQ, denoted as

cq, is replicated at peers contained in the set:
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ReplicationListðcqÞ ¼ ½ðp�brf=2c; i�brf=2cÞ; . . . ;
ðp�1; i�1Þ; ðp0; i0Þ; ðp1; i1Þ; . . . ; ðpdrf=2e; idrf=2eÞ�; where
^drf=2e
k¼1

pik ¼ IRNðpk�1; ik�1Þ ^
^brf=2c
k¼1

pi�k

¼ ILNðp�kþ1; i�kþ1Þ ^ ðp0; i0Þ ¼ strict matchðcqÞ:

This set is called the replication list and is denoted as
ReplicationListðcqÞ. The size of the replication list is rf þ 1,
where rf is called the replication factor. Replication list size
should be smaller than or equal to the neighbor list size to
maintain the property that replication is a localized
operation, i.e.,

ReplicationListðcqÞ � NeighborListðp; iÞ; where
ðp; iÞ ¼ strict matchðcqÞ:

In addition to replicating a CQ, some execution states of
the CQ need to be replicated together with the CQ and be
updated when the CQ is executed and its execution state
changes in order to enable correct continuation of the CQ
execution after a failure. Recall from Section 2, the executor
peer of a CQ needs to maintain three execution states about
this CQ: 1) the evaluation state of the trigger, which
contains monitoring source, monitoring item, and trigger
condition evaluation result, 2) the query result returned
since the last CQ evaluation, and 3) the notification state of
the CQ. In PeerCQ, changes on the states associated with
each CQ are propagated to replicas of the CQ in two steps,
with either an eager mode or a deferred mode: 1) Whenever
an executor peer of a CQ updates the related states of a CQ,
it notifies the CQ owner immediately to ensure that such
updates will be propagated to all replicas of the CQ. 2) Upon
receiving update notification from the executor peer of a
CQ, the owner peer of the CQ may choose to send update
notifications to all other peers holding replicas of the CQ
immediately (eager mode) or to propagate the update to
rest of the replicas using a deferred strategy that considers
different trade-offs between performance and reliability.
The propagation of the state update to the owner ensures
that at least two peers hold the update state of each CQ and
the probability of both executor peer and owner peer failing
together is relatively low.

Since CQs should be available for processing at any time
once they are installed in the system, PeerCQ requires a
strong and dynamic replication mechanism. By strong and
dynamic replication, we mean that, at any time, each CQ
should have a certain number of replicas available in the
system and this property should be maintained dynami-
cally as the peers enter and exit the system. As a result, our
replication consists of two phases. In Phase 1, a CQ is
replicated at a certain number of peers. This phase happens
immediately after a CQ is installed into the system. In
Phase 2, the number of replicas existing in the system is
kept constant and all replicas are kept consistent. The
second phase is called the replica management phase and
lasts until the CQ’s termination condition is met or the CQ
is explicitly removed from the system.

One important decision for the PeerCQ replication
scheme is where to replicate CQs. In order to preserve
the correctness of the lookup mechanism and preserve
good load-balance, we select the peers to host the replicas
of a CQ from the peers in the neighbor list of the owner

peer of this CQ. Moreover, choosing these peers from the
neighbor list localizes the replication process (no search is
required for locating replica holders), which is an
advantage in a fully decentralized system. Furthermore,
peers that are neighbors on the identifier circle are not
necessarily close to each other geographically, thus the
probability of collective failures is low.

3.5.2 Fault Tolerance

Given the description of the PeerCQ replication scheme, we

define two different kinds of events that result in losing

CQs. One is the case where the existing peers that are

present in the system are not able to hold (either for

replication or for execution) any more CQs due to their

heavy load. There is nothing to be done for this if the system

is balanced in terms of peer loads because this indicates an

insufficient number of peers present in the system. The

other case is when all replica holders of a CQ (or CQs) fail in

a short time interval, not letting the dynamic replica

management algorithm finish its execution. We call this

time interval the recovery time, denoted by �tr. We call the

event of having all peers contained in a replication list fail

within the interval, �tr, a deadly failure. We first analyze the

cases where we have deadly failures and then give an

approximation for the probability of having a deadly failure

due to a peer’s departure. We assume that peers depart by

failing with probability pf and the time each peer stays in

the network, called the service time, is exponentially

distributed with mean st.

Let us denote the CQs owned by a peer p that satisfies

strict matchðcqÞ ¼ ðp; iÞ as Op;i. Let RLp;iðtÞ be the set of

peers in the replication list of CQs in Op;i at time t, where

the replication list is a subset of the neighbor list and has

size rf þ 1. Assume that peer p fails right after time ta.

Then, RLp;iðtaÞ consists of the peers that are assumed to be

holding replicas of CQs in Op;i at time ta. Let us denote the

time of the latest peer failure in RLp;iðtaÞ as tl and the length

of the shortest time interval which covers the failure of

peers in RLp;iðtaÞ as �t where �t ¼ tl � ta. If �t is not large

enough, i.e., �t < �tr, then p’s failure at time ta together

with the failures of other peers in RLp;iðtaÞ will cause a

deadly failure. This will result in losing some or all CQs in

Op;i.

Let PrdfðpÞ denote the probability of a peer p’s

departure resulting in a deadly failure. Then, we define:

Prdfðp; iÞ ¼ Pr{All peers in RLp;iðtÞ have failed within a

time interval < �tr, where p failed at time t}. Then, we have:

PrdfðpÞ ¼ 1�
Y

i2p:peer ids

ð1� Prdfðp; iÞÞ

If we assume
T

i2p:peer ids RLp;iðtÞ ¼ p, then

8i;j2p:peer ids Prdfðp; iÞ ¼ Prdfðp; jÞ:

Then, we have:

PrdfðpÞ ¼ 1� ð1� Prdfðp; iÞÞp:ident count: ð1Þ
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Let t0 denote a time instance at which all peers in RLp;iðtÞ
were alive. Furthermore, let us denote the amount of time

each peer in RLp;iðtÞ stayed in the network since t0 as

random variables A1; . . . ; Arfþ1. Due to the memorylessness

property of the exponential distribution, A1; . . . ; Arfþ1 are

still exponentially distributed with � ¼ 1=st. Then, we have:

Prdfðp; iÞ ¼ pfrfþ1 � PrfMAXðA1; . . . ; Arfþ1Þ < �trg;

which leads to

Prdfðp; iÞ ¼ pfrfþ1 �
Yrf
i¼1

PrfAi < �trg;

Prdfðp; iÞ ¼ pfrfþ1 �
Yrf
i¼1

ð1� e��tr=stÞ:
ð2Þ

Equations (1) and (2) are combined to give the following
equation:

PrdfðpÞ ¼ 1�
�
1� pfrfþ1 �

Yrf
i¼1

ð1� e��tr=stÞ
�p:ident count

:

In a setup where rf ¼ 4, pf ¼ 0:1, �tr ¼ 30 secs and
st ¼ 60 mins, p:identifier count ¼ 5, PrdfðpÞ turns out to
be ’ 2:37 � 10�13. We further investigate the fault tolerance
capability of PeerCQ in Section 4.4. Note that the greater the
replication factor rf is, the lower the probability of losing
CQs. However, having a greater replication factor increases
the cost of managing the replicas. As described earlier, the
job of dealing with the replica management of a CQ is the
responsibility of the CQ’s owner. We omit the detailed
replica management in this paper and refer readers to [4]
for further discussion.

4 SIMULATION-BASED EXPERIMENTS AND RESULTS

To evaluate the effectiveness of PeerCQ’s service partition-
ing scheme with respect to system utilization and load
balancing, we have designed a series of experiments. Here,
we first describe our experimental setup.

We built a simulator that assigns CQs to peers using the
service partitioning and lookup algorithms described in the
previous sections. The system parameters to be set in the
simulator include: m, length of identifiers in bits; a,
grouping factor; r, neighbor list parameter; N , number of
peers; K, number of CQs. With this simulator, we conduct
our experiments under different stabilization states of the
system as well as under unstable states. The system states
were modeled with different numbers of peers, different
workloads of CQs, and different configurations of some

system parameters. The measurements were taken on these
snapshots. In all experiments reported in this paper, the
length of the identifiers (m) is set to 128.

We model each peer with its resources, the amount of
donation, the reliability factor, and its IP address. The
resource distribution is taken as normal distribution. The
donations of peers are set to be half of their resources. We
model CQs with the data sources, the data items of interest,
and the update thresholds being monitored. There are D ¼
5 � 103 data sources and 10 data items on each data source.
The distribution of the user interests on the data sources is
selected to model the hot spots that arise in real-world
situations due to the popularity of some triggers. Both
normal distribution for modeling the user interests on the
data sources and a zipf distribution (Section 4.2.4) are
considered in the experiments.

4.1 Effect of Grouping Factor

An important factor that may affect the effectiveness of the
service partitioning scheme is the grouping factor. Recall
from Section 3.2.2 that the grouping factor a is introduced at
the protocol level to promote the idea of grouping similar
CQs to optimize the processing of similar information
monitoring requests. The grouping factor a is designed to
tune the probability of assigning similar CQs to the same
peer. The larger the a value is, the higher the probability
that two similar CQs will be mapped to the same peer and,
thus, the fewer number of CQ groups per peer. However,
increasing a has limitations, as discussed in Section 3.2.2.

This experiment considers a 10,000 node network
(N ¼ 104) and the total number of CQs in the network is
100 times N , i.e., K ¼ 106. Fig. 2 shows the effects of
increasing a on grouping when a is 0, 8, and 10. Fig. 3 shows
the effects of increasing a on grouping when a is 12, 14, and
16. The values on the x-axis are the number of CQ groups
that the peers have and the corresponding values on the
y-axis are the frequencies of peers having x number of CQ
groups. From these two figures, one can observe that, when
a is set to 0, there is nearly no grouping since the average
CQ group size is close to one and the number of CQ groups
is large (one CQ per group and the number of CQs a peer is
responsible for may reach up to 200). The number of groups
decreases as a is set to a larger value. The average size of the
CQ groups also increases as a is set to a larger value.
Consider the simulation results from Fig. 2 and Fig. 3, when
a ¼ 8, the largest number of groups a peer may have is
decreased to 120 or so. When a ¼ 10, the largest number of
groups a peer may have is dropped to less than 70. When
the grouping factor a is set to be 16, the largest number of
groups a peer has is less than 20. A small number of CQ
groups implies larger sizes of the CQ groups.
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Fig. 4 compares the average group size and the average
number of groups per peer. The values on the x-axis of Fig. 4
are the grouping factors, where the two series represent
average CQ group size (average number of CQs per CQ
group) and average number of CQ groups per peer,
respectively. When a ¼ 0, there is nearly no grouping since
the average CQ group size is close to one and the number of
CQ groups is large (one CQ per group). As the grouping
factor increases, the average size of the CQ groups also
increases, while the number of CQ groups decreases.

These observations have an important implication.
Assignment of CQs to peers that try to achieve better
grouping (setting the grouping factor a to be higher) will
decrease the number of CQ groups processed by a peer while
increasing the number of CQs contained in each CQ group
(CQ group size). As a result, the average load of peers will
be decreased and the overall system utilization will be
better. However, increasing the grouping factor too much
causes a lot of peers getting no CQs!

To provide an in-depth understanding of the effect of the
grouping factor, we compare the optimized relaxed matching
algorithm with the random relaxed matching algorithm under
a given grouping factor. Fig. 5 compares the two matching
algorithms when a ¼ 10. It is clear that the optimized
relaxed matching is more effective in its ability to group
CQs, which is due to its cache-awareness. We can say that
random relaxed matching has only level-one grouping, which
is the grouping provided by the grouping factor, where the
optimized relaxed matching algorithm also has level-two
grouping supported through its cache-awareness.

4.2 Effectiveness with Respect to Load Balancing
and System Utilization

This section presents a set of experiments to evaluate the
effectiveness of the PeerCQ service partitioning scheme with
respect to load balance and system utilization. By better
system utilization, we mean that the system can achieve
higher throughput and lower overall consumption of
resources in terms of processing power and network
bandwidth. By load balancing, we mean that no peer in the
system is overloaded due to joins or departure of other peers
or due to the increase of requests to monitoring data sources
that are hot spots at times.

4.2.1 Load Balance versus System Utilization

It is interesting to point out that, by incorporating the
grouping optimization into PeerCQ, we observe that the
goal of balancing the load over peers may not always be
consistent with the goal of maximizing the overall system
utilization in PeerCQ.

To illustrate this observation, consider a simple example:
Assume we have two peers, p and p0, which are identical in
terms of their capacities. Assume that there are seven CQs
that need to be distributed to these two peers. One CQ of
type a denoted as cqa1 and six CQs of type b denoted as
cqb1; . . . ; cqb6. Furthermore, assume that CQs of the same
type are similar and thus can be grouped together. The
scenario that shows a better overall utilization of system
resources is the case where p is assigned only one CQ,
which is cqa1, and p0 is assigned six CQs, namely,
cqb1; . . . ; cqb6. By using the full power of CQ grouping,
one can minimize the repeated computation and duplicated
consumption of network resources. However, the optimal
system utilization may not necessarily imply a good balance
of loads on peers for two reasons. First, the cost of
processing a CQ consists of three main components: the
cost of evaluating its trigger, the cost of executing its query
component upon the truth evaluation of triggers, and the
cost of notification. Grouping of similar CQs only saves the
repeated evaluation of trigger conditions that are shared
among groups of CQs. Second, even though the most
expensive computation of the CQ processing is the
continued testing of CQ triggers, our experience with the
continual query systems shows that the cost of grouping,
querying, and notification is not negligible [10]. Therefore, it
is likely that the scenario where the system is best utilized
may not be the same as the scenario where the load of the
system is best balanced among peers.

4.2.2 CQ Load of a Peer

We define the CQ load of a peer to be the number of CQs
processed by the peer divided by the number of identifiers it
has. Due to the support of grouping in the CQprocessing, the
CQ load of a peer should not be used as ameasure to compare
peer loads. To illustrate this observation, consider a case
where a peer, say p, is assigned 10 CQs and another peer, say
p0, which has twice the number of peer identifiers that phas, is
assigned 20 CQs. Note that their CQ loads are equal.
Furthermore, assume that the 10 CQs assigned to p are
partitioned into five CQ groups of sizes 4, 2, 2, 1, 1, and the
20 CQs assigned to p0 are partitioned into two CQ groups of
sizes 12, 8. In this case, it is quite possible that the peer p0 is
loaded less than peer p, although their CQ loads are equal.
This is due to the fact that the number of CQ groups in p0

(which is two) is smaller than the number of CQ groups in p
(which is five), although their CQ loads are equal.

4.2.3 Computing Peer Load

In order to analyze the load on peers, we first formalize the
load on a peer. In PeerCQ, the cost associated with the P2P
protocol level processing is considered to be proportional to
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Fig. 5. Optimized relaxed matching compared to strict matching.

Fig. 4. Influence of a on average CQ group sizes and average number of

CQ groups.



peer capacities since the protocol level processing is
proportional to the number of identifiers a peer has. Based
on this understanding, we consider the continued monitor-
ing of remote data sources and data items of interest to be
the dominating factor in computing the peer load. We
formalize the load on a peer p as follows:1

Let Gp represent the set of groups that peer p has,
denoted by a vector hg1; . . . ; gni, where n is the number of
CQ groups that peer p has. We refer to n as the size of Gp

denoted by sizeðGpÞ. Each element gi represents a group in
p which can be identified by the data source being
monitored and the data items of interest. The size of a
group gi, which is the number of CQs it contains, is denoted
by sizeðgiÞ. Let costðgiÞ be the cost of processing all CQs in a
group gi, monCostðgiÞ be the cost of monitoring a data item,
and gCostðsizeðgiÞÞ be the cost of grouping for group gi,
which is dependent on the number of CQs in gi. Then, the
cost of processing all CQs in a peer, denoted as costðGpÞ, can
be calculated as follows:

costðGpÞ ¼
XsizeðGpÞ

i¼1

costðgiÞ

¼
XsizeðGpÞ

i¼1

ðmonCostðgiÞ þ gCostðsizeðgiÞÞ:

In our experiments, we assume that the cost of grouping
increases linearly with group size. In particular, if proces-
sing one CQ costs one unit, then processing k similar CQs
costs 1þ x � k units, where x � k corresponds to the cost of
grouping k CQs. x is taken as 0.25 in our simulations. This
setting was based on the grouping effect and cost study we
have done on WebCQ [12].

Given that the cost of detecting changes in the data items
of interest from remote data sources is the dominating
factor in the overall cost of processing a CQ, we assume that
the cost of monitoring is the same for all data items,
independent of the monitoring conditions defined by CQs,
and is equal to monCost, then the cost of processing all CQs
on a peer p can be reduced to:

costðGpÞ ¼ sizeðGpÞ �monCostþ
XsizeðGpÞ

i¼1

gCostðsizeðgiÞÞ:

In order to calculate the load on a peer, the cost is
normalized via dividing it by the effective donation because
the notion of load on a peer in our system is relative to the
effective donation of the peer. Let EDp be the effective

donation of peer p. We calculate the load on a peer as:
loadðpÞ ¼ costðGpÞ=EDp.

The load values of peers are used as both a measure of
system utilization and a measure of load balance in our
experiments. First, the mean peer load, which is the average
of peer load values, is used as a measure of system
utilization. The smaller the mean load is, the better the
system utilization is. However, the system utilization is also
influenced by the amount of network bandwidth con-
sumed, which is captured by the average network cost
defined below. Second, the variation in peer loads is used as
a measure of load balance. To compare different scenarios,
the load variance is normalized by dividing it by the mean
load. This measure is called the balance in peer loads. Small
values of balance in peer loads imply a better load balance.

PeerCQ service partitioning makes use of network
proximity between peers and data sources when assigning
CQs to peers. It aims at decreasing the network cost of
transferring data items from the data sources to the peers of
the system. For simulation purposes, we assign a cost to
each (peer, data source) pair in the range ½10; 1000�. We
model such a cost by the ping times between peers and data
sources. Then, we calculate the sum of these costs for each
CQ group at each peer and divide it by the total number of
peers to get an average. Let P denote the network consisting
of N peers and net cost be the function that assigns costs to
(peer, data source) pairs, then the resulting value named as
average network cost and denoted by avgNetCost is equal to:
avgNetCost ¼ 1

N

P
p2P

PsizeðGpÞ
i¼1 net costðp; gi:mon srcÞ.

4.2.4 Experimental Results

All experiments in this section were conducted over a
network consisting of N peers and K CQs, where N ¼ 104

and K ¼ 106. To evaluate the effectiveness of the optimized
relaxed matching algorithm, we compare it with the random
relaxed matching algorithm using the set of parameters
discussed earlier, including the grouping factor a, the mean
peer load, the variance in peer loads, balance in peer loads,
average network cost, variance in CQ loads of peers.

Fig. 6 shows the effect of the grouping factor a on the
effectiveness of relaxed matching with respect to mean load.
Similarly, Fig. 7 shows the effect of the grouping factor a on
the effectiveness of relaxed matching with respect to
network cost. From Fig. 6 and Fig. 7, we observe a number
of interesting facts:

First, as the grouping factor increases, both the mean
peer load and the average network cost decreases. Increas-
ing the grouping factor helps in decreasing the mean peer
load since it reduces the redundant computation by
enabling more group processing. Optimized relaxed match-
ing provides more effective reduction in the mean peer load
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Fig. 6. Effect of a and relaxed matching on mean peer load. Fig. 7. Effect of a and relaxed matching on average network cost.

1. For the purpose of our simulation, we have assumed that the
frequency of changes is the same for all data items.



due to its level-two grouping. Level-two grouping works
better as the grouping factor a increases (i.e., the level-one
grouping increases).

Second, increasing the grouping factor also helps in
decreasing the average network cost since the cost of fetching
data items of interest from remote data sources is incurred
only once per CQ group and serves for all CQs within the
group. It is also clear that optimized relaxed matching
provides more effective reduction in their average network
cost due to its level-two grouping (which results in better
grouping) and its data source awareness, which incorporates
the network cost of accessing the data items of a CQ that are
being monitored into the service partitioning decision.

Third, but not least, the decrease in the mean peer load
and in the average network cost is desirable since it is an
implication of better system utilization. However, if the
grouping factor increases too much, then the goal of load
balancing over the peers of the system will suffer.

Fig. 8 shows the effect of increasing the grouping factor a
on load balance of both the optimized relaxed matching
algorithm and the random relaxed matching algorithm. As
expected, the optimized relaxed matching provides better
load balance since optimized relaxed matching explicitly
considers peer loads in its value function for determining
the peer that is appropriate for executing a CQ. In the case
of a ¼ 0, it provides the best load balance. However, as the
grouping increases, peers having identifiers belonging to
some hot spot regions of the identifier space match many
more CQs than others (due to the nonuniform nature of
information monitoring interests and the mechanisms used
to match CQs to peers). Consequently, the load balance gets
worse as the grouping increases. For our experiment setup,
the load balance degrades quickly when a is 8 or higher.

It is interesting to note that random relaxed matching
shows an improvement in load balance for smaller values of
the grouping factor and starts switching to a degradation
trend when a is set to 10 or higher. This is mainly due to the
fact that random relaxed matching only relies on rando-
mized algorithms to achieve load balance in the system.
Thus, the load balance obtained in the case of a ¼ 0 is

inferior when compared to optimized relaxed matching.
This means that there are overloaded and underloaded
peers in the system. Grouping helps decrease the loads of
overloaded peers by enabling group processing. This effect
decreases the gap between overloaded peers and under-
loaded peers, resulting in a better balance to some extent.

Finally, it is important to note that, when we increase a
too much, the optimized relaxed matching loses its
advantage in terms of load balancing over the random
relaxed matching. Intuitively, this happens due to the fact
that, in optimized random relaxed matching, there are two
levels of grouping, whereas, in random relaxed matching,
there is only one level of grouping. More concretely, in
overloaded regions of the identifier space, there is nothing
to balance. In underloaded regions, when a increases, the
optimized relaxed matching maps more CQs to fewer peers
due to the second-level grouping, causing even more
unbalance since several peers get no CQs at all from the
underloaded region.

In summary, to provide a reasonable balance between
overall system utilization and load balance, it is advisable to
choose a value for a which is equal to or smaller than the
value where the randomized relaxed matching changes its
load balance trend to degradation, but is greater than half of
this value. This results in the range ½6; 10� in our setup. In
this range, higher values are better for favoring overall
system utilization, whereas lower values are better for
favoring load balance. Fig. 9 shows this trade-off. The
values on the x-axis are the peer load values and the
corresponding values on the y-axis are the frequencies of
peers having x amount of load. By looking at the points, it is
easy to see that the balance is better when a ¼ 6 and load
values are lower when a ¼ 10.

Fig. 10 shows the distribution of the CQ processing loads
over peers. Fig. 11 plots the same graph except that the
information monitoring interests of CQs that are used to
generate the graph follow a zipf distribution which is more
skewed than the normal distribution used in Fig. 10. The
vertical line in Fig. 11 which crosses the x-axis at 10 marks
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Fig. 8. Effect of a and relaxed matching on load balance.

Fig. 9. Effect of a and relaxed matching on load distribution.

Fig. 10. Load distributions for normally distributed CQ interest.

Fig. 11. Load distributions for zipf distributed CQ interest.



the maximum acceptable load, thus the region on the right
of the vertical line represents overloaded peers. Comparing
these two figures shows that more skewed distributions in
information monitoring interests reduce the balance in CQ
processing loads.

4.3 Effect of Relaxed Matching Criteria

The relaxed matching criteria, which is characterized by the
utility function used in selecting CQ executors, has
influence on several performance measures. In this section,
we examine the effect of each individual component of the
utility function on some of these measures. The experiment
is set up over a network of 104 nodes with 106 CQs and the
grouping factor a is set to be 8.

Fig. 12 shows the effect of individual utility function
components on the balance in CQ processing loads as a
function of neighbor list size, r. The line labeled as FULL
corresponds to the unmodified utility function. Lines
labeled as nX correspond to utility functions in which the
component X is taken out (X 2 fPLF;CAF; SDFg). The
line labeled as RND corresponds to a special utility function
which produces uniformly random values in the range
½0; 1�, resulting in randomized relaxed matching. The first
observation from Fig. 12 is that, in all cases except RND, the
balance shows an initial improvement with increasing r
which is replaced by a degradation for larger values of r.
For RND, the balance continuously but slowly improves
with r. The degradation in balance is due to excessive
grouping. When r is large, there is more opportunity for
grouping and excessive grouping leads to less balanced CQ
processing loads. Fig. 12 clearly shows that PLF is the most

important factor in achieving good load balance. Since PLF
is the most influential factor in achieving good load balance,
a lower thresh value used in PLF factor increases its impact,
thus slowing down the r related degradation in the balance.
This is shown in Fig. 13. Fig. 12 also shows that CAF is
responsible for the degradation of balance with increasing
r values. However, CAF is an important factor for
decreasing the mean CQ processing load of a peer by
providing grouping of similar CQs. Although RND
provides a better load balance than FULL for r � 3, the
mean CQ processing load of a peer is not decreasing with
increasing r when RND is used as opposed to the case
where FULL is used. The latter effect is shown in Fig. 14.

Fig. 15 shows the effect of individual utility function
components on the network cost due to CQ executions. The
increasing r values provide increased opportunity to mini-
mize this cost due to the larger number of peers available for
selecting an executor peer with respect to a CQ. Since SDF is
explicitly designed to decrease the network cost, its removal
from the utility function causes increase in the network cost.
Fig. 15 shows that CAF also helps decrease the network cost.
This is because it provides groupingwhich avoids redundant
fetching of the data items.

4.4 CQ Availability under Peer Failure

One situation that is crucial for the PeerCQ system is the case

where peers are continuously leaving the systemwithout any

peers entering or the peer entrance rate is too low when

compared to the peer departure rate so that the number of

peers present in the system decreases rapidly. Although we

donot expect this kindof trend to continue for a longperiod, it

can happen temporarily. In order to observe the worst case,

we have set up our simulation so that the system starts with

2 � 104 peers and 106CQsandeachpeerdeparts the systemby

failing after certain amount of time. The time each peer stays

in the system is taken as exponentially distributedwithmean

equal to 30 mins, i.e., st ¼ 30 mins. It is clear that, in such a

scenario, the systemwill die, losing allCQs since all peerswill

depart eventually.However,wewant toobserve thebehavior

with different rf values under a worst-case scenario to see
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Fig. 12. Balance in loads for different utility functions.

Fig. 13. Balance in loads for different threshold values in PLF.

Fig. 14. Mean CQ processing load for different utility functions.

Fig. 15. Network cost as a function of r for different utility functions.

Fig. 16. Cost of replication relative to monitoring cost.



how gracefully the system degrades for different replication

factors.
The graphs in Figs. 17, 18, and 19 plot the total number of

deadly failures that have occurred during the whole
simulation for different mean service times (st), recovery
times (�tr), and replication factors (rf). These graphs show
that the number of deadly failures is smaller when the
replication factor is larger, the recovery time is smaller, and
the mean service time is longer. Note that our simulation
represents a worst-case scenario, where every peer leaves
the system by a failure and no peer enters into the system.
However, a replication factor of 4 presents a very small
number of or even no deadly failures.

These experiments show that the dynamic replication
provided by PeerCQ is able to achieve high reliability with
moderate values for the replication factor. Although
stronger reliability guarantees can be achieved through
increasing the replication factor further, it has the side-effect
of increasing the cost of replication. The formal analysis of
this cost is given in [4]. Here, we provide a sample
experimental result pertaining to cost of replication in
order to give a general idea of the trade-offs involved in
deciding an appropriate value for the replication factor.

Fig. 16 plots the network cost of replication relative to the
network cost of monitoring as a function of mean peer
service time and CQ monitoring period. Mean peer service
time is the average time a peer stays in the network before it
fails or departs. The monitoring period is the time between
two successive pollings of the data sources for monitoring
changes on data items. It is observed from the figure that
the cost of replication is small compared to the monitoring
cost when the mean service time values are high or when
the monitoring period values are low. It is also observed
that smaller replication list sizes (i.e., smaller rfs) help in
decreasing the relative cost of replication. For applications
with tighter latency requirements, the monitoring period
should be small and the replication is less likely to be an
issue in terms of network cost. On the other hand, for
applications specifying larger monitoring periods, the cost
of replication can be adjusted by changing the rf values and
adjusting the desired level of reliability.

5 RELATED WORK

WebCQ [11] is a system for large-scale Web information
monitoring and delivery. It makes heavy use of the
structure present in hypertext and the concept of continual
queries. It is a server-based system which monitors and
tracks various types of changes to static and dynamic Web
pages. It includes a proxy cache service in order to reduce
communication with the original information servers.
PeerCQ is similar to WebCQ in terms of functionality, but
differs significantly in terms of the system architecture, the
cost of administration, and the technical algorithms used to
schedule CQs. PeerCQ presents a peer-to-peer architecture
for large-scale information monitoring, which is more
scalable and less expensive to maintain due to the total
decentralization and the self-configuring capability.

Scribe [18] is a P2P application that is related to event
monitoring and notification. It presents a publish/sub-
scribe-based P2P event notification infrastructure. Scribe
uses Pastry [17] as its underlying peer-to-peer protocol and
builds application-level multicast trees to notify subscribers
from events published in their subscribed topic. Pastry’s
location algorithm is used to find rendezvous points for
managing the group communication needed for a topic. It
uses topic identifiers to map topics to peers of the system.
However, Scribe is a topic-based event notification system,
where PeerCQ is a generic information monitoring and
event notification system. In PeerCQ, notifications are
generated based on the monitoring done on the web using
the supplied CQs that encapsulate the interested informa-
tion update requests. In Scribe, notifications are generated
from publish events of the topic subscribers.

Several P2P protocols have been proposed to date,
among which the most representative ones are CAN [15],
Chord [20], Tapestry [21], and Pastry [17]. Similarly to these
existing DHT-based systems, the PeerCQ P2P protocol
described in this paper is developed by extending the
Plaxton routing proposal in [13]. The unique features of
PeerCQ are its ability to incorporate peer-awareness and
CQ-awareness into the service partition scheme and its
ability to achieve a good balance between load balance and
overall system utilization. The peer awareness in PeerCQ is
supported by virtual peer identifiers. Although our solution
was developed independently [6], the concept of virtual
servers in [14] also promotes the use of a varying number of
peer identifiers for the purpose of load balancing. However,
load balancing in PeerCQ has a unique characteristics. Its
use of virtual peer identifiers is combined with CQ
grouping and relaxed matching techniques, making the
PeerCQ service partitioning scheme unique and more
scalable in handling hot spot monitoring requests. Finally,
our dynamic passive replication scheme shares some
similarity to the replication techniques used in CFS [3]
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Fig. 17. Deadly failures rf ¼ 2.

Fig. 18. Deadly failures rf ¼ 3.

Fig. 19. Deadly failures rf ¼ 4.



with a number of major differences. First, in PeerCQ, there
is a need for updating the state of the replicas as the CQs
execute and change state. Thus, the replication scheme
needs to maintain strong consistency among replicas.
Second, PeerCQ provides dynamic relocation of CQ
executors as better peers for executing them join the system
to maintain the relaxing matching dynamically.

6 CONCLUSION

We have described PeerCQ, a fully decentralized peer-to-
peer architecture for Internet-scale distributed information
monitoring applications. The main contribution of the paper
is the smart service partitioning scheme at the PeerCQ
protocol layer, with the objective of achieving good load
balance and good system utilization. This scheme has three
unique properties: First, it introduces a donation-based
peer-awareness mechanism for handling the peer hetero-
geneity. Second, it introduces the CQ-awareness mechan-
ism for optimizing hot spot CQs. Third, it integrates CQ-
awareness and peer-awareness through two phase match-
ing algorithms into the load balancing scheme while
maintaining decentralization and self-configurability.
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